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Multiethnic meta-analysis identifies new loci for pulmonary function 
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Abstract 

Nearly 100 loci have been identified for pulmonary function, almost exclusively in studies of 

European ancestry populations. We extend previous research by meta-analyzing genome-wide 

association studies of 1000 Genomes imputed variants in relation to pulmonary function in a multiethnic 

population of 90,715 individuals of European (N=60,552), African (N=8,429), Asian (N=9,959), and 

Hispanic/Latino (N=11,775) ethnicities. We identified over 50 novel loci at genome-wide significance in 

ancestry-specific and/or multiethnic meta-analyses. Recent fine mapping methods incorporating 

functional annotation, gene expression, and/or differences in linkage disequilibrium between ethnicities 

identified potential causal variants and genes at known and newly identified loci. Sixteen of the novel 

genes encode proteins with predicted or established drug targets, including KCNK2 and CDK12. 
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Introduction 

Pulmonary function traits (PFTs), including forced expiratory volume in the first second (FEV1) 

and forced vital capacity (FVC), and their ratio FEV1/FVC, are important clinical measures for assessing 

the health of the lungs, diagnosing chronic obstructive pulmonary disease (COPD), and monitoring the 

progression and severity of various other lung conditions. Further, even when within the normal range, 

these parameters are related to mortality, independently of standard risk factors1-3. 

In addition to lifestyle and environmental factors, such as smoking and air pollution, there is a 

demonstrated genetic component to pulmonary function4-6. Previous genome-wide association studies 

(GWAS) have collectively identified nearly 100 loci associated with PFTs. These analyses have been 

primarily conducted using HapMap imputed data among European ancestry populations7-12. Recently, 

the UK BiLEVE Study (N=48,943) and SpiroMeta Consortium (N=38,199) have also examined associations 

between 1,000 Genomes imputed variants and PFTs, but only among Europeans13-15.  

The present Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) meta-

analysis builds upon previous studies by examining PFTs in relation to the more comprehensive 1000 

Genomes panel in a larger study population (90,715 individuals from 22 studies, Table 1) comprised of 

multiple ancestral populations: European (60,552 individuals from 18 studies), African (8,429 individuals 

from 7 studies), Asian (9,959 individuals from 2 studies), and Hispanic/Latino (11,775 individuals from 6 

ethnic background groups in 1 study). Along with look-up of our top findings in existing analyses of lung 

function traits and COPD, we additionally investigated correlation with gene expression in datasets from 

blood and lung tissue and assessed the potential biological and clinical relevance of our findings using 

recently developed methods integrating linkage disequilibrium (LD), functional annotation, gene 

expression and the multiethnic nature of our data. Finally, we identified known or potential drug targets 

for newly identified lung function associated loci. 
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Results 

 Ancestry-Specific Meta-Analyses 

Each study used linear regression to model the additive effect of variants on PFTs, adjusting for 

age, sex, height, cigarette smoking, center (if multicenter study), and ancestral principal components, 

including a random familial effect to account for family relatedness when appropriate. Ancestry-specific 

fixed-effects inverse-variance weighted meta-analyses of study-specific results, with genomic control 

correction, were conducted in METAL (http://www.sph.umich.edu/csg/abecasis/metal/). Meta-analyses 

included approximately 11.1 million variants for European ancestry, 18.1 million for African ancestry, 4.2 

million variants for Asian ancestry, and 13.8 million for Hispanic/Latino ethnicity. See Methods for full 

methods description. 

European ancestry meta-analysis identified 17 novel loci (defined as more than 500kb in either 

direction from a known locus) 16,17 which were significantly (defined as p<5.0x10-8) 14,18 associated with 

pulmonary function: 2 loci for FEV1 only, 6 loci for FVC only, 7 loci for FEV1/FVC only, and 2 loci for both 

FEV1 and FVC (Table 2, Figure 1, Supplemental Figures 2-3). The African ancestry meta-analysis identified 

8 novel loci significantly associated with pulmonary function: 2 loci for FEV1, 1 locus for FVC, and 5 loci 

for FEV1/FVC (Table 2, Supplemental Figure 1-3). Five of these loci were also significant at a stricter 

p<2.5x10-8 threshold as has been suggested for populations of African ancestry18. Six of the African 

ancestry loci were identified based on low frequency variants (allele frequencies 0.01 to 0.02). In the 

Hispanic/Latino ethnicity meta-analysis, we identified one novel locus for FVC (Table 2, Supplemental 

Figure 1-3). Another locus was significantly associated with FEV1, but this region was recently reported 

by HCHS/SOL19. For FEV1/FVC among Hispanics/Latinos, all significant variants were in loci identified in 

previous studies of European ancestry populations. In the Asian ancestry meta-analysis, all variants 

significantly associated with PFTs were also in loci previously identified among European ancestry 

made available for use under a CC0 license. 
certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also 

The copyright holder for this preprint (which was notthis version posted October 5, 2017. ; https://doi.org/10.1101/196048doi: bioRxiv preprint 

https://doi.org/10.1101/196048


Version 9.29.17, Page 8 
 

populations (Supplemental Figure 1).  Within each ancestry, variants discovered for one PFT were also 

looked-up for associations with the other two PFTs (Supplemental Table 1).   

Multiethnic Meta-analysis 

In multiethnic fixed effects meta-analyses of 10.9 million variants, we identified 47 novel loci 

significantly associated with pulmonary function. Thirteen of these loci were also identified in the 

ancestry-specific meta-analyses, while 34 were uniquely identified in the multiethnic meta-analysis: 11 

loci for FEV1 only, 14 loci for FVC only, 7 loci for FEV1/FVC only, 1 locus for FEV1 and FEV1/FVC, and 1 

locus for all three phenotypes (Table 2, Figure 1, Supplemental Figure 2-3). Although many of the 34 loci 

uniquely identified in the multiethnic meta-analysis were just shy of significance in the European 

ancestry meta-analysis, and therefore benefited from the additional sample size of the multiethnic 

meta-analysis, some multiethnic loci contained variants near genome-wide significance in at least one 

other ancestry-specific meta-analysis with some nominal significance (p<0.05) in the remaining ancestry-

specific meta-analyses (Supplemental Table 2). For example, rs7899503 in JMJD1C associated with FEV1 

had an I2 value of 0 with a heterogeneity p-value of 0.40 and meta-analysis p-values of 1.35x10-5 for 

European ancestry, 4.56x10-7 for Asian ancestry, 0.002 for Hispanic/Latino ethnicity and 0.03 for African 

ancestry, with a multiethnic p-value of 8.70x10-14.  

In addition to the fixed-effects multiethnic meta-analysis, we conducted a random-effects meta-

analysis using the Han and Eskin method20 in METASOFT (http://genetics.cs.ucla.edu/meta/) as a 

sensitivity analysis. In instances where significant heterogeneity is present, the Han-Eskin method 

mitigates power loss20. In the Han-Eskin random-effects model, 37 of the 47 loci identified in the fixed-

effects model at p<5x10-8 had a p-value below the same threshold (Supplemental Table 3). Among the 

10 loci that did not, 8 loci still gave a p<5x10-7 in the Han-Eskin random-effects model (PIK3C2B, 

SUZ12P1, NCOR2/SCARB1, CTAGE1/RBBP8, C20orf112, COMTD1/ZNF503-AS1, EDAR, and RBMS3) while 

only two did not (CRADD and CCDC41) (Supplemental Table 3). In addition, there were 6 loci for 
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FEV1/FVC that were genome-wide significant in the Han-Eskin random-effects model that had not quite 

achieved genome-wide significance in the fixed-effects model: GSTO1/GSTO2 (chr10, rs10883990), 

FRMD4A (chr10, rs1418884), ETFA/SCAPER (chr15, rs12440815), APP (chr21, rs2830155), A4GNT (chr3, 

rs9864090), UBASH3B (chr11, rs4935813) (Supplemental Table 3). 

X-Chromosome Meta-Analysis 

Within 13 of the 22 studies we conducted linear regression to model the effects of X-

chromosome variants on PFTs by sex. Fixed-effects inverse-variance weighted meta-analyses were 

conducted separately in males and females using METAL and the resulting sex-specific results were 

combined using a weighted sums approach. No X-chromosome variants were associated with PFTs at 

genome-wide significance in any ancestral population (data not shown). 

Look-up Replication of Novel Loci 

Look-up replication was conducted in the UK BiLEVE study (N=48,943)14. Since this study only 

included individuals of European ancestry, we sought replication only for the 52 novel loci (excluding the 

major histocompatibility complex, MHC) identified in either the European ancestry or multiethnic 

discovery meta-analyses. Data for the lead variant was available in the UK BiLEVE study for 51 loci, 

including 49 loci with a consistent direction of effect between our results and those from UK BiLEVE 

(Table 2). Based on a two-sided p<9.6x10-4 (0.05/52), 15 loci replicated for the same trait based on the 

lead variant from our analysis: DCBLD2/MIR548G, SUZ12P1, CRHR1, WNT3, ZNF337, ALX1/RASSF9, 

MED1/CDK12, EYA2, RBMS3, LINC00340, FLJ35282/ELAVL2, DDHD1/MIR5580, TSHZ3, KLHL22/MED15, 

FAM168A (Table 2). It was recently demonstrated that using one-sided replication p-values in GWAS, 

guided by the direction of association in the discovery study, increases replication power while being 

protective against type 1 error compared to the two-sided p-values21; under this criterion, an additional 

4 loci replicated for the same trait based on the lead variant: RAB5B, JMJD1C, AGMO, and C20orf112 

(Table 2). Finally, one locus replicated for the same trait based on a different significant variant in the 
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locus (DCC, rs8085778, replication p=2.80x10-4, R2 with lead variant=0.9) and one locus replicated for a 

different pulmonary function trait based on the lead variant (PDXDC2P, rs3973397, discovered for FVC 

replicated for FEV1, replication p=3.99x10-4). In summary, we found evidence of replication in UK BiLEVE 

for 21 novel loci. 

Overlap of Newly Identified Lung Function Loci with COPD 

Pulmonary function measures are the basis for the diagnosis of COPD, an important clinical 

outcome; therefore, we also looked-up the 52 novel loci identified in the European ancestry or 

multiethnic meta-analyses in the International COPD Genetics Consortium (ICGC). This consortium 

recently published a meta-analysis of 1000 Genomes imputed variants and COPD primarily among 

individuals of European ancestry (N= 15,256 cases and 47,936 controls), including some of the same 

individuals included in the present lung function analysis22. Ten lead variants representing 8 novel loci 

were associated with COPD at p<9.6x10-4: RBMS3, OTUD4/SMAD1, TMEM38B/ZNF462, NCOR2/SCARB1, 

SUZ12P1, WNT3, SOGA2, C20orf112 (Supplemental Table 4). Directions of effects were consistent 

between our results and the COPD findings for these variants (i.e. variants associated with increased 

pulmonary function values were associated with decreased odds of COPD and vice-versa). Our top 

variant in SOGA2 (also known as MTCL1) is in LD (R2=0.8) with the top variant for COPD as reported by 

the IGCG Consortium22. 

Expression Quantitative Trait Loci (eQTL) and Methylation Quantitative Trait Loci (mQTL) Signals of 

Pulmonary Function Variants 

To query whether novel loci contained variants associated with gene expression (eQTLs), we 

looked-up variants from all 60 novel loci identified in ancestry-specific or multiethnic meta-analyses in 

the following datasets: 1) lung samples from 278 individuals in GTEx23; 2) lung samples from 1,111 

individuals participating in studies from the Lung eQTL Consortium including Laval University, the 

University of Groningen and the University of British Columbia24-26; 3) whole blood samples from 5,257 
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individuals participating in the Framingham Heart Study27; 4) peripheral blood samples from 5,311 

individuals participating in studies from EGCUT, InCHIANTI, Rotterdam Study, Fehrmann, HVH, SHIP-

TREND and DILGOM28; and 5) peripheral blood samples from 2,116 individuals participating in 4 Dutch 

studies collectively known as BIOS29,30. The Lung eQTL Consortium study used a 10% FDR cut-off, while 

all other studies used a 5% FDR cut-off (see Supplemental Methods for further study descriptions and 

methods). 

A significant cis-eQTL in at least one dataset was found for 34 lead variants representing 27 

novel loci (Supplemental Table 5). Of these, 13 loci had significant cis-eQTLs only in datasets with blood 

samples and 3 loci only in datasets with lung samples (COMTD1/ZNF503-AS1, FAM168A, SOGA2). Eleven 

loci had significant cis-eQTLs in both blood and lung samples based on lead variants, with 1 locus having 

a significant cis-eQTL across all five datasets (SMAD3) and another 4 loci having a significant cis-eQTL in 

four datasets (RAB5B, CRHR1, WNT3, ZNF337). Significant trans-eQTLs in at least one dataset were 

found for 7 lead variants representing 4 novel loci (TMEM38B/ZNF462, RAB5B, CRHR1, and WNT3, 

Supplemental Table 5).   

In addition, mQTL data were available from FHS and BIOS. Significant cis-mQTLs and trans-

mQTLs in at least one dataset were found for 52 lead variants (43 novel loci) and 1 lead variant (1 novel 

locus), respectively (Supplemental Table 5). 

Heritability and Genetic Correlation with Smoking and Height (LD Score Regression) 

We used LD score regression31 to estimate the variance explained by genetic variants 

investigated in our European ancestry meta-analysis, also known as SNP heritability. Across the genome, 

the SNP heritability (narrow-sense) was estimated to be 20.7% (SE 1.5%) for FEV1, 19.9% (SE 1.4%) for 

FVC and 17.5% (SE 1.4%) for FEV1/FVC. 

We also partitioned heritability by functional categories to investigate whether particular 

subsets of common variants were enriched32. We found significant enrichment in 6 functional categories 
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for all three PFTs: conserved regions in mammals, DNase I hypersensitive sites (DHS), super enhancers, 

the histone methylation mark H3K4me1 and histone acetylation marks H3K9Ac and H3K27Ac 

(Supplemental Figure 4). Another 7 categories showed enrichment for at least one PFT (Supplemental 

Figure 5). We observed the largest enrichment of heritability (14.5-15.3 fold) for conserved regions in 

mammals, which has ranked highest in previous partitioned heritability analyses for other GWAS traits 

(Supplemental Figure 5)32. 

Since both height and smoking are important determinants of pulmonary function, and have 

been associated with many common variants in previous GWAS, we also used LD score regression to 

investigate genetic overlap33 between our FEV1, FVC and FEV1/FVC results and publicly available GWAS 

results of ever smoking34 and height35. No significant genetic correlation was found between PFTs and 

smoking or height (Supplemental Table 6), indicating our findings are independent of those traits. 

Functional Annotation of Pulmonary Function Variants 

For functional annotation, we considered all novel variants with p<5x10-8 from the 60 loci 

discovered in our ancestry-specific and multiethnic meta-analyses, plus significant variants from the 

MHC region, two loci previously discovered in the CHARGE exome chip study (LY86/RREB1 and SEC24C)36 

and DDX1. Using Ensembl VEP37, we found 6 missense variants in 4 loci outside of the MHC region and 

22 missense variants in the MHC region (Supplementary Table 7).  Of the 28 total missense variants, two 

(chr15:67528374 in AAGAB and chr6:30899524 in the MHC region) appear to be possibly damaging 

based on SIFT38 and PolyPhen-239 scores (Supplementary Table 7). Using CADD40, we found an additional 

28 deleterious variants from 15 loci based on having a scaled C-score greater than 15 (Supplementary 

Table 8). In the MHC region, we found another 11 deleterious variants based on CADD. Based on 

RegulomeDB41, which annotates regulatory elements especially for non-coding regions, there were 52 

variants from 18 loci with predicted regulatory functions (Supplementary Table 8). In the MHC region, 

there were an additional 72 variants with predicted regulatory functions.  
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Pathway Enrichment Analysis (DEPICT and IPA) 

Gene set enrichment analyses conducted using DEPICT42 on genes annotated to variants with 

p<1x10-5 based on the European ancestry meta-analysis results revealed 218 significantly enriched 

pathways (FDR<0.05) (Supplementary Table 9). The enriched pathways were dominated by fundamental 

developmental processes, including many involved in morphogenesis of the heart, vasculature, and 

lung. Tissue and cell type analysis noted significant enrichment (FDR<0.05) of smooth muscle, an 

important component of the lung (Supplemental Table 10 and Supplemental Figure 6). We found 8, 1, 

and 82 significantly prioritized genes (FDR<0.05) for FEV1, FVC, and FEV1/FVC, respectively 

(Supplemental Table 11). Given the generally smaller p-values for variants associated with FEV1/FVC, 

enriched pathways and tissue/cell types as well as prioritized genes were predominantly discovered 

from DEPICT analyses of FEV1/FVC. 

Due to extended LD across the MHC locus on chromosome 6 (positions 25,000,000-35,000,000), 

DEPICT excludes this region42. Standard Ingenuity Pathway Analysis (IPA) run without excluding the MHC 

highlighted 16 enriched networks, including three involved in inflammatory diseases or immunity; 33 of 

the 84 genes in these three networks are in the MHC region (Supplementary Table 12).  

Identification of Potential Causal Variants by Incorporating Trans-ethnic Data and Functional 

Annotation (PAINTOR) 

Using a multiethnic fine-mapping analysis incorporating strength of association, variation in 

genetic background across major ethnic groups, and functional annotations in PAINTOR43, we examined 

40 loci that contained at least 5 genome-wide significant variants in the European ancestry and 

multiethnic meta-analyses or at least 1 significant variant in the African or Hispanic/Latino ancestry 

meta-analyses. We identified 15 variants representing 13 loci as having high posterior probabilities of 

causality (>0.8): 3 for FEV1, 3 for FVC, and 9 for FEV1/FVC (Supplemental Table 13). Of the 15 putative 

casual variants, 11 showed high posterior probabilities of causality (>0.8) before considering annotations 
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and 4 were identified by adding functional annotations. Nine were the top SNPs at that locus from the 

fixed-effects meta-analysis (loci: WNT3, PMFBP1/ZFHX3, EN1/MARCO, C2orf48/HPCAL1, CPT1C, CADPS, 

LOC283867/CDH5, HDC, and CDC7/TGFBR3), while 6 were not (loci: CDK2/RAB5B, BMS1P4, 

PMFBP1/ZFHX3, FLJ35282/ELAVL2, HDC, and COL8A1).  

Identification of Independent Signals in Known and Novel Loci for Pulmonary Function (FINEMAP) 

We used FINEMAP44 to identify variants with a high posterior probability of causality (>0.6)  

independent of 118 lead variants in pulmonary function loci identified in the current or previous 

studies14.  We identified 37 independent variants for 23 previously identified loci and one independent 

variant at each of two novel loci (LINC00340 and SLC25A51P1/BAI3; Supplementary Table 14).  

Gene-based Analysis of GWAS Summary Statistics (S-PrediXcan) 

Among the novel loci identified in the current GWAS of PFTs, we identified 7 variants 

corresponding to 9  genes demonstrating genome-wide significant evidence of association with lung or 

whole blood tissue-specific expression (Supplemental Table 15) based on the gene-based S-PrediXcan 

approach45. Bayesian colocalization analysis46 indicated the following associations demonstrated at least 

50% probability of shared SNPs underlying both gene expression and PFTs: ARHGEF17 and FAM168A in 

analysis of multiethnic GWAS for FEV1/FVC based on GTEx whole blood models, and WNT3 in analysis of 

multiethnic GWAS for FVC based on GTEx lung models (Supplemental Table 16). 

Druggable Targets 

To investigate whether the genes identified in our study encode proteins with predicted drug 

targets, we queried the ChEMBL database (https://www.ebi.ac.uk/chembl/). In addition, we 

incorporated an Ingenuity Pathway Analysis (IPA) to identify potential upstream targets. Genes 

associated with pulmonary function, but not included in the drug target analysis performed by Wain et 

al14, were evaluated for a total of 139 genes outside of the MHC: 110 genes representing the 60 novel 

loci identified in our fixed-effects ancestry-specific and multiethnic meta-analysis, 13 genes representing 
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the 6 novel loci identified in our random effects meta-analysis20, 3 genes representing an additional 3 

loci near significance in the African ancestry meta-analysis (BAZ2B, NONE/PCDH10, and ADAMTS17), 9 

genes representing 2 loci identified in a recent CHARGE analysis of exome variants36 which were also 

significant in our 1000 Genomes analysis (LY86/RREB1 and SEC24C), and 4 genes representing one locus 

identified at genome-wide significance in a separate publication from one of our participating studies 

(HCHS/SOL)19 but also significant in our analysis (ADORA2B/ZSWIM7/TTC19/NCOR1). In the ChEMBL 

database, 17 of these genes encode proteins with predicted or known drug targets:  NR5A2, KCNK2, 

EDAR, KCNJ3, NR4A2, BAZ2B, A4GNT, GSTO1, GSTO2, NCOR2, SMAD3, NCOR1, CDK12, WNT3, PYGB, 

NANP, EYA2 (Supplemental Table 17). Of these, two genes (KCNK2 and CDK12) have approved drug 

targets. Using IPA, four additional genes were predicted as drug targets (ADORA2B, APP, CRHR1, and 

MAP3K1; Supplemental Table 18) and 37 genes had drugs or chemicals as upstream regulators 

(Supplemental Table 19). 

Discussion 

By conducting a GWAS meta-analysis in a large multiethnic population we increased the number 

of known loci associated with pulmonary function by over 50%. In total, we identified 60 novel genetic 

regions (outside of the MHC region): 17 from European ancestry, 8 from African ancestry, 1 from 

Hispanic/Latino ethnicity, and 34 from multiethnic meta-analyses.  

Just under half of the novel loci identified in our European ancestry and multiethnic meta-

analyses replicated in look-up in a smaller independent sample of Europeans from the UK BiLEVE 

study14:  DCBLD2/MIR548G, SUZ12P1, CRHR1, WNT3, ZNF337, ALX1/RASSF9, MED1/CDK12, EYA2, 

RBMS3, LINC00340, FLJ35282/ELAVL2, DDHD1/MIR5580, TSHZ3, KLHL22/MED15, FAM168A, RAB5B, 

JMJD1C, AGMO, C20orf112, DCC, and PDXDC2P. Among those loci which did not directly replicate for 

PFTs in the UK BiLEVE, the lead variants in an additional 4 European or multiethnic loci were significantly 

associated in the ICGC Consortium with COPD, which was defined using PFT measures22:  
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OTUD4/SMAD1, TMEM38B/ZNF462, NCOR2/SCARB1, and SOGA2.  Since we were not able to seek 

external replication for loci identified in the African ancestry meta-analyses, we used PAINTOR to query 

whether variants in the African-specific loci had a high probability of causality based on association 

statistics, LD, and functional annotations across ancestral groups43. Interestingly, PAINTOR identified the 

lead variants for 6 out of 8 novel loci identified in African ancestry as having a high probability for 

causality: C2orf48/HPCAL1, EN1/MARCO, CADPS, HDC, LOC283867/CDH5, and CPT1C. PAINTOR or other 

new genomic methods such as FINEMAP and S-PrediXcan also produced evidence for causality for 4 

European ancestry and multiethnic loci which had not replicated in UK BiLEVE or ICGC: DCAF8, AFAP1, 

SLC25A51P1/BAI3 and SMAD3. Therefore, we found evidence for look-up replication of 25 loci in the UK 

BiLEVE study or ICGC COPD consortium and support for validation of an additional 10 loci using 

PAINTOR, FINEMAP, or S-PrediXcan.  

Our analysis also sheds light on additional potential causal genes at a complex locus 

(chromosome 17 near positions 43600000 to 44300000, hg19) previously discovered from GWAS of FEV1 

which identified KANSL1 in European populations as the top finding for this region14,15. With the 

exception of a single INDEL in KANSL1 in our European ancestry meta-analysis (17:44173680:T_TC, 

p=1.03x10-10), we found CRHR1 as the strongest gene associated with FEV1 in this region. Although some 

variants in CRHR1 identified in our study are within 500kb of KANSL1 (e.g., rs16940672, 17:43908152, 

p=2.07x10-10), a number of significant variants in this gene are more than 500kb away from previously 

identified hits [our definition of novel] (e.g., rs143246821, 17:43685698, p=9.06x10-10). In our 

multiethnic meta-analysis, several variants in CRHR1 were associated with FEV1 at smaller p-values than 

variants in KANSL1. Definitive assessment of the causal variants at this locus, as well as other multigenic 

GWAS loci, will likely require additional data from ongoing large scale sequencing studies to enable 

detailed fine mapping.  
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In both our European and multiethnic meta-analyses we also noted a significant association with 

WNT3 on chromosome 17 near position 44800000 (hg19) which is more than 500kb from KANSL1 or 

CRHR1 [our definition of novel]. We found that the top variant in WNT3 for FEV1 among individuals of 

European ancestry (rs916888, 17:44863133, p=3.76x10-9) had a high probability for causality based on 

PAINTOR, an analysis which integrates functional annotations along with association statistics and LD for 

each ethnicity43.  We also found evidence that WNT3 may be the causal gene at this locus using S-

PrediXcan, a gene level association test that prioritizes potentially causal genes while filtering out LD-

induced false positives45,46. Notably, S-PrediXcan implicated WNT3 as a likely mediating gene for FVC 

based on the top variant in our multiethnic meta-analyses (rs199525, 17:44847834, p=7.52x10-9), which 

is an eQTL SNP for WNT3 in lung and other tissues. Further, the lead WNT3 variants for both FEV1 and 

FVC (rs916888 and rs199525) were significantly associated with COPD in a look-up of a large published 

meta-analysis dataset22. In addition, other genes in the WNT signaling pathway, a fundamental 

development pathway, have been implicated as influencing pulmonary function47. This pathway was 

also one of the significant pathways identified in our analysis. In a previous pathway analysis of asthma, 

SMAD3 has been shown to interact with the WNT signaling pathway48. Finally, WNT3 also emerged as 

having a potential druggable target, and incorporation of pathway analysis to identify upstream 

regulators found an additional four drugs in clinical use for which WNT3 is a target molecule 

(chemotherapeutic agents doxorubicin and paclitaxel, the hormone beta-estradiol and LGK-974, a novel 

agent that targets a WNT-specific acyltransferase)49. Again, further evaluation of this interesting and 

complex locus which contains many significant variants in LD will benefit from data being generated in 

ongoing large-scale sequencing studies.  

Some genes identified in our study play key roles in inflammation, immunity and pulmonary 

biology. For example, MARCO (macrophage receptor with collagenous structure) has been shown in 

murine models to be required for lung defense against pneumonia as well as inhaled particles50,51. 
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SMAD3 is part of the SMAD family of proteins which are signal transducers and transcriptional 

modulators that mediate multiple signaling pathways. SMAD3 is activated by transforming growth factor 

beta (TGF-B) which plays a key role in airway remodeling. SMAD3 has a predicted drug target and SNPs 

in SMAD3 are significantly associated with asthma in GWAS52,53. 

Other genes identified in our study which are targeted by approved drugs include CDK12 and 

KCNK2. CDK12 drug targets include AT-7519, Roniciclib, AZD-5438, and PH.A-793887.  Roniciclib has 

been used in clinical trials including lung cancer patients54. KCNK2 (potassium channel subfamily K 

member 2) is targeted by 5 inhalational anesthetic agents. These agents have anti-inflammatory effects 

both systemically55 and in the lungs56 and meta-analysis of clinical studies shows protection against 

pulmonary complications after cardiac surgery57. A recent trial suggested that one of these inhalation 

agents, sevoflurane, offers promise for reducing epithelial injury and improving outcomes in patients 

with acute respiratory distress syndrome58.  

In addition to querying commonly used genome databases for functional annotation of variants, 

we sought to narrow down causal variants in implicated loci using recently developed methods that 

incorporate LD, functional data and/or the multiethnic analysis done in this paper. In particular, 

PAINTOR is a useful tool to identify potential causal variants in our novel loci as it leverages LD across 

ancestral groups along with association statistics and functional annotations43. PAINTOR identified 15 

putative causal variants from 13 loci, including 6 novel loci in African ancestry meta-analyses and 7 loci 

uniquely identified in the multiethnic meta-analyses such as PMFBP1/ZFHX3 and COL8A1 (part of the 

DCBLD2 loci). Notably, 8 of the 15 putative causal variants from PAINTOR were the top SNPs from the 

fixed-effects meta-analysis (e.g., rs916888 WNT3). Similarly, FINEMAP has been shown to be an accurate 

and efficient tool for investigating whether lead SNPs for a given loci are driven by independent variants 

in the same region, especially when annotation information is not available44. Among previous and novel 

loci identified in individuals of European ancestry, we identified 37 independent variants for 23 
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previously identified loci and two lead variants for two novel loci (rs1928168 LINC00340 and rs9351637 

SLC25A51P1/BAI3) with a high probability of causality. Finally, we ran S-PrediXcan a gene level 

association test that prioritizes potentially causal genes45. Seven of our novel loci contained putative 

causal genes based on S-PrediXcan for lung or whole blood tissues, including NRBF2 (part of the JMJD1C 

locus) and WNT3. S-PrediXcan also highlighted the region around chromosome 11 position 73280000 

(hg19), noting strong evidence for both FAM168A and ARHGEF17 which was further supported by the 

co-localization analysis. Interestingly, DEPICT also prioritized ARHGEF17, a member of the guanine 

nucleotide exchange factor (GEF) family of genes which can mediate actin polymerization and 

contractile sensitization in airway smooth muscle59,60. 

Rather than conducting a standard gene-based pathway analysis, we performed a newer 

integrative method, DEPICT, that incorporates cell and tissue-specific functional data into a pathway 

analysis to prioritize genes within implicated loci42. In addition to identifying potential causal variants, 

this approach revealed a number of fundamental development processes, including pathways related to 

lung development, regulation of growth, and organ morphogenesis. The WNT signaling pathway was 

also highlighted along with processes relevant to the pathogenesis of COPD including extracellular 

matrix structure and collagen networks.  Tissue/cell type enrichment results highlighted smooth muscle 

which is highly relevant for lung function. DEPICT excludes the MHC due to extended LD in this region, 

which likely explains the relative paucity of inflammation-related pathways identified compared to 

previous pathway analyses in GWAS of PFTs24,47. Indeed, standard IPA analysis of our data including the 

MHC region, found that 33 of 84 genes (39%) in the 3 (out of 16) enriched networks involved in immune 

or inflammatory processes are in the MHC.  The predominance of fundamental pathways related to lung 

growth, differentiation and structure is consistent with recent work61  that has rekindled interest in the 

observation made 40 years ago62 that individuals can cross the threshold for diagnosis of COPD either by 

rapid decline in adulthood or by starting from a lower baseline of maximal pulmonary function attained 
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during growth. Within this context, understanding the genetic (and environmental) factors that 

influence the variability in maximal lung function attained during the first three decades of life is 

essential to reducing the public health burden of COPD63.   

 In summary, our study extends existing knowledge of the genetic landscape of PFTs by utilizing 

the more comprehensive 1000 Genomes imputed variants, increasing the sample size, including multiple 

ancestries and ethnicities, and employing newly developed computational applications to interrogate 

implicated loci. We discovered 60 novel loci associated with pulmonary function and replicated many in 

an independent sample. We found evidence that several variants in these loci were missense mutations 

and had possible deleterious or regulatory effects, and many had significant eQTLs. Further, using new 

genomic methods that incorporate LD, functional data and the multiethnic structure of our data, we 

shed light on potential causal genes and variants in implicated loci. Finally, several of the newly 

identified genes linked to lung function are druggable targets, highlighting the clinical relevance of our 

integrative genomics approach.  

Methods 

Studies  

Member and affiliate studies from The Cohorts for Heart and Aging Research in Genomic 

Epidemiology (CHARGE) consortium with pulmonary function and 1,000 Genomes imputed genetic data 

were invited to participate in the present meta-analysis. Participating studies included: AGES, ALHS, 

ARIC, CARDIA, CHS, FamHS, FHS, GOYA, HCHS/SOL, HCS, Health ABC, Healthy Twin, JHS, KARE3, LifeLines, 

LLFS, MESA, NEO, 1982 PELOTAS, RSI, RSII, RIII. Characteristics of these studies are provided in 

Supplemental Table 20 and descriptions of study designs are provided in the Supplemental Methods. 
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Pulmonary Function 

Spirometry measures of pulmonary function (FEV1, FVC, and the ratio FEV1/FVC) were collected 

by trained staff in each study according to American Thoracic Society (ATS) or European Respiratory 

Society guidelines (see cohort descriptions in Supplemental Methods for more details).  

Variants  

Studies used various genotyping platforms, including Affymetrix Human Array 6.0, Illumina 

Human Omni Chip 2.5, and others, as described in cohort descriptions in the Supplemental Methods. 

Using MACH, MINIMAC, or IMPUTE2, studies then used genotyped data to impute ~38 million variants 

based on the 1000 Genomes Integrated phase 1 version 3 reference panel (released March 2012). Two 

studies (Hunter Community and CARDIA) imputed to the 1000 Genomes European phase 1 version 3 

reference panel; sensitivity analyses excluding these two studies showed no material differences in 

results (see Supplemental Results).  

Statistical Analysis 

Within each study, linear regression was used to model the additive effect of variants on PFTs. 

FEV1 and FVC were modeled as milliliters and FEV1/FVC as a proportion. Studies were asked to adjust 

analyses for age, age2, sex, height, height2, smoking status (never, former, current), pack-years of 

smoking, center (if multicenter study), and ancestral principal components, including a random familial 

effect to account for family relatedness when appropriate64. Models of FVC were additionally adjusted 

for weight. Analyses were conducted using ProbAbel, PLINK, FAST, or the R kinship package as described 

in the cohort descriptions of the Supplemental Methods.  

Ancestry-specific and multiethnic fixed effects meta-analyses using inverse variance weighting 

of study-specific results with genomic control correction were conducted in Meta Analysis Helper 

(METAL, http://www.sph.umich.edu/csg/abecasis/metal/). Multiethnic random effects meta-analyses 

using the four ancestry-specific fixed effects meta-analysis results were conducted using the Han-Eskin 
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model20 in METASOFT (http://genetics.cs.ucla.edu/meta/). Only variants with p-values for association 

<0.05 or p-values for heterogeneity <0.1 from the fixed-effects model were included in the random-

effects model. 

Variants with imputation quality scores (r2) less than 0.3 and/or a minor allele count (MAC) less 

than 20 were excluded from each study prior to meta-analysis. Following meta-analysis, we also 

excluded variants with less than 1/3 the total sample size or less than the sample size of the largest 

study for a given meta-analysis to achieve the following minimal sample sizes: 20,184 for European 

ancestry; 2,810 for African ancestry; 7,862 for Asian ancestry; 4,435 for Hispanic/Latino ethnicity and 

30,238 for Multiethnic.  

Significance was defined as p<5x10-8  14,18. Novel variants were defined as being more than +/-

500kb from the top variant of a loci identified in a previous GWAS of pulmonary function16,17. We used 

the list of 97 known variants as published in the recent UK BiLEVE paper14 with the following 

modifications: added variants in DDX1, DNER, CHRNA5 since listed in GWAS catalog; added variants in 

LCT, FGF10, LY86/RREB1, SEC24C, RPAP1, CASC17, and UQCC1 since identified in exome chip paper36; 

added variant in TMEM163 identified in Loth et al paper10; used 17:44339473 instead of 17:44192590 to 

represent KANSL1 since 17:44339473 was the original variant listed for KANSL1 in Wain et al 201515; and 

used 12:28283187 instead of 12:28689514 to represent PTHLH since 12:28283187 was the original 

variants listed for PTHLH in Soler Artigas et al 201513.  

Genomic inflation factors (lambda values) from quantile-quantile plots of observed and 

expected p-values for ancestry- and phenotype-specific meta-analyses are presented in Supplemental 

Table 21. Lambda values were slightly higher in European and multiethnic meta-analyses (range of 

lambda 1.12 to 1.16) than in other ancestry-specific meta-analyses (range of lambda 1.01 to 1.06) likely 

due to the much larger sample sizes of the European and multiethnic meta-analyses65.  
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LD Score Regression 

The SNP heritability, i.e. the variance explained by genetic variants, was calculated from the 

European ancestry GWAS summary statistics (with genomic control off) using LD score regression 

(https://github.com/bulik/ldsc)31. Partitioned heritability was also calculated using the method 

described by Finucane and colleagues32. In total, 28 functional annotation classes were used for this 

analysis, including: coding regions, regions conserved in mammals, CCCTC-binding factor (CTCF), DNase 

genomic foot printing (DGF), DNase I hypersensitive sites (DHS), fetal DHS, enhancer regions; including 

super-enhancers and active enhancers from the FANTOM5 panel of samples, histone marks including 

two versions of acetylation of histone H3 at lysine 27 (H3K27ac and H3K27ac2), histone marks 

monomethylation (H3K4me1), trimethylation of histone H3 at lysine 4 (H3K4me) and acetylation of 

histone H3 at lysine 9 (H3K9ac5). In addition to promotor and intronic regions, transcription factor 

binding site (TFBS), transcription start site (TSS) and untranslated regions (UTR3 and UTR5). A p-value of 

0.05/28 classes < 1.79 x 10-3 was considered statistically significant. Genetic correlation between our 

pulmonary function (FEV1, FVC and FEV1/FVC ) results and publicly available GWAS of ever smoking34  

and height35 was also investigated using LD score regression33.  

Functional Annotation 

To find functional elements in novel genome-wide significant signals, we annotated SNPs using 

various databases. We used Ensembl Variant Effect Predictor (VEP)37 (Accessed 17 Jan 2017) and 

obtained mapped genes, transcripts, consequence of variants on protein sequence, Sorting Intolerant 

from Tolerant (SIFT)38 scores, and Polymorphism Phenotyping v2 (PolyPhen-2)39 scores. We checked if 

there were deleterious variants using Combined Annotation Dependent Depletion (CADD) v1.340 which 

integrates multiple annotations, compares each variant with possible substitutions across the human 

genome, ranks variants, and generates raw and scaled C-scores. A variant having a scaled C-score of 10 

or 20 indicates that it is predicted to be in the top 10% or 1% deleterious changes in human genome, 
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respectively. We used a cutoff of 15 to provide deleterious variants since it is the median for all possible 

splice site changes and non-synonymous variants (http://cadd.gs.washington.edu/info, Accessed 18 Jan 

2017). To find potential regulatory variants, we used RegulomeDB41 (Accessed 17 Jan 2017) which 

integrates DNA features and regulatory information including DNAase hypersensitivity, transcription 

factor binding sites, promoter regions, chromatin states, eQTLs, and methylation signals based on 

multiple high-throughput datasets and assign a category to each variant. Variants having RegulomeDB 

categories 1 or 2, meaning ‘likely to affect binding and linked to expression of a gene target’ or ‘likely to 

affect binding,’ were considered as regulatory variants. 

Pathway Analysis (DEPICT and IPA) 

For gene prioritization and identification of enriched pathways and tissues/cell types, we used 

Data-driven Expression Prioritized Integration for Complex Traits (DEPICT)42 with association results for 

FEV1, FVC, and FEV1/FVC. We used association results from our European ancestry meta-analysis and the 

LD structure from 1000 Genomes European (CEU, GBR, and TSI) reference panel. The software excludes 

the major histocompatibility complex (MHC) region on chromosome 6 due to extended LD structure in 

the region. We ran a version of DEPICT for 1000 Genomes imputed meta-analysis results using its 

default parameters with an input file containing chromosomal location and p-values for variants having 

unadjusted p-values <1x10-5. For gene set enrichment analyses, DEPICT utilizes 14,461 reconstituted 

gene sets generated by genes’ co-regulation patterns in 77,840 gene expression microarray data. For 

tissue/cell type enrichment analysis, mapped genes were tested if they are highly expressed in 209 

medical subject headings (MeSH) annotations using 37,427 microarray data. Gene prioritization analysis 

using co-functionality of genes can provide candidate causal genes in associated loci even if the loci are 

poorly studied or a gene is not the closest gene to a genome-wide significant variant. We chose 

FDR<0.05 as a cutoff for statistical significance in these enrichment analyses and gene prioritization 

results. Because DEPICT excludes the MHC, we also ran a pathway analysis with Ingenuity Pathway 
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Analysis (IPA) (Ingenuity Systems, Redwood City, CA, USA, http://www.ingenuity.com/) on genes to 

which variants with p<1x10-5 annotated. 

PAINTOR 

 To identify causal variants in novel genome-wide significant loci, we used a trans-ethnic 

functional fine mapping method43 implemented in PAINTOR  

(https://github.com/gkichaev/PAINTOR_FineMapping, Accessed on May 2, 2016). This method utilizes 

functional annotations along with association statistics (Z-scores) and linkage disequilibrium (LD) 

information for each locus for each ethnicity. We included our ancestry-specific meta-analysis results 

and used the African, American, European, and East Asian individuals from 1000 Genomes to calculate 

linkage disequilibrium (LD)66. From the novel loci we identified in our ancestry-specific and multiethnic 

fixed effects meta-analyses, we selected 40 high priority loci which had at least five variants meeting 

significance: 10 loci for FEV1, 15 loci for FVC, and 17 loci for FEV1/FVC. This list included 6 loci which 

overlapped with the UK BiLEVE 1000 Genomes paper14 and 1 locus with the CHARGE exome paper36, 

since we ran PAINTOR prior those publications. To reduce computational burden, we limited flanking 

regions to ±100 kilobase (kb) from the top single nucleotide polymorphisms (SNPs) and included variants 

with absolute value of Z-score greater than 1.96.  

 We used 269 publicly available annotations relevant to ‘lung’, ‘bronch’, or ‘pulmo’ from the 

following: hypersensitivity sites (DHSs)67, super enhancers68, Fantom5 enhancer and transcription start 

site regions69, immune cell enhancers70, and methylation and acetylation marks ENCODE71. We ran 

PAINTOR for each phenotype separately to prioritize annotations based on likelihood-ratio statistics72,73. 

We included minimally correlated top annotations (less than five for each phenotype) to identify causal 

variants. 

 For the 40 loci from the fixed-effects meta-analysis, we used PAINTOR to construct credible sets 

of causal variants using a Bayesian meta-analysis framework. To obtain 95% credible sets for each locus, 
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we ranked SNPs based on posterior probabilities of causality (high to low) and then took the SNPs filling 

in 95% of the summed posterior probability. We computed the median number of SNPs in the credible 

sets for ancestry-specific and multi-ethnic analyses of each trait. 

FINEMAP 

 We used FINEMAP44 to identify signals independent of lead variants for pulmonary function loci 

identified in the current or previous studies14.  We used a reference population from the Rotterdam 

Study (N=6,291). SNPs with MAF of <1% were excluded, leaving 118 SNPs for analysis. 10 SNPs for FEV1 

and FVC and 20 SNPs for FEV1/FVC were further excluded because the LD matrix of the reference file 

from the Rotterdam Study did not represent the correlation matrix of the total study population. We 

allowed up to 10 causal SNPs per loci in FINEMAP analyses. To reduce the chance of false positive 

findings, we also conducted sensitivity analyses allowing up to 15 causal SNPs for loci with more than 4 

SNPs with posterior probabilities of >0.8. 

S-PrediXcan 

 S-PrediXcan is a novel summary statistics based approach for gene-based analysis45 that was 

derived as an extension of the PrediXcan method for integration of GWAS and reference transcriptome 

data74. We used the S-PrediXcan approach to prioritize potentially causal genes, coupled with a Bayesian 

colocalization procedure46 used to filter out LD-induced false positives. S-PrediXcan was used to analyze 

both European ancestry and multi-ethnic GWAS summary data for pulmonary function traits from the 

current study.  

 S-PrediXcan analysis was performed using the following publicly available tissue-specific 

expression models (http://predictdb.org) from the Genotype-Tissue Expression (GTEx) project v6p23: (1) 

GTEx Lung (278 samples) and (2) GTEx Whole blood (338 samples). Approximately 85% of participants in 

GTEx are white, 12% African American, and 3% of other races/ethnicities. Gene-based S-PrediXcan 

results were filtered on the following: (1) Proportion of SNPs used = (n SNPs available in GWAS summary 
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data)/ (n SNPs in prediction model) > 0.6, and (2) prediction performance R-squared > 0.01. Following 

application of S-PrediXcan to each of the GWAS summary data sets, we computed Bonferroni-corrected 

p-values derived as the nominal p-value for each gene-based test divided by the number of genes 

passing specified filters in each analysis to test whether genetically regulated gene expression was 

associated with the trait of interest. The genome-wide S-PrediXcan results were then merged with novel 

loci from the current GWAS study by identifying all matches in which the novel locus SNP was within 

500kb of the start of the gene.  

 We further incorporated a Bayesian colocalization approach46 to interpret the extent to which S-

PrediXcan results may have been influenced by linkage disequilibrium within the region of interest. The 

Bayesian colocalization procedure was run using the following priors: p1 = 1e-4; prior probability SNP 

associated to trait 1, p2 = 1e-4; prior probability SNP associated to trait 2, p12 = 1e-5; prior probability 

SNP associated to both traits. The procedure generated posterior probabilities that correspond to one of 

the following hypotheses: a region is (H0) has no association with neither trait, (H1) associated with PFT 

phenotype but not gene expression, (H2) associated with gene expression but not PFT phenotype, (H3) 

associated with both traits, due to two independent SNPs, (H4) associated with both traits, due to one 

shared SNP. 

Druggable Targets 

 We searched annotated gene lists against the ChEMBL database (v22.1, updated on November 

15, 2016) to identify genes as targets of approved drugs or drugs in development. In addition, we used 

the Ingenuity Pathway Analysis (IPA, www.ingenuity.com, content of 2017-06-22) to identify drug 

targets and upstream regulators of the gene lists. We reported the upstream regulators in the following 

categories, biologic drug, chemical - endogenous mammalian, chemical - kinase inhibitor, chemical – 

other, chemical drug, chemical reagent, and chemical toxicant. 
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Data Availability 

 Upon acceptance at a journal, complete meta-analysis results will be deposited in the database 

of Genotypes and Phenotypes (dbGaP) under the CHARGE acquisition number phs000930. GWAS data 

for US studies are already available in dbGAP. For non-US studies, please send requests to the study PI 

or Stephanie London (london2@niehs.nih.gov) who will forward them to the relevant party. 
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Table 1. Sample size and location of studies included in the CHARGE consortium 
1000 Genomes and pulmonary function meta-analysis 
    Sample Size by Ancestry 
Studya Country European African Hispanic/Latino Asian 
AGES Iceland 1620       
ALHS United States 2844       
ARIC United States 8878 1837     
CARDIA United States 1580 883     
CHS United States 3135 566     
FamHS United States 1679       
FHS United States 7689       
GOYA Denmark 1456       
HCHS/SOL United States     11775   
HCS Australia 1822       
Health ABC United States 1472 943     
Healthy Twin South Korea       2098 
JHS United States   2015     
KARE3 South Korea       7861 
LifeLines Netherlands 11851       
LLFS United States 

and Denmark 3787       
MESA United States 1339 863     
NEO Netherlands 5460       
1982 Pelotas Brazil 1357 1322     
RS I Netherlands 1232       
RS II Netherlands 1135       
RS III Netherlands 2216       
  Total 60552 8429 11775 9959 
aAGES Age Gene Environment Susceptibility Study; ALHS Agricultural Lung Health 
Study; ARIC Atherosclerosis Risk in Communities  Study; CARDIA Coronary Artery Risk 
Development in Young Adults; CHS Cardiovascular Health Study; FamHS Family Heart 
Study; FHS Framingham Heart Study; GOYA Genetics of Overweight Young Adults 
Study; HCHS/SOL Hispanic Community Health Study/Study of Latinos; HCS Hunter 
Community Study; JHS Jackson Heart Study; KARE3 Korean Association Resource 
Phase 3 Study; LLFS Long Life Family Study; MESA Multi-Ethnic Study of 
Atherosclerosis; NEO Netherlands Epidemiology of Obesity Study; RS Rotterdam 
Study 
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Table 2. Top Variants from Novel Loci Discovered in the CHARGE Consortium Meta-Analysis of Pulmonary Function 
              CHARGE Discovery  UK BiLEVE Replication 

Nearest Gene(s)a Phenotypeb Populationc Top Variant Chr:Pos 
Coded 
Alleled 

Coded Allele 
Freq Betae SE P-value 

Direction of Effect 
Concordant with 

Discoveryf P-valueg 
Top Variants from Novel Loci Discovered in the European and Multiethnic Meta-analyses and Tested for Replication in the UK BiLEVE Study 

LOC728989 FVC Eur rs12724426 1:146494027 a 0.21 -36.75 6.63 2.95E-08 Yes 8.10E-01 
DCAF8 FEV1/FVC ME rs11591179 1:160206067 t 0.45 -0.002 0.0003 3.48E-08 Yes 3.69E-01 
NR5A2 FVC ME rs2821332 1:200085714 a 0.47 14.50 2.51 7.65E-09 Yes 1.20E-02 
PIK3C2B FEV1 ME rs12092943 1:204434927 t 0.74 -14.57 2.67 4.83E-08 Yes 1.94E-01 
CENPF,KCNK2 FVC Eur rs512597 1:215095003 t 0.81 -24.26 4.12 3.92E-09 Yes 9.06E-02 

C1orf140,DUSP10 
FVC 

Eur rs6657854 1:221630555 a 0.72 -19.89 3.49 1.18E-08 Yes 1.07E-02 
ME rs12046746 1:221635207 c 0.71 -16.99 2.81 1.41E-09 Yes 1.11E-02 

FEV1 ME 1:221765779:C_CA 1:221765779 i 0.12 -36.25 6.57 3.38E-08 Yes 2.07E-01 
RYR2 FVC ME 1:237929787:T_TCA 1:237929787 i 0.11 -37.17 6.79 4.46E-08 Yes 2.29E-01 
PKDCC, EML4 FEV1 ME rs963406 2:42355947 a 0.12 -23.13 4.18 3.17E-08 Yes 3.38E-03 
EDAR FVC ME rs17034666 2:109571508 a 0.23 -27.93 4.96 1.81E-08 Yes 4.83E-01 
KCNJ3, NR4A2 FEV1/FVC ME rs72904209 2:157046432 t 0.88 0.003 0.0005 3.09E-08 Yes 2.36E-02 

RBMS3 FEV1/FVC 
Eur rs17666332 3:29469675 t 0.72 0.003 0.0005 4.76E-08 Yes 6.89E-05 
ME rs28723417 3:29431565 a 0.74 0.002 0.0004 1.77E-08 Yes 3.44E-04 

DNAH12 FEV1 ME rs79294353 3:57494433 a 0.92 -29.56 5.05 4.82E-09 Yes 2.94E-01 

DCBLD2,MIR548G 
FEV1 ME rs6778584 3:98815640 t 0.70 12.98 2.37 4.51E-08 Yes 2.93E-04 
FVC ME rs1404098 3:98806782 a 0.71 15.93 2.73 5.45E-09 Yes 4.66E-05 
FEV1/FVC ME rs80217917 3:99359368 t 0.88 -0.003 0.0005 2.58E-08 Yes 1.15E-01 

AFAP1 FEV1/FVC 
Eur rs28520091 4:7846240 t 0.48 0.003 0.0004 2.17E-09 Yes 2.95E-02 
ME rs28520091 4:7846240 t 0.44 0.0021 0.0004 8.40E-09 Yes 2.95E-02 

OTUD4,SMAD1 FEV1 ME rs111898810 4:146174040 a 0.20 -20.24 3.61 2.14E-08 Yes 1.16E-02 

AP3B1 
FEV1 Eur rs252746 5:77392117 a 0.78 20.05 3.45 6.19E-09 Yes 2.04E-01 

FVC 
Eur rs12513481 5:77450828 c 0.23 -25.01 3.74 2.15E-11 Yes 3.84E-02 
ME rs72776440 5:77440196 c 0.21 -21.30 3.21 3.20E-11 Yes 3.24E-02 

LINC00340 FEV1/FVC 
Eur rs1928168 6:22017738 t 0.51 0.003 0.0004 6.74E-14 Yes 7.95E-05 
ME rs9350408 6:22021373 t 0.51 -0.003 0.0003 7.45E-14 Yes 1.97E-05 

SLC25A51P1,BAI3 FEV1/FVC Eur rs9351637 6:67863782 t 0.61 0.002 0.0004 2.89E-08 No 3.63E-01 
CENPW,RSPO3 FVC ME rs11759026 6:126792095 a 0.72 -20.20 3.44 4.35E-09 Yes 1.51E-01 
AGMO FVC ME rs55905169 7:15506529 c 0.31 -17.57 3.09 1.28E-08 Yes 1.70E-03 
CNTNAP2 FEV1/FVC Eur rs1404154 7:146651409 t 0.99 -0.03 0.006 2.80E-08 NA NA 

DMRT2,SMARCA2 
FVC 

Eur rs771924 9:1555835 a 0.42 -18.4 3.18 7.16E-09 Yes 1.75E-01 
ME rs9407640 9:1574877 c 0.42 -16.82 3.03 2.87E-08 Yes 6.87E-02 

FEV1 ME rs9407640 9:1574877 c 0.41 -14.48 2.65 4.77E-08 Yes 8.91E-02 
FLJ35282,ELAVL2 FEV1/FVC ME rs10965947 9:23588583 t 0.39 0.002 0.0004 2.70E-09 Yes 1.07E-04 
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TMEM38B,ZNF462 FEV1/FVC ME rs2451951 9:109496630 t 0.47 0.002 0.0003 2.36E-08 Yes 3.72E-02 

JMJD1C 
FEV1 ME rs7899503 10:65087468 c 0.25 21.16 2.84 8.70E-14 Yes 1.64E-03 
FEV1/FVC ME rs75159994 10:64916064 t 0.77 -0.003 0.0004 6.09E-09 Yes 2.63E-02 

COMTD1,ZNF503-AS1 FVC ME 10:77002679:TC_T 10:77002679 d 0.22 22.36 4.10 4.89E-08 Yes 5.88E-01 
HTRA1 FEV1/FVC ME rs2293871 10:124273671 t 0.23 0.002 0.0004 1.51E-08 Yes 4.00E-02 
FAM168A FEV1/FVC ME 11:73280955:GA_G 11:73280955 d 0.20 0.004 0.0006 2.74E-08 Yes 2.32E-04 
KIRREL3-AS3,ETS1 FVC ME rs73025192 11:127995904 t 0.12 -24.18 4.28 1.63E-08 Yes 2.53E-01 
RAB5B FEV1 ME rs772920 12:56390364 c 0.72 13.86 2.49 2.48E-08 Yes 1.26E-03 

ALX1,RASSF9 
FEV1 Eur rs10779158 12:85724096 a 0.34 15.89 2.90 4.36E-08 Yes 1.60E-03 

FVC 
Eur rs10779158 12:85724096 a 0.34 18.72 3.31 1.52E-08 Yes 1.28E-03 
ME rs7971039 12:85724305 a 0.26 16.36 2.88 1.44E-08 Yes 4.37E-04 

CRADD FVC ME rs11107184 12:94184082 t 0.34 14.89 2.71 3.87E-08 Yes 1.84E-01 
CCDC41 FVC ME rs10859698 12:94852628 a 0.21 21.19 3.84 3.49E-08 Yes 6.70E-01 
NCOR2,SCARB1 FEV1 ME rs11057793 12:125230287 t 0.75 17.66 3.24 4.78E-08 Yes 9.93E-02 
DDHD1,MIR5580 FEV1/FVC ME rs4444235 14:54410919 t 0.54 0.002 0.0004 4.03E-08 Yes 4.32E-05 
SQRDL,SEMA6D FVC ME rs4775429 15:46722435 t 0.17 40.23 7.21 2.45E-08 No 3.04E-01 
SMAD3 FVC ME rs8025774 15:67483276 t 0.29 -20.87 2.92 9.34E-13 Yes 9.10E-03 
PDXDC2P FVC ME rs3973397 16:70040398 a 0.48 -22.38 4.05 3.31E-08 Yes 5.90E-03 
PMFBP1,ZFHX3 FVC ME rs55771535 16:72252097 a 0.13 -29.88 4.83 6.38E-10 Yes 7.95E-01 
SUZ12P1 FEV1 ME rs62070631 17:29087285 a 0.15 20.26 3.64 2.57E-08 Yes 3.19E-04 
MED1, CDK12 FVC ME rs8067511 17:37611352 t 0.80 18.30 3.20 1.08E-08 Yes 2.12E-05 

LOC644172,CRHR1 
FEV1 

Eur rs143246821 17:43685698 a 0.79 30.58 4.99 9.06E-10 Yes 1.31E-12 
ME rs186806998 17:43682323 t 0.82 29.50 4.70 3.47E-10 Yes 3.72E-12 

FVC ME rs150741403 17:43682405 c 0.85 35.83 5.97 1.94E-09 Yes 4.15E-10 

WNT3 
FEV1 

Eur rs916888 17:44863133 t 0.75 20.53 3.48 3.76E-09 Yes 5.19E-07 
ME rs199525 17:44847834 t 0.80 18.85 3.08 9.59E-10 Yes 4.69E-11 

FVC ME rs199525 17:44847834 t 0.80 20.32 3.52 7.52E-09 Yes 3.35E-11 
SOGA2 FEV1 ME rs513953 18:8801351 a 0.29 -14.50 2.58 1.96E-08 Yes 2.23E-03 
CTAGE1,RBBP8 FEV1 ME rs7243351 18:20148531 t 0.45 12.31 2.25 4.69E-08 Yes 9.62E-02 
CABLES1 FVC ME rs7238093 18:20728158 a 0.22 18.15 3.13 6.78E-09 Yes 6.76E-02 

DCC FVC 
Eur rs8089865 18:50957922 a 0.59 20.57 3.23 1.95E-10 Yes 3.10E-03 
ME rs8089865 18:50957922 a 0.53 15.81 2.57 7.38E-10 Yes 3.10E-03 

TSHZ3 FEV1/FVC 
Eur rs1353531 19:31846907 t 0.14 -0.003 0.0006 4.53E-08 Yes 2.69E-05 
ME rs9636166 19:31829613 a 0.86 0.003 0.0005 3.25E-09 Yes 1.38E-06 

ZNF337 FEV1 ME rs6138639 20:25669052 c 0.79 17.91 2.85 3.17E-10 Yes 1.54E-04 
C20orf112 FEV1 ME rs1737889 20:31042176 t 0.22 -16.82 3.07 4.17E-08 Yes 1.69E-03 
EYA2 FVC Eur rs2236519 20:45529571 a 0.38 -18.06 3.28 3.51E-08 Yes 1.15E-04 

KLHL22,MED15 FEV1/FVC 
Eur rs4820216 22:20854161 t 0.15 -0.004 0.0006 1.53E-09 Yes 2.22E-04 
ME rs4820216 22:20854161 t 0.13 -0.003 0.0005 2.61E-10 Yes 2.22E-04 
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Top Variants from Novel Loci Discovered in the African and Hispanic/Latino Meta-analyses 
RYR2 FEV1 Afr rs3766889 1:237941781 t 0.82 52.21 9.52 4.12E-08 NA NA 
C2orf48, HPCAL1 FEV1/FVC Afr rs139215025 2:10418806 a 0.01 -0.07 0.01 9.03E-11 NA NA 
EN1, MARCO FVC Afr rs114962105 2:119660943 a 0.98 178.48 32.44 3.77E-08 NA NA 
CADPS FEV1/FVC Afr rs111793843 3:62386350 t 0.01 -0.05 0.008 1.97E-08 NA NA 
ANKRD55,MAP3K1 FEV1 Afr rs11748173 5:55922145 t 0.21 67.07 10.72 3.91E-10 NA NA 
HDC FEV1/FVC Afr rs180930492 15:50555681 t 0.01 -0.07 0.01 2.59E-09 NA NA 
LOC283867,CDH5 FEV1/FVC Afr rs144296676 16:66060569 t 0.99 -0.03 0.006 5.35E-09 NA NA 
CPT1C FEV1/FVC Afr rs147472287 19:50213396 t 0.01 -0.05 0.009 3.25E-08 NA NA 
DKFZp686O1327, 
PABPC1P2 FVC His rs6746679 2:147046592 a 0.56 -37.36 6.67 2.17E-08 NA NA 
aNearest gene: indicates gene either harboring the variant or nearest to it. CRHR1 locus also includes ARHGAP27, LOC644172, MGC57346, CRHR1-IT1, LRRC37A4P. SMAD3 locus also 
includes AAGAB, IQCH. MED1/CDK12 locus also includes FBXL20. HTRA1 locus also includes DMBT1. JMJD1C locus also includes EGR2, NRBF2, JMJD1C-AS1,REEP3. RAB5B locus also 
includes SOUX. ZNF337 locus also includes ABHD12, PYGB, GINS1, NINL, NANP, FAM182B, LOC100134868. KLHL22/MED15 locus also includes ZNF74, SCARF2. C1orf140/DUSP10 locus 
also includes HLX. 
bPhenotypes: FEV1 forced expiratory volume in 1 second (in ml), FVC forced vital capacity (in ml), Ratio FEV1/FVC (as a proportion) 
cAncestral/ethnic populations: Afr African, His Hispanic/Latino, Eur European, ME Multiethnic 
dAlleles for INDELS: I Insertion, D Deletion 
eAdditive effect of variant on pulmonary function, adjusting for age, age2, sex, height, height2, smoking status, pack-years of smoking, center (if multi-center study), ancestral principal 
components, and weight (for FVC only) 
fUK BiLEVE estimates are on a different scale (inverse normal transformation) therefore we report only whether the direction of effect is concordant between discovery and replication 
studies. 
gBased on a two-sided p<9.6x10-4, 15 loci replicated for the same trait based on the lead variant from our analysis: DCBLD2/MIR548G, SUZ12P1, CRHR1, WNT3, ZNF337, ALX1/RASSF9, 
MED1/CDK12, EYA2, RBMS3, LINC00340, FLJ35282/ELAVL2, DDHD1/MIR5580, TSHZ3, KLHL22/MED15, FAM168A. Based on a one-sided p-value, an additional 4 loci replicated for the 
same trait based on the lead variant: RAB5B, JMJD1C, AGMO, and C20orf112. One other loci replicated for the same trait based on a different significant variant in the locus (DCC, 
rs8085778, replication p=2.80x10-4, R2 with lead variant=0.9) and another loci replicated for a different pulmonary function trait based on the lead variant (PDXDC2P discovered for FVC 
replicated for FEV1, replication p=3.99x10-4). 
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Figure 1. Manhattan plots for genome-wide association results for pulmonary function (FEV1, FVC, and FEV1/FVC) from European and multiethnic meta-

analyses in CHARGE. Novel loci indicated by red. Significance level (5x10
-8

) indicated by dashed line. 

made available for use under a CC0 license. 
certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also 

The copyright holder for this preprint (which was notthis version posted October 5, 2017. ; https://doi.org/10.1101/196048doi: bioRxiv preprint 

https://doi.org/10.1101/196048

