
Optimal Therapy Scheduling Based on a Pair of
Collaterally Sensitive Drugs

Nara Yoon, Robert Vander Velde, Andriy Marusyk and Jacob G. Scott

February 20, 2018

Abstract1

Despite major strides in the treatment of cancer, the development of drug resistance re-2

mains a major hurdle. One strategy which has been proposed to address this is the sequential3

application of drug therapies where resistance to one drug induces sensitivity to another drug,4

a concept called collateral sensitivity. The optimal timing of drug switching in these situations,5

however, remains unknown.6

To study this, we developed a dynamical model of sequential therapy on heterogeneous7

tumors comprised of resistant and sensitive cells. A pair of drugs (DrugA, DrugB) are uti-8

lized and are periodically switched during therapy. Assuming resistant cells to one drug are9

collaterally sensitive to the opposing drug, we classified cancer cells into two groups, AR and10

BR, each of which is a subpopulation of cells resistant to the indicated drug and concurrently11

sensitive to the other, and we subsequently explored the resulting population dynamics.12

Specifically, based on a system of ordinary differential equations for AR and BR, we de-13

termined that the optimal treatment strategy consists of two stages: an initial stage in which a14

chosen effective drug is utilized until a specific time point, T , and a second stage in which drugs15

are switched repeatedly, during which each drug is used for a relative duration (i.e. f∆t-long16

for DrugA and (1 − f)∆t-long for DrugB with 0 ≤ f ≤ 1 and ∆t ≥ 0). We prove that the17

optimal duration of the initial stage, in which the first drug is administered, T , is shorter than18

the period in which it remains effective in decreasing the total population, contrary to current19

clinical intuition.20

We further analyzed the relationship between population makeup,A/B = AR/BR, and the21

effect of each drug. We determine a critical ratio, which we term (A/B)∗, at which the two22

drugs are equally effective. As the first stage of the optimal strategy is applied, A/B changes23

monotonically to (A/B)∗ and then, during the second stage, remains at (A/B)∗ thereafter.24

Beyond our analytic results, we explored an individual based stochastic model and pre-25

sented the distribution of extinction times for the classes of solutions found. Taken together,26

our results suggest opportunities to improve therapy scheduling in clinical oncology.27

1 Introduction28

Drug resistance is observed in many patients after exposure to cancer therapy, and is a major hurdle29

in cancer therapy [1]. In most cases, treatment with appropriate chemo- or targeted therapy reliably30

reduces tumor burden upon initiation. However, in the majority of cases, resistance inevitably31

arises, and the disease relapses [2]. The observation of relapse is typically accomplished during32

surveillance through imaging, or in some cases a blood based marker [3, 4]. Disease recurrence33

is observed, at the earliest, when the disease burden reaches some threshold of detection, at which34
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point the first line therapy is deemed to have failed and a second line drug is used to control the35

disease (see Figure 1 (a)). We argue herein that a redesign of treatment should start earlier than this36

time point, not only because the detection threshold is higher than the minimum disease burden,37

but also because the first drug could become less efficient as the duration of therapy reaches Tmax.38

In this research, we focus on the latter reason and figure out how much earlier we should switch39

drug in advance of Tmax, assuming that the former reason is less important (tDT − to ≈ Tmax).40

While for many years it was assumed that tumors were simply collections of clonal cells, it is41

now accepted that tumor heterogeneity is the rule [5]. The simplest manifestation of this hetero-42

geneity can be represented by considering the existence of both therapy resistant and sensitive cell43

types co-existing prior to therapy [6], with the future cellular composition shaped by the choice44

of drugs (illustrated in Figure 1 (b)). Beyond simple selection for resistant cells, cells can also45

become altered toward a resistant state during treatment, either by (i) genetic mutations [7, 8] or46

(ii) phenotypic plasticity and resulting epigenetic modifications [9, 10, 11].47

To combat resistance, many strategies have been attempted, including multi-drug therapies tar-48

getting more than one cell-type at a time. While multi-drug therapy has enjoyed successes in many49

cancers, especially pediatric ones, the resulting combinations can often be very toxic. Further,50

recent work has suggested that the success of multi-drug therapy at the population level is likely51

overstated in individuals, given intra-patient heterogeneity [12]. Recently, researchers have sought52

specific sequential single drug applications that induce sensitivity, a concept is called collateral53

sensitivity [13, 14, 15, 16]. In some cases, several drugs used sequentially can complete a collateral54

sensitivity cycle [15, 14], and corresponding periodic drug sequence can be used in the prescription55

of long term therapies – though the continued efficacy of this cycle is not guaranteed [17]. In this56

research, we focus on a drug cycle comprised of just two drugs, each of which can be used as a57

targeted therapy against cells that have evolved resistance to the previous drug (illustrated in Figure58

1 (b)).59

The underlying dynamics of resistance development has previously been studied using cell60

populations consisting of treatment sensitive and resistant types, using either genotypic or phe-61

notypic classifications [18]. Additionally, others have justified their choices of detailed cellu-62

lar heterogeneities using: (i) stages in evolutionary structures [19, 20], (ii) phases of cell cycle63

[21, 22, 23, 24], or (iii) spatial distribution of irregular therapy effect [25, 26]. Among these, re-64

searchers (including [18, 22, 23, 27, 28]) have studied the effect of a pair of collaterally sensitive65

drugs as we propose here, using the Goldie-Coldman model or its variations [19, 28, 29, 30]. These66

models utilize a population structure consisting of four compartments, each of which represents a67

subpopulation that is either (i) sensitive to the both drugs, (ii) and (iii) resistant to one drug respec-68

tively, or (iv) resistant to both.69

In this manuscript we propose a modeling approach which is the minimal model sufficient to70

study the effects of two populations of cells and two collaterally sensitive drugs. The model’s sim-71

plicity facilitates exact mathematical derivations of useful concepts and quantities, and illustrates72

several novel concepts relevant to adaptive therapy. The remainder of the manuscript is structured73

as follows. In Section 2, we outline the model and define terms. In Section 3 we present analysis of74

drug switch timing and duration. In Section 4 we relax several assumptions in our analytic model75

and study extinction times in a stochastic formulation, which agrees well with analysis in the mean76

field. In Section 5 we conclude and present work for future directions.77
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(a) Drug resistance

(b) Tumor heterogeneity and collateral sensitivity

Figure 1: (a) General dynamical pattern of disease burden. It increases initially and then decreases
as of the therapy starting point (t0), and eventually rebounds after the maximum period with positive
therapy effect (Tmax). Relapse is found, at the earliest, when disease burden reaches detection
threshold at tDT . (b) Change in composition of tumor cell population when a pair of collaterally
sensitive drugs are given one after another.

2 Modeling setup78

2.1 Basic cell population dynamics under a single drug administration79

Based on the sensitivity and resistance to a therapy, the cell population can be split into two groups.80

We refer to the population sizes of sensitive cells and resistant cells as CS and CR respectively, and81

then use the total cell population size, CP := CS +CR, to measure disease burden and drug effect.82

We account for three dynamical events in our model: proliferation of sensitive (s) and resis-83

tant cells (r), and transition between these cell types (g). Here, net proliferation rate represents84

combined birth and death rate, which can be positive if the birth rate is higher than the death rate85

or negative otherwise. It is reasonable to assume that, in the presence of drug, the sensitive cell86

population size declines (s < 0), resistant cell population size increases (r > 0), and that g > 0.87

Therefore, for the remainder of the work we consider only conditions in which s < 0, r > 0 and88

g > 0.89

(
ĊS
ĊR

)
=

(
−(g − s) 0

g r

)(
CS
CR

)
(1)

Figure 2: Schematic of dynamics between sensitive cells population, CS , and resistant cells
population, CR, (left panel) and the differential system of {CS, CR} (right panel) with
s−proliferation rate of sensitive cells, r−proliferation rate of resistant cells, g−transition rate from
CS to CR
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Figure 2 illustrates the population dynamics, and the system of ordinary differential equations90

that {CS, CR} obey. The solution of the system (1) is91

(
CS(t)
CR(t)

)
=

 e−(g−s) t 0
g (er t − e−(g−s) t)

g + r − s
er t

( C0
S

C0
R

)
, (2)

where {CS(0), CR(0)} = {C0
S, C

0
R}. By (2), total population is92

CP (t|{s, r, g}, {C0
S, C

0
R}) =

(
r − s

g + r − s
C0
S

)
e−(g−s) t+

(
g (C0

S + C0
R) + (r − s) C0

R

g + r − s

)
er t. (3)

CP (t) is a positive function comprised of a linear combination of exponential growth (er t) and93

exponential decay (e−(g−s) t) with positive coefficients. Despite the limitations of simple exponen-94

tial growth models [31], we feel it is a reasonable place to start, since the relapse of tumor size starts95

when it is much smaller than its carrying capacity which results in almost exponential growth.96

CP has one and only one minimum point in {−∞,∞}, after whichCP increases monotonically.97

If C ′P (0) = s C0
S + r C0

R ≥ 0, the drug is inefficient (CP (t) is increasing on t ≥ 0, see an example98

on Figure 3 (a)). Otherwise, if C ′P (0) < 0, the drug is effective in reducing tumor burden at the99

beginning, although it will eventually regrow (due to drug resistance; see example in Figure 3 (b)).100

(a) (b)

Figure 3: Two representative population histories showing qualitatively different behaviors
depending on drug parameters with fixed initial population, {C0

S, C
0
R} = {0.9, 0.1}. (a) increasing

total population with {s, r, g} = {−0.01, 0.1, 0.001}; C ′P (0) = 0.001 > 0. (b) rebounding total
population with {s, r, g} = {−0.09, 0.08, 0.001}; C ′P (0) = −0.073 < 0.

2.2 Cell population dynamics with a pair of collateral sensitivity drugs101

Here we describe the effect of sequential therapy with two drugs switched in turn, by extending102

the model for a single-drug administration (System (1)). Assuming that the drugs are collaterally103

sensitive to each other, cell population is classified into just two groups reacting to the two types104

of drugs in opposite ways. Depending on which drug is administered, cells in the two groups will105

have different proliferation rates and direction of cell-type transition (see Figure 4). That is, the106

population dynamics of the two groups follow a piecewise continuous differential system consisting107

4

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 20, 2018. ; https://doi.org/10.1101/196824doi: bioRxiv preprint 

https://doi.org/10.1101/196824
http://creativecommons.org/licenses/by/4.0/


Figure 4: Dynamics of two cell subpopulations (AR, BR), which is opposite in direction under
the present of collaterally sensitive drugs (DrugA, DrugB). AR is population of cells, resistant
only to DrugA, and theBR population of cells, resistant only toDrugB in the presence of DrugA
or DrugB. For each drug therapy, accounted cellular events are proliferations of sensitive and
resistance cells ({s, r}, colored red and green) and drug-induced transitions from sensitive type to
resistance type (g colored blue).

of a series of the system (1), each of which is assigned to a time slot bounded by drug-switching108

times.109

In summary, we assume that:110

• There is a pair of collaterally sensitive drugs, DrugA and DrugB, which are characterized111

by their own model parameters: pA = {sA, rA, gA} and pB = {sB, rB, gB} respectively,112

• A modeled tumor can be characterized entirely by two subpopulations, AR - resistant to113

DrugA and simultaneously sensitive to DrugB, and BR - resistant to DrugB and simulta-114

neously sensitive to DrugA.115

• Three factors determine the dynamical patterns, (i) drug parameters, {pA, pB}, (ii) the initial116

population sizes, {AR(0), BR(0)}, and (iii) the drug switching schedule.117

An example of {AR, BR, AR +BR} histories is shown in Figure 5.118

3 Analysis of therapy scheduling119

3.1 Drug-switch timing120

To begin exploring the possible strategies of drug switching and timing within our model, we first121

tested an idea based on clinical intuition. As we discussed, the norm in the clinic is to change drugs122

when failure is observed either radiographically or through a bio-marker. We know, however, that123

the true failure occurs somewhat before this, yet at that time it is below the threshold of detection.124

To model drug switching at the point of ’true failure’, the intuitive (yet unobservable) time point125

when the tumor population begins to rebound, we switch the drugs at the global minimum point of126

tumor size which we term Tmax (see Figure 1a), which was shown to exist uniquely in the previous127

section if and only if CR(0)/CS(0) < −s/r. The expression for Tmax, derived from our model, is128

Tmax({s, r, g}, (R/S)0) =

ln

[
(g − s)(r − s)

r(g((R/S)0 + 1) + (r − s)(R/S)0)

]
g + r − s

. (4)
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Figure 5: Representative plots demonstrating the dynamics of cell populations. Shown are
population curves either resistant to DrugA (AR) or resistant to DrugB (BR), as well as the to-
tal population (AR + BR) during drug switches. Here, pA = pB = {−0.9, 0.08, 0.1}/day and
{AR(0), BR(0)} = {0.5, 0.5}.

with (R/S)0 := CR(0)/CS(0). (See Appendix A.1 for this derivation.)129

130

We see that the quantity Tmax depends only on (i) the parameters of the drug being administered,131

and (ii) the initial population makeup. In the DrugA-based therapy, it is Tmax(pA, (A/B)0), and in132

the DrugB-based therapy, it is Tmax(pB, 1/(A/B)0), where (A/B)0 = AR(0)/BR(0).133

In addition to Tmax, another important time point is Tmin, explained below. Since the rate of134

population decrease is almost zero around Tmax, with no switch (see the black curve of Figure 6),135

we seek to find a way to extend the high rate of population decrease by switching drugs before136

Tmax. To decide how much earlier to do so, we compared the derivative of CP under constant137

selective pressure (no switch) at an arbitrary time point, t1, and compared it to the right derivative138

of CP at t1 with the drug-switch assigned to t1.139

For example, if the first drug is DrugA and the follow-up drug is DrugB (illustrated in Figure140

6), we compare141

C ′P (0|pA, {BR(t1), AR(t1)}) and C ′P (0|pB, {AR(t1), BR(t1)})
from (3). This comparison reveals that the two derivatives are equal iff t1 is a specific point (Tmin142

(see the yellow curve in Figure 6)) The derivative when the drugs are switched is lower (decreasing143

faster) iff t1 > Tmin (see the blue and green curves in Figure 6), and the derivative when the drugs144

are not switched is lower iff t1 < Tmin (see the red curve in Figure 6).145

The general form of Tmin depends on the parameters of the “pre-switch” drug {s1, r1, g1} and146

for the “post-switch” drug {s2, r2}, as well as the initial population ratio between resistant cells and147

sensitive cells to the “pre-switch” drug, (R/S)0 (See Appendix A.1 for details derivation). Here,148

the transition parameter in the second drug (g2), and the respective values of the two populations149

are unnecessary in the evaluation of Tmin, which is found to be150

Tmin({s1, r1, g1}, {s2, r2}, (R/S)0) =

ln

[
(r1 − s1)(r2 − s1) + g1(r1 + r2 − s1 − s2)

(r1 − s2)(g1 + (g1 + r1 − s1)(R/S)0)

]
g1 + r1 − s1

. (5)
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DrugA alone

switch to DrugB at t=1/2 Tmin

switch to DrugB at t=Tmin

switch to DrugB at t=1/2 Tmin + 1/2 Tmax

switch to DrugB at t=Tmax

Figure 6: Comparison of total population curves with a one-time drug-switch from DrugA to
DrugB at different time points (i) at < Tmin (worse than without-switch; red curve), (ii) at Tmin
(same as without-switch; yellow curve), (iii) between Tmin and Tmax (better than without-switch;
green curve), and (iv) Tmax (better than without-switch; blue curve). Each color represents cell
population size during and after a drug-switch using each switching strategy. The dashed yellow
and black curve represents the overlap between the yellow and black curves. The tangent lines
of the population curves at the chosen drug-switch time points are illustrated above. Parameters:
pA = pB = {−0.9, 0.08, 0.001}/day and {AR(0), BR(0)} = {0.1, 0.9}.

In theDrugA-to-DrugB switch, it is Tmin(pA, pB, (A/B)0), and in theDrugB-to-DrugA switch,151

it is Tmin(pB, pA, 1/(A/B)0), where (A/B)0 = AR(0)/BR(0).152

It is important to note that the population curve with a single drug-switch after Tmin (and before153

Tmax, assuming that Tmin < Tmax) is not guaranteed to be lower than that of a single drug-switch154

switch at Tmax over the entire time range. As an example, as illustrated in Figure 6, the green curve155

relevant to the switch at (Tmin+Tmax)/2 and the blue curve relevant to the switch at Tmax intersect156

at t ≈ 58 and the blue curve is lower after the time of this intersection. However, sequential drug157

switches starting between Tmin and Tmax create the possibility of finding a better drug schedule than158

the Tmax−based strategy. Figure 7 shows possible choices of follow up switches (green and black159

curves) which achieve better results than a Tmax−switch (red curves), unlike the drug-switches160

starting before Tmin, which remain less effective (magenta curve).161

The optimal drug switching scheme will be discussed in detail in Section 4.2. The optimal162

scheduling for the example shown in Figure 5 starts by using the first drug until Tmin (blue curve163

for 0 < t ≤ Tmin) followed by a rapid exchange of the two drugs afterwards (black curve for164

t > Tmin). Switching before Tmax, that is, before the drug has had its full effect, goes somewhat165

against clinical intuition, and is therefore an opportunity for unrealized clinical improvement based166

on a rationally scheduled switch at Tmin. In order to realize this however, there are conditions about167

the order of Tmax and Tmin which must be satisfied. In particular:168 
Tmin < Tmax iff r1r2 < s1s2

Tmin = Tmax iff r1r2 = s1s2

Tmin > Tmax iff r1r2 > s1s2.
(6)

In our analysis and simulations, we will deal with the cases mostly satisfying r1r2 < s1s2, as169

otherwise the choice of drugs is not powerful to reduce the cell population (explained in detail in170

the next section and Figure 8).171
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(a) (b)

DrugA alone starting

After DrugA-to-DrugB switch at t=Tmax

Instantaneous switch starting at (i) t=0 and (ii) t=Tmin

Arbitrary schedule with initial DrugA-to-DrugB switch earlier than Tmin

Arbitrary schedule with initial DrugA-to-DrugB switch between Tmin and Tmax

Figure 7: Total population curves with different therapy strategies with pA = pB =
{−0.9, 0.08, 0.001}/day and {AR(0), BR(0)} = {0.1, 0.9} (a) full range of relative population
(b) enlargement of the shaded areas on (a)

This window of opportunity, where the clinical gains could be made, which we will term Tgap,172

is the difference between Tmin and Tmax. This relationship allows us to compare Tmin and Tmax173

using different parameters.174

Tgap({s1, r1, g1}, {s2, r2}) := Tmax({s1, r1, g1}, (R/S)0)− Tmin({s1, r1, g1}, {s2, r2}, (R/S)0)

=

ln

[
(g1 − s1)(r1 − s1)(r1 − s2)

r1((r1 − s1)(r2 − s1) + g1(r1 + r2 − s1 − s2))

]
g1 + r1 − s1

(7)

We analyze sensitivity of Tgap over a reasonable space of non-dimentionalized drug parameters in175

Appendix B. As expected, as the proliferation rates under the second drug increases (r2 ↑ and/or176

s2 ↑), the optimal time to switch to the second drug is delayed (Tmin ↑ and Tgap ↓). As r1 increases,177

both Tmin and Tmax decrease. However, Tmax decreases more than Tmin does, so overall Tgap178

decreases. s1 and Tgap do not have a monotonic relationship. As s1 increases, Tgap increases for a179

while (when s1 is relatively low), and then decreases afterward (when s1 is relatively high).180

3.2 Population makeup and drug effect181

In the previous section, the derived time points (Tmin, Tmax) are dependent on the initial population182

makeup ((R/S)0) from Equations (4)-(5), but not on explicit size of the total population or subpop-183

ulations. This makes sense, since absolute population size plays a role by scaling overall behavior184

of populations (CP (t|{s, r, g}, {C0
S, C

0
R}) = C0

S CP (t|{s, r, g}, {1, (R/S)0}) from (2)), and Tmin185

and Tmax are both defined by derivatives at the time points (i.e., CP (Tmax) = 0, and from (5)). In186
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this section, we seek to clarify the relationships between population makeup and therapy effects187

defined using C ′P (t), and roles of Tmin and Tmax in these relationships. We first define functions of188

the ratio between the two cell subpopulations:189

R/S(t) :=
CR(t)

CS(t)
.

We further define functions measuring drug effectiveness as the relative rate of population change190

depending only onR/S and drug parameters:191

dCP/dt

CP
=
s CS + r CR
CS + CR

=
s+ r (R/S)

1 +R/S
:= Ef(R/S|{s, r}). (8)

192

193

In the case where we classify cells as AR and BR, we similarly define their population makeup194

as:195

A/B(t) :=
AR(t)

BR(t)
.

ThenA/B at Tmin, using aDrugA-to-DrugB switch (TAmin), andA/B, using aDrugB-to-DrugA196

switch (TBmin), are equivalent:197

A/B(TAmin) = A/B(TBmin) =
rB − sA
rA − sB

:= (A/B)∗. (9)

At Tmax with DrugA (TAmax), and with DrugB (TBmax), we have198

A/B(TAmax) =
−sA
rA

and, A/B(TBmax) =
rB
−sB

, (10)

and further, as s < 0 and r > 0, values ofA/B are all positive. We give a more thorough description199

of (9) and (10) in Appendix A.1.200

The effects of DrugA (specified by pA) and DrugB (specified by pB), both defined by (8),201

are equivalent at Tmin, that is Ef((A/B)∗|pA) = Ef(1/(A/B)∗|pB)). The effect of DrugA is202

larger if A/B(t) < (A/B)∗, since the DrugA resistant cell population is relatively smaller than203

the population of the other cell type, otherwise, DrugB has a more beneficial effect. When t =204

TAmax, and therefore when A/B(t) = −sA/rA, DrugA has no effect on population reduction (i.e.205

Ef(−sA/rA|pA) = 0). If A/B is getting smaller, DrugA becomes effective. Furthermore, the206

smaller A/B is, the better the effect DrugA has. Similarly the effect of Drug B is zero when207

t = TBmax and A/B(t) = −rB/sB) and increases as A/B increases above it (see Figure 8).208

The population makeup changes in the opposite direction as DrugA (or DrugB) therapy con-209

tinues, A/B therefore continues to increase (or decrease). Therefore, if DrugA (or DrugB) is210

given too long, it goes through a period of no or almost no effect around A/B = −sA/rA (or211

around A/B = −rB/sB), but once the drug is switched after that, there will be a higher therapy212

effect with DrugB (or with DrugA). These two opposite aspects are balanced by switching the213

drug when the population makeup reaches (A/B)∗, which is applied to the optimal therapy regimen214

described in the next section.215

Depending on condition (6), the order of the three population makeups at Tmin, TAmin and TBmax216

changes. In particular, if rArB < sAsB, there exists an interval (−rB/sB,−sA/rA) in A/B in217

which both drugs are effective in decreasing the population size. Otherwise, if rArB < sAsB, no218

drug is effective when A/B ∈ (−sA/rA,−rB/sB). These results are illustrated in Figure 8.219

220
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(a) rArB < sAsB (b) rArB > sAsB

Figure 8: Effect of DrugA and DrugB over the axis of A/B. The two drugs have the same
effect when A/B = (A/B)∗, and have no effect when A/B = −sA/rA (in the case of DrugA)
or A/B = −rB/sB (in the case of DrugB). The drug effect increases as A/B gets farther from
the no-effect level in the direction a smaller resistant subpopulation. Depending on a condition,
there exists (Panel a) or does not exist (Panel b) a range of A/B in which both drugs have positive
effects.

3.3 Optimal scheduling and its clinical implementation221

In this section, we describe a drug-switching schedule design to achieve the best effect possible222

with a pair of collaterally sensitive drugs. The area under the curve of the total population simulated223

under an assigned treatment strategy is utilized to measure the aggregate effect of the strategy. The224

smaller the area, the better the corresponding strategy. The numerically determined optimal strategy225

consists of two stages:226

• Stage 1: Treat with first drug until reaching the population makeup where the effects of each227

drug are balanced ((A/B)∗), that is until the Tmin of the first drug.228

• Stage 2: Begin switching drugs with a specific temporal ratio (represented by k or k′, see229

Figure 9) determining the difference in the treatment duration of each drug, and switching230

frequently (represented by ∆t ≈ 0). Both conditions are used to keep A/B close to constant231

near (A/B)∗.232

Figure 9: Schematic of the relationship between therapy duration (∆t, k ∆t, or ∆t/k′) and the
change in A/B around (A/B)∗. ∆t represents an arbitrary time interval (ideally short, ∆t ≈ 0)
and k represents a specific quantity corresponding to ∆t and the model parameters in DrugA and
DrugB.

We represent the relative durations of DrugA compared to the duration of DrugB in Stage233

2 by k and k′. The explicit formulation of k can be derived from the solution of the differential234
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equations (2). To do so we (i) evaluate the level of A/B after ∆t time has passed during DrugA235

therapy, when starting withA/B(0) = (A/B)∗, that is (A/B)DrugA∆t , and then (ii) by measuring the236

time period taken to regain (A/B)∗ from (A/B)DrugA∆t through therapy with DrugB, denoted by237

∆t′, and finally (iii) taking the ratio between the two therapy periods, which is k := ∆t/∆t′. k238

depends on the frequency of drug switching and model parameters:239

k = k(∆t, pA, pB). (11)

This k is consistent with k′ = k′(∆t, pA, pB), which is the ratio similarly evaluated with DrugB240

as the first therapy and DrugA as the follow-up therapy, in the optimal case of instantaneous241

switching:242

lim
∆t→0

k(∆t, pA, pB) = lim
∆t→0

k′(∆t, pA, pB)

=
(rA − sB)((rA − sA)(rB − sA) + gA(rA + rB − sA − sB))

(rB − sA)((rB − sB)(rA − sB) + gB(rA + rB − sA − sB))
:= k∗(pA, pB). (12)

For a more detailed derivation of k∗, see Appendix A.1. We further studied how sensitive k∗ (or243

f ∗ = k∗/(1 + k∗)) is over a reasonable range of non-dimentionalized {pA, pB} (see Appendix B244

for details). k∗ (or f ∗) increases, as rA and/or sB decreases as sA and/or rB increases.245

Figure 10 shows examples of population curves with the optimal strategy (Tmin switch) and246

one non-optimal strategy (Tmax switch) using the same choice of parameters/conditions. Visual247

comparison of total population curves (Figure 10 (a)) reveals that the predicted optimal strategy248

outperforms the intuitive strategy. To quantitatively compare the efficacy of each strategy, we can249

use area between the two population curves. This area is:250

∫ x

0

[AR(t | Tmax-switch) +BR(t | Tmax-switch)

−AR(t | Tmin-switch)−BR(t | Tmin-switch)] dt. (13)

With a choice of upper limit large enough to include most treatment schedules, x = 100 (days),251

we used sensitivity analysis of the integral (13) (See Appendix B for the details). The advantage252

of the optimal treatment strategy is demonstrated by the lower population sizes in all cases. And253

the evaluations of the areas under the population curves from t = 0 to a range at the upper limit254

of integration (Figure 10 (b)) confirms the superior effect of the optimal strategy over time. Figure255

10 (c) shows the typical pattern of A/B in the optimal therapy compared to the other, which is256

monotonically changing toward (A/B)∗ in the first stage and constant in the second stage.257

While our theory predicts optimality with “instantaneous drug switching”, we realize this is not258

clinically feasible. Therefore, the instantaneous drug switching in Stage 2 could be approximated259

by a high frequency switching stratgey with ∆t & 0 along with the corresponding k(∆t) from (11),260

or k∗ (12) independent from ∆t. As expected, the smaller ∆t is chosen, the closer the population261

follows the ideal case with ∆t = 0 (see Appendix C for the details), but improvements can still be262

made over non-strategic switching, if the temporal ratio is followed.263

We have proved that the effect of instantaneous drug switching, with an arbitrary ratio in du-264

ration between two drugs (k), is consistent with the effect of a mixed drug with a relative dosage265

ratio, which is also k (Theorem A.8 in Appendix A.2). The theorem is used in the derivation of a266

differential system/solution of the optimal strategy (Theorem A.11 in Appendix A.3). According267

to these results, in Stage 2 of optimal regimen, all types of populations, AR, BR and AR + BR,268

change with the same constant proliferation rate:269
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(a) (b)

(c)

Figure 10: Comparison between dynamical trajectories using the optimal (Tmin switch; blue
curves) and an example of non-optimal (Tmax switch; red curves) therapeutic strategies, in
terms of (a) time histories of AR, BR and AR + BR, (b) integration of total population from
t = 0 to varying upper limit (x-axis), and (c) dynamical changes in the total population and
population makeup. On all panels, Stage 1 is shown in gray and Stage 2 is shown in white.
Parameters/conditions are: {sA, sB} = {−0.18,−0.09}/day, {rA, rB} = {0.008, 0.016}/day,
{gA, gB} = {0.00075, 0.00125}/day and {A0

R, B
0
R} = {0.1, 0.9}.

λ =
rArB − sAsB

rA + rB − sA − sB
.270

While not clinical proof, these theoretical results suggest a method of application of two drugs in271

sequence, which would approximate multi-drug therapy in efficacy, but which could be free of the272

increase in side effects from the combination.273

4 Studying extinction time with a stochastic formulation274

In the previous sections we utilized an entirely deterministic model of heterogeneous tumor growth.275

Cancers, however, are not deterministic, and without stochasticity in our system we could not model276

an important part of cancer treatment: extinction. We therefore constructed a simple individual277

based model using a Gillespie algorithm [32] to study this critical aspect of therapy that is not278

limited by the assumptions we were required to make for purposes of analytic tractability.279

Our stochastic model depends not only on net proliferation rates (s, r, see Equation (1)) but280
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also on the combination of birth rates (bS , bR) and death rates (dS , dR) where s = bS − dS and r =281

bR − dR. These five parameters (bs, br, ds, dr, g) govern the probabilities of events occurring. The282

time at which one of these events occurs is determined by an exponential probability distribution,283

and we represent the algorithm as pseudo-code thus:284

(Step 1) Initialize {S(0), R(0)} = {C0
S, C

0
R}.285

286

(Step 2) Update from t to t+ dt:287

(random number generation)288

rt ∼ U [0, 1], re ∼ U [0, 1]289

a = (bS + dS + g)S(t) + (bR + dR)R(t)290

dt = − log(rt)/a291

{p1, p2, p3, p4, p5} = {bSS(t), dSS(t), bRR(t), dRR(t), g S(t)}/a292

293

if re < p1, then S(t+ dt) = S(t) + 1294

else if re < p2 + p1, then S(t+ dt) = S(t)− 1295

else if re < p3 + p2 + p1, then R(t+ dt) = R(t) + 1296

else if re < p4 + p3 + p2 + p1, then R(t+ dt) = R(t)− 1297

else, S(t+ dt) = S(t)− 1 and R(t+ dt) = R(t) + 1298

299

(Step 3) t← t+ dt and repeat (Step 2) until a set time has passed or extinction has occurred.300

301

We expanded the stochastic process for a single drug to treatment with two drugs being switched302

in turn, as in our ODE system (See Appendix D, for the details of the computational code). Figure303

11 (a) shows the consistency between the mean field behavior of the stochastic model and the ODE304

system.305

Despite the generally similar patterns of population curves simulated with same {s, r, g}-type306

parameters and initial conditions, we observe differences in terms of elimination time if birth/death307

combinations are different. To quantify these differences we directly studied the elimination times308

(defined as the distribution of times to the absorbing state of total population = 0) simulated with309

different combinations of birth/death rates, with a choice of fixed proliferation rates (as well as310

other fixed transition rates and initial condition). We defined an index to represent different levels311

of birth and death rate combinations:312

Istoch = bI,J + dI,J for I ∈ {S,R} and J ∈ {A,B}313

where I indicates a type of sensitivity or resistance and J does a type of drug. Given a specific net314

proliferation rate (bI,J − dI,J ), the larger the index, the larger both birth (bI,J ) and death (dI,J ) rates315

are.316

Increased Istoch result in larger fluctuations, these fluctuations then increase the probability of317

reaching the absorbing state which is extinction (tumor cure). The relationship between Istoch and318

extinction time is shown in Figure 11 (b). The relationship is approximated by a linear model319

with slope, -93.68 (days2), p-value of the slope, p < 0.05, and squared residual of regression,320

r2 = 0.1726.321

5 Conclusions and discussion322

The emergence of resistance to the best current cancer therapies is an almost universal clinical323

problem, and the solution to this represents one of the greatest unmet needs in oncology. While324
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Figure 11: (a) Comparison between the stochastic process and the ODE model. The mean
(thick curves) of multiple stochastic simulations (thin curves) are compared to the ODE solu-
tion (dashed curves). Parameters are {sA, rA, gA|sB, rB, gB|A0

R, B
0
R} = {−0.05, 0.005, 0.0001| −

0.05, 0.005, 0.0001|1000, 9000}, birth rate + death rate (Istoch) = 1.0. (b) Relationship between
birth-death combinations (Istoch; 0.1 to 1.0 with intervals of 0.1) and simulated extinction time in
200 replicates with the same parameters and initial condition with (a). Regression (red line) is
y = −93.68x+ α (slope has p<0.05 and r2 = 0.1726). Cyan lines show mean values.

much effort has been put into novel drug discovery to combat this, there is also a growing interest325

in determining the optimal sequences, or cycles of drugs that promote collateral sensitivity. To326

study this second paradigm, we proposed a simple dynamical systems model of tumor evolution in327

a heterogeneous tumor composed of two cell phenotypes. While in reality, cell phenotype can be328

defined in many ways, here we completely describe it by considering only sensitivity (or resistance)329

to a pair of collaterally sensitive drugs, which is encoded in their differential growth rates in specific330

conditions. While the resulting mathematical model conveys only simple, but essential, features of331

cell population dynamics, it does yield analytical solutions that more complex models cannot.332

Our original motivation was to consider more complicated sequences, or cycles of drug therapy,333

however, the model presented herein is difficult to apply for an expanded system of more than two334

drugs. On the other hand, the cell classification used by others [18, 19, 28, 29, 33] considers335

sensitivity and resistance independently, or even specifically to a given, abstracted, genotype [34,336

35]. Therefore, in the case of 2 drugs, there are 22 = 4 groups, (i) sensitive to both drugs, (ii) and337

(iii) resistant to only one drug, and (iv) resistant to both drugs. This formulation could be expanded338

and applied to more than two drugs [18, 33]. Also, in other earlier researches, cell populations339

are divided by more specific criteria for the choices of cancers and drugs (e.g., level of protein340

expression, enzyme inhibitors, or growth factors [10, 11, 8]). We will consider both of the general341

and specific approaches of population classification in future work.342

The simplicity of our exponential growth/decay model arises from the assumption of a con-343

stant growth rate. Use of exponential growth is likely not overly inappropriate, as we are most344

interested in the development of resistance – and resistance is typically thought to begin when the345

tumor burden is much smaller than the carrying capacity. However, the assumption might have346

oversimplified patterns of cell growth, which is assumed to be non-exponential by others (e.g. lo-347

gistic growth [31, 36, 37]), due to the limited space and resources of the human body for tumor348

growth, as well as increasing levels of resistance (increasing growth rates) in the face of continued349

selective pressure [38]. We will consider the concept of changing growth rates in terms of time and350
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population density, and explore its effect on our analytical results (such as Tgap, (A/B)∗, k∗ and351

etc.) in future work.352

We provided a strategy for drug-switching which yields the best possible effect in this model353

system, i.e. the fastest decrease in cell population. The strategy is defined explicitly in terms of354

parameters determined by the drugs that are used, therefore the applicability of our model relies355

on the availability of drug parameters. Drug parameters for several drugs are known based on in356

vitro experiment or clinical studies [39, 40]. However, these parameters are not available for all357

drugs, and even the usefulness of in vitro results may change from one patient to the next. Because358

of this, we propose focusing our future work on learning to parameterize models of this type from359

individual patient response data. Examples of parameterizing patient response from imaging [41]360

as well as blood based markers [42] already exist, suggesting this is a reasonable goal in the near361

future.362

In our optimized treatment regimen we must first apply DrugA (if DrugA is better at the ini-363

tial time, i.e., A/B(0) < (A/B)∗; see Figure 8). Surprisingly the ideal treatment course switches364

to DrugB while DrugA is still effective at reducing the total population. Since treatment should365

ideally switch before the tumor relapses our study justifies the search for techniques that either366

identify or predict resistance mechanisms early. Our study also argues against the opposite ex-367

treme, wherein resistant cells are targeted at the beginning of treatment. The preponderance of368

cells sensitive to the standard of care makes this treatment initially ideal, and does not preclude369

eventual success in our model. Further, the rapid tumor size reduction, associated with targeting370

the larger sensitive population first, could be clinically meaningful.371

Our stochastic model allowed us to explore the contributions of cell birth and death separately,372

as opposed to the ODE which could only consider the net growth rate. These parameters can be373

altered in cancer since cancer treatments have various cytostatic and cytotoxic effects, and therefore374

different treatments can have different effects on death and birth. In our model, increasing the total375

birth and death rate (as opposed to the net growth rate) caused, on average, extinction earlier in time376

(Figure 11 (b). This can be explained by the fact that extinction is the only absorbing state in our377

model, and therefore higher death rates determine when extinction occurs, even when birth rates378

are also higher. Our stochastic model therefore suggests that highly cytotoxic drugs (even those379

with correspondingly minimal cytostatic effects) are more effective at eliminating tumors, at least380

when the tumor population is small.381

In summary, we have presented a simple model of a heterogeneous, two phenotype tumor, with382

evolution occurring between resistant and sensitive states. We derive exact analytic solutions for383

tumor response in temporally changing drug conditions and find an optimal regimen which involves384

drug switching after a specific, critical time point which occurs before resistance would normally be385

clinically evident. While our model is highly simplified, we have identified several opportunities to386

improve our understanding and treatment of drug resistance, and also future opportunities for new387

modeling endeavors.388
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Appendix A Derivations of explicit expressions506

A.1 Details of Equations (4), (5), (6), (7), (9), (10) and (12)507

1. Tmax: Equation (4)508

509
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Tmax is a minimum point of Cp(t) (from (3)). Therefore,

C ′p(Tmax) = 0

⇔ − (g − s)
(

r − s
g + r − s

C0
S

)
e−(g−s) Tmax + r

(
g (C0

S + C0
R) + (r − s) C0

R

g + r − s

)
er Tmax = 0

⇔ (g − s)
(

r − s
g + r − s

C0
S

)
e−(g−s) Tmax = r

(
g (C0

S + C0
R) + (r − s) C0

R

g + r − s

)
er Tmax

⇔ (g − s)(r − s)C0
S e
−(g−s) Tmax = r

(
(g (C0

S + C0
R) + (r − s) C0

R)
)
er Tmax

⇔ e(g+r−s)Tmax =
(g − s)(r − s)C0

S

r (g (C0
S + C0

R) + (r − s) C0
R)

⇔ e(g+r−s)Tmax =
(g − s)(r − s)

r(g((R/S)0 + 1) + (r − s)(R/S)0)

⇔ Tmax =

ln

[
(g − s)(r − s)

r(g((R/S)0 + 1) + (r − s)(R/S)0)

]
g + r − s

2. Tmin: Equation (5)510

511

Let us consider the case of drug switch withDrugA being the “pre-switch” drug andDrugB512

being the “post-switch” drug. If, at a specific time point t1, cell population is decreasing faster513

by continuing DrugA-therapy than by changing drug to DrugB,514

C ′P (0 |pA, {BR(t1), AR(t1)}) > C ′P (0 |pB, {AR(t1), BR(t1)}),515

from Equation (3) where
(
BR(t1)
AR(t1)

)
=

 e−(gA−sA) t1 0
gA (erA t1 − e−(gA−sA) t1)

gA + rA − sA
erA t1

( BR(0)
AR(0)

)
516

evaluated from Equation (2). Then,517
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C ′P (0 |pA, {BR(t1), AR(t1)}) > C ′P (0 |pB, {AR(t1), BR(t1)})

⇔ − (gA − sA)

(
rA − sA

gA + rA − sA
BR(t1)

)
+ rA

(
gA (AR(t1) +BR(t1)) + (rA − sA) AR(t1)

gA + rA − sA

)
> −(gB − sB)

(
rB − sB

gB + rB − sB
AR(t1)

)
+ rB

(
gB (AR(t1) +BR(t1)) + (rB − sB) BR(t1)

gB + rB − sB

)
⇔ rA AR(t1) + sA BR(t1) > rB BR(t1) + sB AR(t1)

⇔ AR(t1)

BR(t1)
>
rB − sA
rA − sB

⇔

gA (erA t1 − e−(gA−sA) t1)

gA + rA − sA
BR(0) + erA t1 AR(0)

e−(gA−sA) t1 BR(0)
>
rB − sA
rA − sB

⇔ gA (e(gA+rA−sA) t1 − 1)

gA + rA − sA
+ e(gA+rA−sA) t1 (A/B)0 >

rB − sA
rA − sB

⇔ e(gA+rA−sA) t1

(
gA

gA + rA − sA
+ (A/B)0

)
>
rB − sA
rA − sB

+
gA

gA + rA − sA

⇔ t1 <

ln

[
(rA − sA)(rB − sA) + gA(rA + rB − sA − sB)

(rA − sB)(gA + (gA + rA − sA)(A/B)0)

]
gA + rA − sA

(= Tmin({sA, rA, gA}, {sB, rB}, (A/B)0)) .

518

Similarly,519

t1 > Tmin({sA, rA, gA}, {sB, rB}, (A/B)0),520

iff the population is dropping faster using DrugB than by continuing to use DrugA, and521

t1 = Tmin({sA, rA, gA}, {sB, rB}, (A/B)0),522

iff the population is dropping at an equal rate with either drug.523

524

The general form of Tmin is525

Tmin({s1, r1, g1}, {s2, r2}, (R/S)0) =

ln

[
(r1 − s1)(r2 − s1) + g1(r1 + r2 − s1 − s2)

(r1 − s2)(g1 + (g1 + r1 − s1)(R/S)0)

]
g1 + r1 − s1

,526

where the parameters of “pre-switch” and “post-switch” drugs are {s1, r1, g1} and {s2, r2, g2}527

respectively, and initial population makeup, (R/S)0, is the resistant cell population divided528

by the sensitive cell population for the “pre-switch” drug.529
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3. Tgap: Equation (6) - (7)

Tgap({s1, r1, g1}, {s2, r2}) = Tmax({s1, r1, g1}, (R/S)0)− Tmin({s1, r1, g1}, {s2, r2}, (R/S)0)

=

ln

[
(g1 − s1)(r1 − s1)

r1(g((R/S)0 + 1) + (r1 − s1)(R/S)0)

]
g1 + r1 − s1

−
ln

[
(r1 − s1)(r2 − s1) + g1(r1 + r2 − s1 − s2)

(r1 − s2)(g1 + (g1 + r1 − s1)(R/S)0)

]
g1 + r1 − s1

=

ln

[
(g1 − s1)(r1 − s1)

r1(g((R/S)0 + 1) + (r1 − s1)(R/S)0)

(r1 − s2)(g1 + (g1 + r1 − s1)(R/S)0)

(r1 − s1)(r2 − s1) + g1(r1 + r2 − s1 − s2)

]
g1 + r1 − s1

=

ln

[
(g1 − s1)(r1 − s1)(r1 − s2)

r1((r1 − s1)(r2 − s1) + g1(r1 + r2 − s1 − s2))

]
g1 + r1 − s1

And,

Tmin({s1, r1, g1}, {s2, r2}, (R/S)0) < Tmax({s1, r1, g1}, (R/S)0)

⇔Tgap({s1, r1, g1}, {s2, r2}) > 0

⇔
ln

[
(g1 − s1)(r1 − s1)(r1 − s2)

r1((r1 − s1)(r2 − s1) + g1(r1 + r2 − s1 − s2))

]
g1 + r1 − s1

> 0

⇔ ln

[
(g1 − s1)(r1 − s1)(r1 − s2)

r1((r1 − s1)(r2 − s1) + g1(r1 + r2 − s1 − s2))

]
> 0

⇔ (g1 − s1)(r1 − s1)(r1 − s2)

r1((r1 − s1)(r2 − s1) + g1(r1 + r2 − s1 − s2))
> 1

⇔(g1 − s1)(r1 − s1)(r1 − s2) > r1((r1 − s1)(r2 − s1) + g1(r1 + r2 − s1 − s2))

⇔g1 s1 s2 − s2
1 s2 + r1 s1 s2 > g1 r1 r2 − s1 r1 r2 + r2

1 r2

⇔(g1 + r1 − s1)(s1 s2 − r1 r2) > 0

⇔r1 r2 − s1 s2 > 0 ⇔ r1 r2 < s1 s2

Similarly Tgap = 0 iff r1 r2 = s1 s2, and Tgap < 0 iff r1 r2 > s1 s2.530

4. A/B at Tmax and Tmin: Equation (9) - (10).531

532

It is clear that533

A/B(TAmin) = A/B(TBmin) =
rB − sA
rA − sB

,534

and535

A/B(TAmax) =
−sA
rA

and A/B(TBmax) =
rB
−sB

536

by the expressions of AR(t), BR(t), Tmax and Tmin from Equations (2), (5) and (4).537

538
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Otherwise, it can be proved more simply using the concept of Tmin and Tmax. Since C ′S(t) +
C ′R(t) = s CS(t)+r CR(t), from the differential system (1), the derivatives ofAR(t)+BR(t)
are sA BR(t) + rA AR(t) and sB AR(t) + rB BR(t) under DrugA and DrugB respectively.
At Tmin (whether it is TAmin or TBmin) the derivatives of total populations are equivalent either
under DrugA or under DrugB. Then,

sA BR(Tmin) + rA AR(Tmin) = sB AR(Tmin) + rB BR(Tmin)

AR(Tmin)

BR(Tmin)
=
rB − sA
rA − sB

A/B(Tmin) =
rB − sA
rA − sB

Therefore,539

A/B(TAmin) = A/B(TBmin) =
rB − sA
rA − sB

,540

Under DrugA at TAmax, A′R(t) +B′R(t) = 0. Therefore,

sA BR(TAmax) + rA AR(TAmax) = 0

A/B(TAmax) =
−sA
rA

.

Similarly, A/B(TBmax) =
rB
−sB

.541

5. k∗: Equation (12)542

The sizes of the subpopulations after ∆t-long therapy with DrugA started from initial pop-543

ulation makeup of A/B(0) = (A/B)∗ are544 (
BR(∆t)
AR(∆t)

)
=

 e−(gA−sA) ∆t 0
gA (erA ∆t − e−(gA−sA) ∆t)

gA + rA − sA
erA ∆t

( K
K (A/B)∗

)
545

derived from Equation (2), with some constant K scaling population size. Then the popula-546

tion makeup at the ∆t and its derivative in terms of ∆t are547

(A/B)∆t :=
AR(∆t)

BR(∆t)
=
gA (e(gA+rA−sA) ∆t − 1)

gA + rA − sA
+ e(gA+rA−sA) ∆t(A/B)∗548

d ((A/B)∆t)

d (∆t)
= gA e

(gA+rA−sA) ∆t + (gA + rA − sA)e(gA+rA−sA) ∆t(A/B)∗549

The time taken from t = ∆t to reach back to the time of A/B(t) = (A/B)∗ given DrugB is

Tmin({sB, rB, gB}, {sA, rA}, 1/(A/B)∆t)

=

ln

[
(rB − sB)(rA − sB) + gB(rB + rA − sB − sA)

(rB − sA)(gB + (gB + rB − sB)/(A/B)∆t)

]
gB + rB − sB

from Equation (5).550

551
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Then the relative ratio between the periods of DrugA and DrugB, k′, illustrated in Figure
9, and its limit, k∗, can be derived using:

k′ =
∆t

Tmin({sB, rB, gB}, {sA, rA}, 1/(A/B)∆t)

k∗ = lim
∆t→0

k′ = lim
∆t→0

(gB + rB − sB) ∆t

ln

[
(rB − sB)(rA − sB) + gB(rB + rA − sB − sA)

(rB − sA)(gB + (gB + rB − sB)/(A/B)∆t)

]
= lim

∆t→0

(gB + rB − sB) ∆t

− ln [gB + (gB + rB − sB)/(A/B)∆t] + lnK

with K =
(rB − sB)(rA − sB) + gB(rB + rA − sB − sA)

rB − sA
= lim

∆t→0

gB + rB − sB

− d

d (∆t)
ln [gB + (gB + rB − sB)/(A/B)∆t]

by L’Hospital’s rule

= lim
∆t→0

gB + rB − sB

−(gB + rB − sB)(−((A/B)∆t)
−2)

gB + (gB + rB − sB)/(A/B)∆t

d ((A/B)∆t)

d (∆t)

=
gB + rB − sB

(gB + rB − sB)/((A/B)∗)2

gB + (gB + rB − sB)/(A/B)∗
(gA + (gA + rA − sA)(A/B)∗)

since, lim
∆t→0

(A/B)∆t = (A/B)∗

and lim
∆t→0

d ((A/B)∆t)

d (∆t)
= gA + (gA + rA − sA)(A/B)∗

=
gB (A/B)∗ + (gB + rB − sB)

gA/(A/B)∗ + (gA + rA − sA)

=
(rA − sB)((rA − sA)(rB − sA) + gA(rA + rB − sA − sB))

(rB − sA)((rB − sB)(rA − sB) + gB(rA + rB − sA − sB))

since, (A/B)∗ =
rB − sA
rA − sB

A.2 Differential system of instantaneous drug switch552

The goal of this section is to derive the simple differential equations of V = {AR, BR} under553

instantaneous drug switch (Theorem A.8). For the sake of convenience, we want to use matrix554

operations and equations based on the vectors and matrices defined below.555

Definition DA :=

(
rA gA
0 sA − gA

)
, DB :=

(
sB − gB 0
gB rB

)
, V (t) :=

(
AR(t)
BR(t)

)
,556

557

MA(t) :=

 erA t gA (erA t − e−(gA−sA) t)

gA + rA − sA
0 e−(gA−sA) t

, MB(t) :=

 e−(gB−sB) t 0
gB (erB t − e−(gB−sB) t)

gB + rB − sB
erB t

,558

559

Aε := MA(f ε), Bε := MB((1− f)ε),560

561
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min [V (t1), V (t2), · · · , V (tn)] :=

(
min [AR(t1), AR(t2), · · · , AR(tn)]
min [BR(t1), BR(t2), · · · , BR(tn)]

)
,562

563

max [V (t1), V (t2), · · · , V (tn)] :=

(
max [AR(t1), AR(t2), · · · , AR(tn)]
max [BR(t1), BR(t2), · · · , BR(tn)]

)
.564

Proposition A.1. Using Drug A therapy:565

V ′(t) = DA V (t), V (t0 + ∆t) = MA(∆t) V (t0).566

Using Drug B therapy:567

V ′(t) = DB V (t), V (t0 + ∆t) = MB(∆t) V (t0).568

Proposition A.2. BothAR andBR are monotonic functions under either therapy. In the presence of569

Drug A, AR is increasing, and BR is decreasing. And, in the presence of Drug B, AR is decreasing,570

and BR is increasing.571

Proposition A.3. Aε|ε=0 = Bε|ε=0 = I2 for all 0 ≤ f ≤ 1572

Proposition A.4.
d

dε
Aε

∣∣∣∣
ε=0

= f DA,
d

dε
Bε
∣∣∣∣
ε=0

= (1− f)DB for all 0 ≤ f ≤ 1573

Lemma A.5. lim
ε→0

BεAε − I2

ε
= f DA + (1− f)DB for all 0 ≤ f ≤ 1574

Proof.

lim
ε→0

BεAε − I2

ε
= lim

ε→0

d
dε

(BεAε − I2)
d
dε
ε

(by L'Hospital's Rule)

= lim
ε→0

dBε
dε
Aε + Bε dAεdε

1
= f DA + (1− f)DB (by Propositions A.3 - A.4)

575

Lemma A.6. lim
ε→0

(BεAε)
n − I2

n ε
= f DA + (1 − f)DB for any positive integer, n, and for all576

0 ≤ f ≤ 1577

Proof. Let F (n) := lim
ε→0

(BεAε)
n − I2

n ε
and L := f DA + (1− f)DB.

Then, we need to prove that F (n) = L for n = 1, 2, 3, ...
If n = 1,

F (n) = F (1) = L (by Lemma A.5)

Otherwise, if n ≥ 2 and F (m) = L for all 1 ≤ m ≤ n− 1,

F (n) = lim
ε→0

(BεAε)
n − I2

n ε

= lim
ε→0

((BεAε)
n−1 − I2)(BεAε) + (BεAε − I2)

n ε

=
n− 1

n
lim
ε→0

((BεAε)
n−1 − I2)(BεAε)

(n− 1) ε
+

1

n
lim
ε→0

BεAε − I2

ε

=
n− 1

n
F (n− 1) +

1

n
F (1)

=
n− 1

n
L+

1

n
L (by the inductive assumption)

= L
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Therefore, proved.578

Lemma A.7. lim
ε→0

Aε(BεAε)
n − I2

(n+ f) ε
=

(n+ 1)f

n+ f
DA +

n(1− f)

n+ f
DB for any positive integer, n, and579

for all 0 ≤ f ≤ 1580

Proof. Using mathematical induction, if n = 1,

lim
ε→0

Aε(BεAε)− I2

(1 + f) ε

=
1

1 + f
lim
ε→0

Aε(BεAε − I2) + (Aε − I2)

ε

=
1

1 + f

[
lim
ε→0

Aε lim
ε→0

BεAε − I2

ε
+ lim

ε→0

Aε − I2

ε

]
=

1

1 + f

[
I2(f DA + (1− f)DB) +

d

dε
Aε

∣∣∣∣
ε=0

]
(by Proposition A.3 and Lemma A.5)

=
1

1 + f
[(f DA + (1− f)DB) + f DA] (by Proposition A.4)

=
2 f

1 + f
DA +

1− f
1 + f

DB The equality is true for n = 1

If n ≥ 2, and the equality works for all integers 1 ≤ m ≤ n− 1,

lim
ε→0

Aε(BεAε)
n − I2

(n+ f) ε

=
1

n+ f

[
lim
ε→0

(Aε(BεAε)
n−1 − I2)(BεAε) + (BεAε − I2)

ε

]
=

1

n+ f

[
((n− 1) + f) lim

ε→0

(Aε(BεAε)
n−1 − I2)

((n− 1) + f)ε
lim
ε→0

(BεAε) + lim
ε→0

BεAε − I2

ε

]
=

1

n+ f

[
((n− 1) + f)

(
n f

(n− 1) + f
DA +

(n− 1)(1− f)

(n− 1) + f
DB

)
(I2 I2)

+(f DA + (1− f)DB)]

(by the inductive assumption and Proposition A.3 and Lemma A.5)

=
(n+ 1)f

n+ f
DA +

n(1− f)

n+ f
DB (The equality is true for n ≥ 2)

Therefore, proved.581

Theorem A.8. If Drug A and Drug B are prescribed in turn with a relative intensity of f and 1−f ,582

and are switched instantaneously, V obeys583

dV

dt
= (f DA + (1− f)DB)V584

Proof. For any time point t0, let us define Vε(t) as a vector-valued function of AR(t) and BR(t)
describing the cell population dynamics under a periodic therapy starting at t0 with DrugA as-
signed at t0 + m ε ≤ t < t0 + (m + f)ε and DrugB at t0 + (m + f)ε ≤ t < t0 + (m + 1)ε for
m = 0, 1, 2, 3, .... Then, by Proposition A.1 and the definitions of A and B,

Vε(t0 +m ε) = (BεAε)
m V (t0), Vε(t0 + (m+ f)ε) = Aε(BεAε)

m V (t0) · · · (∗1)
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where V (t0) =

(
AR(t0)
BR(t0)

)
. And, V0(t) represents instantaneous drug switching.

For any ∆t > 0 and any positive integer n, there exists ε = ε(n,∆t) such that

∆t

n+ 1
< ε ≤ ∆t

n
or 1 ≤ ∆t

n ε
< 1 +

1

n
.

Then by the squeeze theorem,

lim
∆t→0

ε(n,∆t) = 0 for any positive integer n, and lim
n→∞

∆t

n ε(n,∆t)
= 1 for any ∆t > 0. · · · (∗2)

For such ∆t, n and ε(n,∆t), Vε(t0 + ∆t) is bounded, since local extrema can occur only when
drugs are switched by Proposition A.2. That is,

min [Vε(t0 + n ε), Vε(t0 + (n+ f)ε), Vε(t0 + (n+ 1)ε)] ≤ Vε(t0 + ∆t)

≤ max [Vε(t0 + n ε), Vε(t0 + (n+ f)ε), Vε(t0 + (n+ 1)ε)] , · · · (∗3)

Also,

lim
∆t→0

limn→∞ Vε(n,∆t)(t0 + n ε(n,∆t))− V (t0)

∆t

= lim
∆t→0

lim
n→∞

(BεAε)
n − I2

∆t
V (t0) (by (*1))

=
lim∆t→0 limn→∞ [(BεAε)

n − I2] /(n ε)

lim∆t→0 limn→∞∆t/(n ε)
V (t0)

=
limn→∞ [lim∆t→0 [(BεAε)

n − I2] /(n ε)]

lim∆t→0 [limn→∞∆t/(n ε)]
V (t0)

=
limn→∞ [limε→0 [(BεAε)

n − I2] /(n ε)]

lim∆t→0 1
V (t0) by (*2)

= lim
n→∞

[f DA + (1− f)DB]V (t0) (by Lemma A.6)

=(f DA + (1− f)DB)V (t0). · · · (∗4)

And,

lim
∆t→0

limn→∞ Vε(n,∆t)(t0 + (n+ f) ε(n,∆t))− V (t0)

∆t

= lim
∆t→0

lim
n→∞

Aε(BεAε)
n − I2

∆t
V (t0) (by (*1))

=
lim∆t→0 limn→∞ [Aε(BεAε)

n − I2] /((n+ f) ε)

lim∆t→0 limn→∞∆t/((n+ f) ε)
V (t0)

=
limn→∞ [lim∆t→0 [(BεAε)

n − I2] /((n+ f) ε)]

lim∆t→0 [limn→∞(∆t/(n ε))(n/(n+ f))]
V (t0)

=
limn→∞ [limε→0 [(BεAε)

n − I2] /((n+ f) ε)]

lim∆t→0 1
V (t0) by (*2)

= lim
n→∞

[
(n+ 1)f

n+ f
DA +

n(1− f)

n+ f
DB

]
V (t0) (by Lemma A.7)

=(f DA + (1− f)DB)V (t0) · · · (∗5)
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Similar to (*4),

lim
∆t→0

limn→∞ Vε(n,∆t)(t0 + (n+ 1) ε(n,∆t))− V (t0)

∆t
= (f DA + (1− f)DB)V (t0) · · · (∗6)

By (*4) - (*6),

min

[
lim

∆t→0

limn→∞ Vε(t0 + n ε)− V (t0)

∆t
, lim

∆t→0

limn→∞ Vε(t0 + (n+ f) ε)− V (t0)

∆t
,

lim
∆t→0

limn→∞ Vε(t0 + (n+ 1) ε)− V (t0)

∆t

]
= max

[
lim

∆t→0

limn→∞ Vε(t0 + n ε)− V (t0)

∆t
,

lim
∆t→0

lim
∆t→0

limn→∞ Vε(t0 + (n+ f) ε)− V (t0)

∆t
, lim

∆t→0

limn→∞ Vε(t0 + (n+ 1) ε)− V (t0)

∆t

]
= (f DA + (1− f)DB)V (t0) · · · (∗7)

Then, by (*3), (*7) and the squeeze theorem,585

d

dt
V0

∣∣∣∣
t=t0

= lim
∆t→0

limn→∞ Vε(t0 + ∆t)− V (t0)

∆t
= (f DA + (1− f)DB)V (t0)586

Therefore,587

dV

dt
= (f DA + (1− f)DB)V588

589

A.3 Population dynamics with the optimal regimen590

In this section, we want to write the differential equations of V = {AR, BR} under the op-591

timal control strategy described in Section 3.3. Based on Appendix A.2 and a couple of592

lemma/theorem, we will reach to a concise form of a differential system described at The-593

orem A.11.594

Lemma A.9.
{

rArB − sAsB
rA + rB − sA − sB

,

(
(A/B)∗

1

)}
is an eigen pair of f ∗ DA + (1− f ∗)DB with595

(A/B)∗ and f ∗ = k∗/(1 + k∗) defined by Equations (9) and (12).596

Proof. Let D∗ := f ∗ DA + (1− f ∗)DB, and λ =
rArB − sAsB

rA + rB − sA − sB
. Then,597

D∗ − λ I2 = C1

(
C2 U

T

C3 U
T

)
,598

where U =

(
1

−(A/B)∗

)
along with

C1 = −(gA(rA − sB) + gB(rB − sA) + (rB − sA)(rA − sB))(rA + rB − sA − sB)/(rA − sB),

C2 = gA((rA − sB)(rB − sB) + gB(rA + rB − sA − sB),

C3 = −gB((rB − sA)(rA − sA) + gA(rA + rB − sA − sB)).

Since UT V = 0 where V = ((rB − sA)/(rA − sB), 1)T , (λ, V ) is an eigen pair of D∗.599

Theorem A.10. In Stage 2 of the optimal strategy, both AR and BR change with a constant net-600

proliferation rate,601
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λ =
rArB − sAsB

rA + rB − sA − sB
.602

Proof. Without a loss of generality, let us prove it only when A/B(0) < (A/B)∗.603

604

If A/B(0) < (A/B)∗, DrugA has a better effect initially. So following the optimal therapy
scheduling, DrugA is assigned alone at the beginning as long as TAmin = Tmin(pA, pB,A/B(0))
(Stage 1), and then Stage 2 starts at TAmin with initial condition

V (TAmin) = MA(TAmin)V (0) = C

(
(A/B)∗

1

)
· · · (**1)

where C =
P (0)

1 +A/B(0)

(
(rA − sA)(rB − sA) + gA(rA + rB − sA − sB)

(rA − sB)(gA +A/B(0)(gA + rA − sA))

)− gA−sA
gA+rA−sA

.605

606

By Theorem A.8, in Stage 2, V (t) obeys607

dV

dt
= D∗V , where D∗ = f ∗DA + (1− f ∗)DB · · · (**2)608

By Lemma A.9, V (TAmin) is an eigenvector of D∗ with the corresponding eigenvalue, λ. Then,609

the solution of (**2) with the initial value (**1) is610

V (t+ TAmin) = eλ tV (TAmin).611

612

Theorem A.11. With optimal therapy utilizing DrugA and DrugB, V obeys the following equa-613

tions and solutions.614

615

If A/B(0) < (A/B)∗,616

dV

dt
=

{
DAV if 0 ≤ t ≤ TAmin
λ V if t > TAmin

and V (t) =

{
MA(t)V (0) if 0 ≤ t ≤ TAmin

eλ (t−TAmin)V (TAmin) if t > TAmin
617

Similarly if A/B(0) ≥ (A/B)∗,618

dV

dt
=

{
DBV if 0 ≤ t ≤ TBmin
λ V if t > TBmin

and V (t) =

{
MB(t)V (0) if 0 ≤ t ≤ TBmin

eλ (t−TBmin)V (TBmin) if t > TBmin
619

Proof. Straightforward, by Theorem A.10620

Appendix B Sensitivity analysis on optimal scheduling621

The two determinant quantities of optimal control scheduling are (i) the duration of the first stage622

(T 1
min), and (ii) the relative intensity between two drugs in the second stage (k∗). Here, we show623

sensitivity analysis on the quantities related to them, Tgap and f ∗, over a range of (scaled) model pa-624

rameters. Additionally over the same range, we studied how much our Tmin-based optimal scheme625

is better than the Tmax-based scheme evaluated by the integral in equation (13).626

627

1. Sensitivity analysis of Tgap628

629

Using g1, we non-dimentionalize all the values, like630
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{s1, r1|s2, r2} :=
1

g1

{s1, r1|s2, r2} and Tgap := g1 Tgap631

then,632

Tgap({s1, r1}, {s2, r2}) :=

ln

[
(1− s1)(r1 − s1)(r1 − s2)

r1((r1 − s1)(r2 − s1) + (r1 + r2 − s1 − s2))

]
1 + r1 − s1

In general, cells mutate slower than they proliferate , so we ran sensitivity analysis on Tgap633

for all a � 1 for a ∈ {−s1,−s2, r1, r2}. Figure 12 shows Tgap over the range of 20 ≤634

−s1,−s2, r1, r2 ≤ 100. So, under the assumption that g1 � min{−s1,−s2, r1, r2},635

Tgap({s1, r1}, {s2, r2}) ≈
ln

[
−s1(r1 − s2)

r1(r2 − s1)

]
r1 − s1

,636

which approximates the contour curves of Figure 12.637

638

2. Sensitivity analysis of f ∗639

640

Regarding the regulated intensities among the two drugs, k∗, we assumed that g1 ≈ g2 :=641

g, similarly assuming that they are both much smaller than {−s1,−s2, r1, r2}. Then we642

normalized all the parameters with the unit of g, like643

{s1, r1|s2, r2} :=
1

g
{s1, r1|s2, r2}.644

k∗ can be rewritten in terms of the dimensionless parameters.645

k∗({s1, r1}, {s2, r2}) =
(r1 − s2)((r1 − s1)(r2 − s1) + (r1 + r2 − s1 − s2))

(r2 − s1)((r2 − s2)(r1 − s2) + (r1 + r2 − s1 − s2))

In this sensitivity analysis, we use646

f ∗ :=
k∗

1 + k∗
,

which represents intensity fraction of the initially better drug out of the total therapy. We647

evaluated f ∗ over the same ranges of {s1, s2, r1, r2}, like the previous exercise (see Figure648

13) over the range max{g1, g2} � min{−s1,−s2, r1, r2}, so k∗ and f ∗ can be approximated649

by the simpler forms:650

k∗ ≈ r1 − s1

r2 − s2

and f ∗ ≈ r1 − s1

r1 + r2 − s1 − s2

651
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Figure 12: Contour maps of Tgap over ranges of 10 ≤ a ≤ 100 for a ∈ {−s1,−s2, r1, r2} =
{−s1,−s2, r1, r2}/g1 and r1r2 < s1s2 (Condition (6)). As −s2 decreases and/or r2 increases, the
optimal switching timing to the second drug is delayed (Tmin ↑ and Tgap ↓). As r1 increases, Tgap
decreases. Also, Tgap and s1 have a non-monotonic relationship as shown on the graphs.
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Figure 13: Contour maps of f ∗ over ranges of 10 ≤ a ≤ 100 for a ∈ {−s1,−s2, r1, r2} =
{−s1,−s2, r1, r2}/g and r1r2 < s1s2 (Condition 6). k∗ (or f ∗) increases, as r1 and/or −s1 de-
creases and/or as r2 and/or −s2 increases.
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3. Sensitivity analysis of Integral (13)652

653

To study the sensitivity of the advantage of using the optimal control defined by Integral (13),654

we assumed that g1 ≈ g2 ≈ g = 0.001. Then similar to the previous studies, we explored the655

sensitivity of the normalized parameters in terms of g, that is:656

{s1, r1|s2, r2} :=
1

g
{s1, r1|s2, r2}.657

Appendix C Clinical implementation of instantaneous switch658

in the optimal strategy659

In clinical practice, the instantaneous drug-switch which we suggest in the second stage of the op-660

timal treatment scheduling is not implementable. Therefore, we compared similar schedules to the661

optimal case. In the “similar” schedules, the first stage, using an initial drug, remained the same as662

the optimal schedule. However the second part, where we previously used an instantaneous switch663

(with ∆t = 0), was modified to use a fast switch (∆t & 0). Figure 15 (a) and (b) shows how in-664

stantaneous switching (∆t = 0) and fast switching (multiple choices of ∆t & 0) compare in terms665

of population size using different drug parameters. As expected, the smaller ∆t is , the closer to666

the ideal case. And, a choice of a reasonably small ∆t (like 1 day or 3 days) results in an outcome667

quite close to the optimal scenario.668

669

We repeated this exercise with k∗ (from equation (12)) instead of k(∆t) modulated by ∆t (Fig-670

ure 15 (c) and (d)). Only small differences are observed between Figure 15 (a) and (b) and Figure671

15 (c) and (d), which justifies the general usefulness of k∗ independent of ∆t.672

673

32

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 20, 2018. ; https://doi.org/10.1101/196824doi: bioRxiv preprint 

https://doi.org/10.1101/196824
http://creativecommons.org/licenses/by/4.0/


Figure 14: Contour maps of the measured advantageous effect of the optimal therapy defined
by the integration (13) over ranges of 10 ≤ a ≤ 100 for a ∈ {−s1,−s2, r1, r2} and r1r2 < s1s2

(Condition (6)) Here, {−s1,−s2, r1, r2} = {−s1,−s2, r1, r2}/g and g = 0.001. The measured
effect increases as r1, r2 decreases and/or −s1 increases.
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(a) (b)

(c) (d)

Figure 15: Graphs showing regular drug switching in Stage 2 with different
{∆t, k(∆t, pA, pB)}: ∆t = 1 day (blue), ∆t = 4 days (red), ∆t = 7 days (green), and
∆t = 10 days (magenta). Parameters/conditions: pA = {−0.18, 0.008, 0.00075}/day, pB =
{−0.9, 0.016, 0.00125}/day and {A0

R, B
0
R} = {0.1, 0.9} (a) Total population histories, Cn

P for
n ∈ {1, 4, 7, 10} days (b) Differences between the optimal population history C∗P , (i.e., when
∆t = 0) and each case with positive ∆t. (i.e., Cn

P − C∗P ). The inserts interesting ranges. (c) and
(d) are equivalent with (a) and (b) except that k∗(pA, pB)} has been used instead of k(∆t, pA, pB)}

Appendix D Stochastic simulation codes674

The computational code written in Python will be provided at Github (https://github.com/nryoon12/Optimal-675

Therapy-Scheduling-Based-on-a-Pair-of-Collaterally-Sensitive-Drugs).676
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