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Abstract 21 

Background: The analysis of ecological networks can be affected by sampling effort, 22 

potentially leading to bias. Ecological network structure is often summarised by descriptive 23 

metrics but these metrics can vary according to the proportion of the total interactions that 24 

have been observed. Therefore, to know the likely degree of bias, it is valuable to estimate 25 

the total number of interactions in a network, and so calculate the proportion of interactions 26 

that have been observed (sampling completeness of interactions). Existing approaches to 27 

estimate sampling completeness of interactions use the Chao family of asymptotic species 28 

richness estimators to predict the total number of interactions, but do not fully utilise 29 

information about the relative specialisation of species within the network.  30 

Results: Here, we propose a modification of previously-used methods, that places equal 31 

weight on each interaction (whether or not it has been observed), rather than on each 32 

species. Our approach is therefore equivalent to weighting the interaction sampling 33 

completeness of each species in the network according to its relative specialisation. We 34 

demonstrate that, for the subset of species that are observed and when assuming that 35 

species richness estimators accurately project the number of unobserved interactions per 36 

observed species, our approach is mathematically more accurate. Our approach can be 37 

universally applied to any quantitative, bipartite network. 38 

We propose two methods to estimation using our approach, using abundance-based and 39 

incidence-based species richness estimators respectively, and give recommendations when 40 

each should be applied. We discuss the effect of unobserved species and the potential use 41 

of a threshold of minimum abundance for species inclusion. Finally, we consider these 42 

advances in the context of some of the main issues surrounding estimation of interaction 43 

sampling completeness in network ecology. 44 
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Conclusions: We recommend that future studies of bipartite networks utilise our approach 45 

and methods to estimate the sampling completeness of interactions, to assist with the 46 

quantitative and comparative analysis and interpretation of network properties. 47 

 48 
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Background 71 

The quantitative analysis of ecological networks can be directly affected by the proportion of 72 

all interactions that have been observed. This can be expected to increase with greater 73 

sampling effort in the field and more efficient means of detecting interactions in the lab [1–5], 74 

but will also vary by sampling method, by site or over time. This potentially compromises the 75 

comparability of ecological network analysis both within and between studies. Recent 76 

studies have attempted to address this by quantifying the proportion of interactions present 77 

in a system that have been sampled, using asymptotic species richness estimators [6–8]. 78 

The sampling completeness of species’ interactions may be used to confirm the validity of 79 

network analyses by checking that sampling is sufficiently ‘complete’, often defined, as a rule 80 

of thumb, as the detection of 90% of the interactions present. This has been proposed to 81 

balance adequate representation of the system against the diminishing return on effort when 82 

attempting to attain greater sampling completeness [6,9]. Sampling completeness can also 83 

be used to check for differences in sampling between different treatments in studies of 84 

replicated networks, which could potentially bias network metrics. Here, we review current 85 

methods to estimate sampling completeness and then propose an adaptation which should 86 

lead to improved estimates. 87 

Chacoff et al. [6] were the first to propose estimating the sampling completeness of 88 

interactions in ecological networks. They recorded the occurrence of plant-pollinator 89 

interactions by observing flower visitation in 2048 separate samples of the study system. 90 

From this occurrence dataset they presented three estimates of sampling completeness in a 91 

bipartite mutualistic network: 1) sampling completeness of pollinator species alone (i.e. 92 

excluding interaction information); 2) sampling completeness of interactions for the whole 93 

network, based on the accumulation of plant-pollinator interactions across multiple samples 94 

of flower-visitor observations, and 3) sampling completeness of interactions for each plant 95 

species separately. In this latter case sampling completeness was estimated only for plant 96 

species with a minimum of 10 samples of flower-visitor observations and 10 observed visits 97 
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by pollinating insects. In each method, the total abundance of species or interactions was 98 

estimated, using the Chao2 incidence-based estimator [10]. Sampling completeness was 99 

then calculated as the percentage of total species or interactions that were observed.  100 

Although Chacoff et al.’s [6] whole-network estimate for sampling completeness of 101 

interactions has considerable merit, it is not universally applicable to all studies of bipartite 102 

networks, because the ‘incidence-based estimation’ depends on having multiple samples 103 

recording the detection (or not) of interactions. Importantly, sufficient independent samples 104 

are required to apply this approach (Chacoff et al. had 2048 discrete 5-minute observations 105 

of flower visitation, and 38 plant species observed more than 10 times [6]) and so it is 106 

possible to have too few samples if the taking of each discrete sample is labour-intensive 107 

[e.g. 7], even where overall sampling effort is high. One alternative is to use the Chao1 108 

abundance-based estimator to directly estimate the total number of interactions based on 109 

the relative frequencies of unique interactions [7]; however, this may be inaccurate if the 110 

sample size is small [11], potentially resulting in sampling completeness being overestimated 111 

for the smallest (and therefore, potentially, the least complete) samples. 112 

Traveset et al. [8], in a study of bird-flower visitation networks, had even greater sampling 113 

effort (~500 hours of observations) than Chacoff et al. [6], but their observations were not so 114 

clearly partitioned into discrete samples. Therefore, they instead estimated the sampling 115 

completeness of interactions for the whole network by calculating sampling completeness of 116 

interactions for each species of flower-visiting birds as described above (retaining the 117 

minimum threshold of 10 individuals sampled for a species to be included), and then 118 

averaged across species using the arithmetic mean. Like Chacoff et al. [6], Traveset et al. [8] 119 

used the Chao2 estimator, but their method has the distinct advantage that it can be applied 120 

to networks generated by even a single sampling session (or multiple, aggregated sessions), 121 

treating each individual of a species as a discrete sample of that species’ interactions. 122 

Where the format of the data does not allow this approach, the Chao1 abundance-based 123 

estimator [12] could again be used to estimate the total number of interactions for each 124 
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species based on the relative frequency of each interaction. For both estimators (but 125 

especially Chao1), this may be less accurate for locally-rare species (if the sample size is 126 

small); so this problem justifies the use of the minimum abundance threshold [8]. This 127 

approach is conditional upon the observed species in the focal level (i.e. it cannot consider 128 

the interactions of bird species that were not observed). The true sampling completeness 129 

(including the interactions of unobserved species) will therefore be lower than the estimated 130 

value, but by how much depends on the number of unobserved species and the number of 131 

their interactions, which will vary according to their (unobserved) identity. However, a benefit 132 

of this approach over that of Chacoff et al. [6] is that the species-level sampling 133 

completeness of interactions can be estimated directly from a bipartite network matrix in 134 

which columns contain species-level data for one level of the network, and rows contain 135 

individual-level data for the other level. Ultimately, the rows can be aggregated by species to 136 

construct the typical species-species interaction matrix in the format required for network 137 

analysis with standard software such as the R package bipartite [13]. By contrast, whole-138 

network sampling completeness of interactions following Chacoff et al. [6] can only be 139 

calculated directly from an interaction matrix if an abundance-based estimator, such as 140 

Chao1, is used in place of Chao2.  141 

However, by taking a simple arithmetic mean, the approach used by Traveset et al. [8] 142 

places equal weight on each observed species (not on each unobserved interaction), 143 

thereby placing proportionally more weight on the interactions of species that have few 144 

interactions (a small realised niche, whether because they are rare or because they are 145 

specialists). Here, we propose a modification of this approach that permits a more accurate 146 

estimation of sampling completeness of interactions within a network by taking a weighted 147 

mean, with each species weighted by its estimated interaction richness. Therefore we place 148 

equal weight on each interaction, whether or not it has been observed, rather than on each 149 

species. Our general approach is universally applicable to all studies of quantitative bipartite 150 

networks, through the use of two methods, which are selected depending on the nature of 151 
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the sampling and resultant dataset (however, sampling completeness of interactions cannot 152 

be estimated for single binary bipartite networks using asymptotic species richness 153 

estimators). 154 

In this paper, we (i) introduce and describe our methods (𝑆𝐶𝑊1 and 𝑆𝐶𝑊2), and discuss the 155 

scenarios in which each should be applied; (ii) demonstrate that our approach gives a 156 

mathematically accurate estimate of interaction sampling completeness, if all species of the 157 

focal level are observed; (iii) examine how sampling completeness varies if some species of 158 

the focal level are unobserved; and (iv) discuss some of the issues surrounding the 159 

estimation of interaction sampling completeness. 160 

Methods 161 

Description of our methods for estimating sampling completeness of 162 

interactions 163 

Our approach is a weighted average version of that first used by Traveset et al. [8], but can 164 

be generalised to any quantitative bipartite network (Fig. 1). Interaction richness may be 165 

estimated using either of two methods, which respectively use abundance-based or 166 

incidence-based species richness estimators, depending on the nature of the sampling 167 

method used to detect interactions. Repeated sampling of interactions, either by taking 168 

multiple community-level samples or by sampling at the level of individuals, is not required to 169 

estimate sampling completeness of interactions using 𝑆𝐶𝑊1  (which applies an abundance-170 

based estimator such as Chao1 [12]), but can be used to estimate sampling completeness of 171 

interactions more reliably using 𝑆𝐶𝑊2 (which applies an incidence-based estimator such as 172 

Chao2 [10]). In addition, our approach does not necessitate the use of a threshold for 173 

minimum number of individuals (as Traveset et al. [8] used), but can include all observed 174 

species. As specialist species tend to be rare and vice versa [14], this may reduce the risk of 175 

biasing the estimated interaction sampling completeness by primarily excluding specialists. 176 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 29, 2017. ; https://doi.org/10.1101/195917doi: bioRxiv preprint 

https://paperpile.com/c/6vj34o/NTpp/?noauthor=1
https://paperpile.com/c/6vj34o/kInE
https://paperpile.com/c/6vj34o/u4oM
https://paperpile.com/c/6vj34o/NTpp
https://paperpile.com/c/6vj34o/IjqD
https://doi.org/10.1101/195917
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 

Throughout, we refer for simplicity to the approach used by Traveset et al. [8] as the 177 

unweighted sampling completeness (𝑆𝐶𝑈), our proposed approach as the weighted sampling 178 

completeness (𝑆𝐶𝑊), and the value which both methods attempt to estimate as the true 179 

sampling completeness (𝑆𝐶𝑇). Additionally, we will refer generally to the calculation of 180 

𝑆𝐶𝑊which can be achieved by either of our methods, 𝑆𝐶𝑊1 (using abundance-based 181 

estimation) and 𝑆𝐶𝑊2 (using incidence-based estimation).  182 

Bipartite ecological networks describe the interactions between two discrete levels of 183 

species; we refer to these as the “focal level” (the set of species on which observations were 184 

focussed; e.g. pollinators in pollen-transport analysis) and the “interacting level” (the set of 185 

species detected as a consequence of their interactions with the focal level; e.g. plants in 186 

pollen-transport analysis). 187 

𝑆𝐶𝑊1 uses interaction frequency of observed interactions (the number of individuals of a 188 

given species in the focal level observed to interact with a species in the interacting level) to 189 

estimate the number of unobserved interactions for each species in the focal level, using an 190 

abundance-based estimator such as Chao1 [12]. Interaction frequency has been shown to 191 

be a strong positive indicator of the strength of interspecific interactions [15], and can be 192 

readily generated for different interaction types, using various sampling methods. Therefore, 193 

𝑆𝐶𝑊1 is applicable to any quantitative bipartite network, whether it is constructed from a 194 

single sample in which interactions are quantified or multiple samples that are aggregated to 195 

form a single network.  196 
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 197 

Figure 1. Flow diagram to determine which sampling completeness method to apply, 198 

depending on the nature of the dataset and of the sampling method used to detect 199 

interactions.  200 

The 𝑆𝐶𝑊2 method may also be applied in studies where multiple discrete community-level 201 

samples are taken (e.g. multiple field surveys of a plant-pollinator community). In such cases 202 

𝑆𝐶𝑊2 can be used to estimate the total interaction richness of each species in the focal level 203 

based on incidence of interactions involving that species in each sample. However, if the 204 

number of discrete community-level samples is small but sampling effort for each is high 205 
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(leading to overall sample size being substantial), it may be more appropriate to use 𝑆𝐶𝑊1 206 

on aggregated data from all samples than to use 𝑆𝐶𝑊2. Based on the performance analyses 207 

of Colwell and Coddington [11], we suggest that caution should be exercised if using 𝑆𝐶𝑊2 208 

on fewer than 12 discrete samples.  209 

Thus far we have considered use of the Chao1 and Chao2 estimators, but our approach 210 

could be applied using any species richness estimator. We have written generalized R 211 

functions to allow the estimation of sampling completeness for any suitable network using 212 

𝑆𝐶𝑊1 and 𝑆𝐶𝑊2, and included these (along with a demonstration of their use) in Appendix 213 

S1. The R package vegan [18] permits species richness estimation using a range of 214 

estimators, and we have implemented all of these for use in our functions (Appendix S1). 215 

Specifically, with 𝑆𝐶𝑊1, it is possible to use either bias-corrected Chao1 [12,19] or ACE [19], 216 

whilst with 𝑆𝐶𝑊2, it is possible to use any of the bias-corrected Chao2 [10,19], first-order and 217 

second-order jack-knife [20], or bootstrap [21] estimators. 218 

As it is based on species richness estimators, our approach assumes that the community is 219 

closed [10]. Our approach also assumes that the estimate of interaction richness computed 220 

using a species richness estimator approximates to the true interaction richness of each 221 

species. However, some generalist species may behave as specialists at the individual level 222 

[22]. In small samples, this has the potential to increase the ratio of singletons (interactions 223 

that appear in only one sample) to doubletons (interactions appearing in two samples), 224 

biasing the performance of species richness estimators towards a higher estimate of 225 

interaction richness, and lower sampling completeness. Therefore, the degree to which this 226 

assumption is true will depend on the level of similarity between individual-level and species-227 

level specialisation. Nevertheless, we note that the same assumption is inherent in all 228 

previously-used approaches to estimating interaction sampling completeness, because they 229 

all utilise the Chao family of estimators.  230 
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Mathematical justification of the weighted approach 231 

Estimating sampling completeness, if all species in the focal level are observed 232 

When estimating interaction sampling completeness by calculating the mean interaction 233 

sampling completeness of individual pollinator species, Traveset et al. [8] calculated the 234 

unweighted, arithmetic mean. However, the mathematical accuracy of this approach can be 235 

improved by weighting the mean by the estimated total number of interactions (interaction 236 

richness) of each species in the focal level (i.e. placing equal weight on each interaction, 237 

whether observed or not, rather than placing equal weight on each observed focal species). 238 

At the same level of sampling completeness, the absolute difference between estimated and 239 

observed interaction richness is greater for species which have many interactions 240 

(henceforth, “generalists”) than for those which have few (“specialists”). Therefore, an 241 

arithmetic mean of per-species sampling completeness may place undue weight on 242 

specialists, for which a relatively small number of unobserved interactions (making only a 243 

small contribution to network-level sampling completeness) can still lead to low species-level 244 

sampling completeness. Our approach allows a proportionally greater degree of weight to be 245 

apportioned to generalists than specialists when calculating the mean sampling 246 

completeness of all species. 247 

We will demonstrate mathematically that, if all species in the focal level are observed, our 248 

approach equals the true value of sampling completeness.  249 

Let: 250 

𝐶 = percentage sampling completeness per species 251 

𝑆𝑂= observed interaction richness per species 252 

𝑆𝐸= estimated interaction richness per species  253 

𝑆𝑇= true interaction richness per species 254 
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𝑛  = number of species 255 

𝑚 = the subset of 𝑛 species for which a minimum threshold number of individuals 256 

were sampled, where 𝑚 ≤ 𝑛 257 

Assuming that species richness estimators accurately estimate the true interaction richness 258 

(as stated above), then for a given species: 259 

𝑆𝐸 = 𝑆𝑇 

Percentage sampling completeness for each species is the percentage of the estimated 260 

interaction richness that has been observed: 261 

𝐶 =
𝑆𝑂 × 100

𝑆𝐸
 

This can be arranged to: 262 

𝑆𝐸 × 𝐶 = 𝑆𝑂 × 100 

Likewise, the true sampling completeness of interactions is the percentage of the true 263 

interaction richness that has been observed, across all species: 264 

𝑆𝐶𝑇  =  
𝛴𝑛(𝑆𝑂,𝑛) × 100

𝛴(𝑆𝑇,𝑛)
 

Our proposed approach estimates the sampling completeness of interactions by taking the 265 

mean sampling completeness per species, weighted by the estimated interaction richness: 266 

𝑆𝐶𝑊 =
𝛴𝑛(𝑆𝐸,𝑛 ×  𝐶)

𝛴𝑛(𝑆𝐸,𝑛)
 

Drawing this together, it can be shown that our approach is mathematically equal to the true 267 

interaction sampling completeness when 𝐸 is estimated accurately: 268 

𝑆𝐶𝑇 =  
𝛴𝑛(𝑆𝑂,𝑛) × 100

𝛴𝑛(𝑆𝑇,𝑛)
 =

𝛴𝑛(𝑆𝐸,𝑛 ×  𝐶)

𝛴𝑛(𝑆𝐸,𝑛)
= 𝑆𝐶𝑊 
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For comparison, the previously used partial, unweighted sampling completeness is not equal 269 

to the true sampling completeness, even for the subset of 𝑚 observed species included in 270 

the estimate. 271 

𝑆𝐶𝑈 =
𝛴𝑚(𝐶𝑚)

𝑚
≠

𝛴𝑚(𝑆𝑂,𝑚) × 100

𝛴𝑚(𝑆𝑇,𝑚)
 = 𝑆𝐶𝑇,𝑚 

Therefore, if all species in the focal level are observed, our proposed approach will yield the 272 

true interaction sampling completeness. 273 

Estimating sampling completeness, if some species in the focal level are unobserved 274 

Both the approach of Traveset et al. [8] and our adjusted approach are conditional upon the 275 

observed set of species in the focal level. Although these approaches therefore allow the 276 

relative specialisation of each species to be taken into account, they also introduce the 277 

possibility of inaccuracy if some species in the focal level are unobserved; a scenario that is 278 

likely in the majority of studies of bipartite ecological networks. 279 

In addition to the above, let: 280 

𝑈 = cumulative interaction richness of all unobserved species in the focal level 281 

If all focal species are observed, this is 0, but otherwise it is positive: 282 

𝑈 ≥ 0 

Because there are now unobserved species, with 𝑈 interactions, of which zero are observed: 283 

𝑆𝐶𝑇  =   
𝛴𝑛(𝑆𝑂,𝑛) × 100

𝛴𝑛(𝑆𝑇,𝑛)  +  𝑈
 

Because a fraction with the same numerator and a larger denominator must be smaller, we 284 

can infer that: 285 

𝛴𝑛(𝑆𝑂,𝑛) × 100

𝛴𝑛(𝑆𝑇,𝑛) +  𝑈
 ≤   

𝛴𝑛(𝑆𝑂,𝑛) × 100

𝛴𝑛(𝑆𝑇,𝑛)
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and, from above, 286 

𝛴𝑛(𝑆𝑂,𝑛) × 100

𝛴𝑛(𝑆𝑇,𝑛)
 =

𝛴𝑛(𝑆𝐸,𝑛 ×  𝐶)

𝛴𝑛(𝑆𝐸,𝑛)
  

𝛴𝑛(𝑆𝑂,𝑛) × 100

𝛴𝑛(𝑆𝑇,𝑛)  +  𝑈
 ≤  

𝛴𝑛(𝑆𝐸,𝑛 ×  𝐶)

𝛴𝑛(𝑆𝐸,𝑛)
 ⇒  𝑆𝐶𝑇 ≤ 𝑆𝐶𝑊 

Therefore, if some species in the focal level are unobserved, our approach will always 287 

overestimate the sampling completeness of interactions. This allows us to state that the true 288 

sampling completeness of interactions for the whole network (including unobserved species) 289 

is “up to” the value estimated by our approach. The smaller the value of 𝑈, the closer the 290 

estimate of our approach will be to the true value of sampling completeness of interactions.  291 

Our approach is therefore most accurate if unobserved species have a low number of 292 

interactions and make little contribution to the overall interaction richness of the network (so 293 

that their true weight is close to the weight of zero that they are effectively assigned). 294 

Crucially this assumption is ecologically reasonable, because unobserved species are likely 295 

to be rare, and rare species tend to be functionally specialist (even if their fundamental niche 296 

is generalist) [14]. It is therefore likely that most unobserved species will either be specialists 297 

or appear to be specialists. 298 

Results 299 

To test and demonstrate the use of our approach through the methods 𝑆𝐶𝑊1 and 𝑆𝐶𝑊2, we 300 

used each method to estimate the sampling completeness of interactions for suitable 301 

interaction datasets. To demonstrate that 𝑆𝐶𝑊1 is universally applicable to all quantitative, 302 

bipartite networks, we downloaded all 16 empirical datasets included as examples in the R 303 

package bipartite [13] (Table S1). Each dataset represents a single quantitative plant-304 

pollinator network. We estimated the sampling completeness of each network using 𝑆𝐶𝑊1 305 

with both the Chao1 [12] and ACE [19] estimators (Fig. 2). We found that sampling 306 

completeness estimated using Chao1 ranged widely, from 35.6% (for the ‘kato1990’ [23] 307 
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network) to 100% (for the ‘bezerra2009’ [24] and ‘olesen2002flores’ [25] networks). Besides 308 

these, only one other network met the 90% rule of thumb for sufficiently complete sampling 309 

(‘olesen2002aigrettes’ [25], 98.7% complete using 𝑆𝐶𝑊1 with Chao1). There was strongly 310 

significant positive correlation between the estimates of sampling completeness using 311 

Chao1 and using ACE (Pearson’s r, t = 16.15, d.f. = 14, p < 0.001). 312 

  313 

Figure 2. Estimated sampling completeness of interactions for 16 empirical plant-pollinator 314 

networks included in the R package bipartite [13]. Sampling completeness was estimated 315 

using 𝑆𝐶𝑊1 (abundance-based estimation), using both the Chao1 and ACE estimators. 316 

Citations to datasets shown are given in Table S1. 317 

However, although all 16 networks included in bipartite [13] are quantitative, none include 318 

either individual-level data on the focal level, or data from discrete sampling sessions, so 319 

𝑆𝐶𝑊2 cannot be used. Therefore, to demonstrate the use of 𝑆𝐶𝑊2, we used data from 320 

Macgregor et al. [26,27]. This dataset contains nocturnal plant-pollinator interactions 321 

observed by sampling pollen transport from the proboscides of individual moths 322 

(Lepidoptera), and the individual-level data on the focal level (moths) is retained, making it 323 

suitable for estimation by 𝑆𝐶𝑊2. We estimated the sampling completeness of the network 324 

using 𝑆𝐶𝑊2 with the Chao2 [10,19], first- and second-order jackknife [20], and bootstrap [21] 325 
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estimators and, for comparison, we also estimated sampling completeness of the same 326 

network using 𝑆𝐶𝑊1 and the Chao1 and ACE estimators (Fig. 3). Sampling completeness 327 

was generally estimated to be around 60% when using all of the Chao2 (57.2%), first-order 328 

jackknife (65.7%) and second-order jackknife (54.6%) incidence-based estimators and both 329 

the ACE (59.9%) and Chao1 (66.0%) abundance-based estimators, but was estimated to be 330 

substantially higher (81.5%) when using the bootstrap estimator. 331 

 332 

Figure 3. Estimated sampling completeness of interactions for an empirical plant-pollinator 333 

network [26,27] calculated using 𝑆𝐶𝑊1 (abundance-based) and 𝑆𝐶𝑊2 (incidence-based), 334 

with a range of estimators. Sampling completeness was calculated using the ACE, bootstrap 335 

(“Boot”), Chao1, Chao2, first-order jackknife (“Jack1”) and second-order jackknife (“Jack2”) 336 

species richness estimators; black triangles indicate abundance-based estimators and white 337 

triangles indicate incidence-based estimators.. 338 

Using the same network, we tested the impact of a threshold minimum number of individuals 339 

for a species’ inclusion (as applied by Chacoff et al. [6] and Traveset et al. [8]) on the 340 
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estimation of sampling completeness using 𝑆𝐶𝑊2. We estimated sampling completeness of 341 

interactions for every threshold level between 1 (all observed species retained) and 10 (all 342 

species with fewer than 10 observed individuals excluded), using 𝑆𝐶𝑊2 with the Chao2 343 

estimator (we chose Chao2 for this test because it is the most robust estimator to small 344 

sample sizes [11]). We found that the number of species included in the sampling 345 

completeness estimate decreased from the total of 202 observed species to only 35 when 346 

the 10-individual threshold was applied, and that estimated sampling completeness changed 347 

unpredictably depending on the level at which the threshold was set (Fig. 4). In general, 348 

higher thresholds led to lower estimates of sampling completeness, but an increase in 349 

sampling completeness between thresholds of 7 and 8 individuals demonstrated that the 350 

level at which the threshold is set is arbitrary. Nevertheless, sampling completeness was 351 

estimated to be highest when all species were retained (57.2%) and lowest when all species 352 

with fewer than 10 individuals were excluded (49.8%). 353 

 354 

Figure 4. Estimated sampling completeness of interactions for an empirical plant-pollinator 355 

network varies unpredictably according to the level at which we set the threshold for 356 

minimum number of individuals for a species to be included. Sampling completeness was 357 

estimated at different threshold levels from 1 individual (all species retained) to 10 358 
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individuals (per Traveset et al. [8]). Points are labelled with their threshold level and show 359 

the number of species retained (out of a total of 202 observed species) and the estimated 360 

sampling completeness of interactions. 361 

Discussion 362 

Issues surrounding the estimation of interaction sampling completeness 363 

Threshold for minimum number of individuals 364 

When estimating species-level sampling completeness of interactions, both Chacoff et al. [6] 365 

and Traveset et al. [8] included only species for which at least 10 individuals had been 366 

sampled. The accuracy and precision of species richness estimators decreases for small 367 

samples [28], and so the use of this threshold is intended to ensure that the sampling 368 

completeness of interactions is calculated from only the most accurate estimates of 369 

interaction richness, even at the expense of some biological information. Although we have 370 

implemented the option for such a threshold in the R code that accompanies this paper 371 

(Appendix S1), we nevertheless prefer not to apply such a threshold with our approach 372 

(specifically with 𝑆𝐶𝑊2), for several reasons.  373 

Firstly, such a threshold would not be universally applicable for 𝑆𝐶𝑊1, and might therefore 374 

lead to discrepancies in the estimation of sampling completeness between 𝑆𝐶𝑊1 and 𝑆𝐶𝑊2. 375 

Our further arguments therefore refer specifically to the application of a threshold when 376 

using 𝑆𝐶𝑊2. 377 

Secondly, the number of individuals at which the threshold is set is arbitrary, and the final 378 

estimate of sampling completeness will vary unpredictably depending on the chosen 379 

threshold (Fig. 4). Additionally, exclusion of rare species (i.e. those with few individuals) by 380 

applying a threshold could lead to overestimation of sampling completeness, because these 381 

species would effectively be treated as if unobserved. Because specialist species are more 382 
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likely to be rare [14], they are more likely to be excluded by the application of a threshold; 383 

this could potentially introduce further bias to the estimated sampling completeness.  384 

By the same logic, because rare species (within the study system) are more likely to be 385 

functionally specialist, they are likely to be accorded low weight and therefore any 386 

inaccuracy in the estimation of interaction richness for these species will have little impact on 387 

the final estimated value of sampling completeness, reducing the need for their exclusion. 388 

This may be further assisted by the use of the Chao2 estimator, which is one of the least 389 

biased species richness estimators for small numbers of samples [11], and so may minimise 390 

the potential for such inaccuracy. Additionally, because the Chao2 estimator technically 391 

provides the lower bound for species (or interaction) richness [10], it is more likely to 392 

underestimate richness than overestimate it [e.g. 29]. As a result, any inaccuracy in 393 

estimation for species with few individuals is likely to lead to lower weight being assigned to 394 

those species when calculating the final estimate of sampling completeness. 395 

Therefore, the use (or not) of such a threshold represents a trade-off between the error 396 

introduced by including low-abundance species (for which interaction richness may not be 397 

accurately estimated) and the error introduced by treating such species as if unobserved. 398 

However, because species sampled at low abundance are likely to be relatively specialist 399 

(and therefore assigned low weight, if our approach is used), we believe that their inclusion 400 

in estimation of sampling completeness is relatively safe. Given this, we also believe that it is 401 

more appropriate to include all species, due to the potential to introduce bias to the 402 

estimated sampling completeness of interaction by treating rare species as if they are 403 

unobserved. 404 

Deciding on the focal level - upon what is the sampling completeness conditional? 405 

Our estimate of sampling completeness, like that of Traveset et al. [8], is conditional on one 406 

of the levels of the bipartite network (referred to here as the focal level). In other words, as 407 

justified in the previous sections, the estimate assumes that the focal level has been 408 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 29, 2017. ; https://doi.org/10.1101/195917doi: bioRxiv preprint 

https://paperpile.com/c/6vj34o/IjqD
https://paperpile.com/c/6vj34o/2Iy0
https://paperpile.com/c/6vj34o/u4oM
https://paperpile.com/c/6vj34o/izIZ/?prefix=e.g.
https://paperpile.com/c/6vj34o/NTpp/?noauthor=1
https://doi.org/10.1101/195917
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 

completely sampled. Our estimate is of the maximum sampling completeness, and the true 409 

value (i.e. including unobserved focal species) is less than or equal to this estimate. If the 410 

number of interactions with unobserved species in the focal level is small, then the estimate 411 

of sampling completeness is not much less than the true value. 412 

The definition of the focal level is that it is directly constrained by the sampling, whereas the 413 

interacting level is directly constrained by the focal level. Often the focal level is obvious: for 414 

example, birds producing seed-filled droppings or insect pollinators transporting pollen 415 

grains. In these cases it is clear that the individual animal is directly sampled, and the 416 

identity of seeds in droppings or pollen on insects depends upon the preceding behaviour of 417 

the individual. Focal observations of flowers are similar, with the plant being the focal level. 418 

Other situations are less obvious, most notably plant-pollinator transects where individual 419 

insects are sampled whilst visiting flowers. In this example we suggest that the plants should 420 

be viewed as the focal level because, in theory, the sampling is constrained by the plants 421 

that are present, whereas the insect pollinators are mobile and their presence is dependent 422 

on the flowers present in the transect. 423 

Choosing between 𝑆𝐶𝑊1 and 𝑆𝐶𝑊2 424 

We have discussed the situations in which 𝑆𝐶𝑊1 and 𝑆𝐶𝑊2 can be applied in the 425 

descriptions of each method, but here we will synthesize the process of deciding between 426 

the two (Fig. 1). Although 𝑆𝐶𝑊1 can be applied to any quantitative bipartite network, we 427 

recommend using 𝑆𝐶𝑊2 where appropriate, due to the greater robustness of the Chao2 428 

estimator to the effects of small sample sizes [11]. The first consideration should be whether 429 

it is possible to independently sample the interactions of each individual in the focal level, 430 

and if so, whether it is possible to sample multiple interactions from a single individual. If the 431 

answer to both questions is yes (e.g. sampling seeds from the droppings of birds, where 432 

each dropping can be linked to the individual bird from which it was sampled, and multiple 433 

seeds can be detected in each dropping), then 𝑆𝐶𝑊2 can be used. However, if it is only 434 
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possible to sample a single interaction per individual (e.g. sampling host-parasitoid 435 

interactions by rearing, where it is only possible for a single parasitoid to emerge from each 436 

host), it may be more appropriate to aggregate the data at species-level, as the level of 437 

generalisation will differ at individual- and species-level: all individuals will appear to be 438 

extreme specialists even if the species is generalist. 439 

If, however, the network data does not allow the assessment of individuals in the focal level - 440 

either because the sampling methods do not permit the collection of such data (e.g. flower-441 

visitor transects where the species of plants in the focal level are collected, but not the 442 

identity of each individual plant) or because such data have been aggregated at species-443 

level, then it may still be possible to apply 𝑆𝐶𝑊2 by examining incidence across multiple 444 

samples of the network, depending on the number of discrete samples that have been taken. 445 

Overall sample size may be large even if the number of discrete samples is small, 446 

depending on the effort invested in obtaining each discrete sample. Performance analyses 447 

by Colwell & Coddington [11] suggest that the Chao2 estimator accurately estimates the true 448 

number of entities when the number of samples is 12 or more. Therefore, for fewer than 12 449 

samples we recommend using 𝑆𝐶𝑊1on pooled data in order to maximise the effective 450 

sample size. 451 

Assessing the influence of unobserved species in the focal level 452 

As we have previously discussed, the interactions of unobserved species belonging to the 453 

focal level will have an unknown influence upon the true value of sampling completeness. It 454 

is possible to assess the likely influence of unobserved focal species, in the cases where 455 

species of the focal level are sampled in proportion to their abundance (either as part of the 456 

sampling of interactions, or in addition to it). Asymptotic species richness estimators can be 457 

used to estimate the number of unobserved species in the focal level. If the number of 458 

unobserved species in the focal level is small, then these are likely to have little impact on 459 

sampling completeness, therefore that the estimate of 𝑆𝐶𝑊 will not be very different from 460 
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𝑆𝐶𝑇. This is especially the case if the unobserved species are functionally relatively 461 

specialist, which is to be expected if their abundance is low. 462 

Considering uncertainty of the estimate 463 

Throughout we have considered the point estimate of sampling completeness and have not 464 

included its uncertainty. The question of how accurately community-level sampling 465 

completeness can be estimated is nonetheless important. Given that species richness 466 

estimators often have high uncertainty, the uncertainty of sampling completeness is likely to 467 

be considerable. This variation is further increased by the possibility of choosing any of 468 

several species richness estimators, which may differ in their estimated interaction richness 469 

for each species (Fig. 3). Here we briefly discuss several methods that would typically be 470 

used to estimate uncertainty around a point estimate and why they are not suitable for 471 

sampling completeness. 472 

Species richness estimators, including both Chao1 and Chao2, provide a point estimate of 473 

the number of unobserved entities (when calculating sampling completeness, these entities 474 

are interactions), the variance of which is normally distributed around the log-transformed 475 

estimate. This is added to the number of observed entities to give the estimated true number 476 

of entities, so 𝑆𝐸 = 𝑆𝑂 + 𝑆𝑈, where 𝑙𝑜𝑔(𝑆𝑈)  ∼  𝑁(𝜇, 𝜎). This in turn forms the denominator in 477 

the per-species sampling completeness (𝑆𝐶𝑊 =  𝑆𝑂/𝑆𝐸). Mathematical operations can be 478 

undertaken on the variance of distributions, but as the variance on the log-scale forms part 479 

of the sum of the denominator, it is effectively intractable to carry through mathematically.  480 

An alternative approach is to use randomisation and we considered two ways to do this. 481 

Firstly, we considered Monte Carlo resampling of the variance of the estimates. Sampling 482 

from 𝑙𝑜𝑔(𝑆𝑈)  ∼  𝑁(𝜇, 𝜎) creates a distribution, but the inverse logarithm results in a highly 483 

skewed distribution of 𝑆𝑈,𝑟𝑎𝑛𝑑 and hence exceedingly large values of 𝑆𝐸,𝑟𝑎𝑛𝑑 =  𝑆𝑂 + 𝑆𝑈,𝑟𝑎𝑛𝑑 . 484 

High values of 𝑆𝐸,𝑟𝑎𝑛𝑑 have a dual effect: (i) sampling completeness will be low because in 485 

𝑆𝑂/𝑆𝐸,𝑟𝑎𝑛𝑑, 𝑆𝑂 is fixed, and (ii) high weight will be given to species with high values of 𝑆𝐸,𝑟𝑎𝑛𝑑 486 
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when calculating a weighted average across species. A system that gives disproportionately 487 

high weight to species with disproportionately low sampling completeness will produce an 488 

overall sampling completeness is lower than expected. So, although variance of randomised 489 

sampling completeness can be calculated, its mean will be biased low. 490 

Secondly, we could resample the raw data and there are two ways of doing this: 491 

bootstrapping and creating null models. Bootstrapping involves resampling interactions with 492 

replacement and is a widely used method to obtain estimates of variance of metrics. So, 493 

interactions could be sampled (with replacement) from the observed set of interactions to 494 

create a new, random matrix of interactions to give 𝑆𝑂,𝑟𝑎𝑛𝑑 for each species. An equivalent 495 

way of achieving the same would be to randomly choose interactions, up to a certain sample 496 

size, according to their relative proportions in the raw data. As before, we can calculate 𝑆𝐸 497 

using the appropriate estimator, and hence 𝑆𝐶𝑊, and could repeat this many times to 498 

calculate variance. However, 𝑆𝑂,𝑟𝑎𝑛𝑑 is constrained: 𝑆𝑂,𝑟𝑎𝑛𝑑 for a species could be less than 499 

observed in the raw data, but it could never be more (just as when randomly choosing, with 500 

replacement, beads from a bag of black and white beads, a sample could comprise one or 501 

two colours of beads, but never three). Bootstrapping should have no bias on 𝑆𝐸, because it 502 

is an estimate based on a sample (whether the raw data or the random sample from the raw 503 

data), although it might affect its precision. However, if 𝑆𝑂,𝑟𝑎𝑛𝑑 is biased low, then 𝑆𝐶𝑊  =504 

 𝑆𝑂,𝑟𝑎𝑛𝑑/𝑆𝐸 will also be biased low.  505 

The second way of resampling the raw data is to create a null network based on 506 

redistributing interactions within the network according to particular constraints (e.g. 507 

constraining the row and column sums, and/or the network connectance, using functions 508 

such as swap.web or vaznull from the R package bipartite [13]). The resulting network will be 509 

a result of the null models and even for highly conservative models, they assume that 510 

species associate randomly. They therefore tend to increase the degree to which species in 511 

the network appear to be generalists [30,31], and reduce the occurrence of singletons in the 512 

network relatively more than they reduce the occurrence of doubletons. As singletons form 513 
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the numerator in the majority of species-richness estimators [32], this leads to systematically 514 

smaller estimates of true interaction richness, and because the number of observed 515 

interactions is fixed sampling completeness is biased high. 516 

Overall, estimates of the precision of sampling completeness would assist with its proper 517 

interpretation, but currently these are not currently obtainable in an unbiased way. This 518 

would be a valuable direction for future investigation. 519 

Realised vs fundamental niche 520 

Our approach estimates the sampling completeness of the realised niches of each species 521 

in the network, rather than their fundamental niches. This distinction is most simply 522 

explained in the context of rare generalist species, which might have the ecological potential 523 

to interact with a wide range of species in the network (and throughout their global range 524 

may indeed do so), but in practice only interact with a subset of those species in the system 525 

under study, because each individual interacts independently with a subset of its 526 

fundamental niche, and there are few individuals. Estimating the sampling completeness of 527 

the realised niche is appropriate, because a potential interaction that is not realised, by 528 

definition, cannot be sampled. Failure to sample such an interaction therefore does not 529 

indicate incomplete sampling. Nevertheless, it could be of interest in some studies to 530 

estimate the proportion of potential interactions that are realised. In such cases, an approach 531 

based on forbidden links (interactions that never occur, and which are therefore outside a 532 

species’ fundamental niche) may be more appropriate [see 33,34]. 533 

Developing sampling techniques 534 

Although 𝑆𝐶𝑊1 could be applied to any quantitative bipartite network, 𝑆𝐶𝑊2 requires either 535 

individual-level data on the focal level, or networks constructed from many repeated 536 

sampling events for each focal-level species. However, most previous empirical studies of 537 

ecological networks have focussed on small numbers of networks that aggregate data from 538 
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multiple sampling sessions [e.g. 35]. Many common methods for sampling interactions do 539 

not permit generation of suitable individual-level data. For example, flower-visitor 540 

observation transects [e.g. 36] generally do not collect individual-level data about the focal 541 

level (plants), whilst although host-parasitoid rearing collects individual-level data, it cannot 542 

detect more than one interaction per individual, even if multiple interactions exist [37]. 543 

Recent developments in DNA-based approaches to detecting and identifying interspecific 544 

interactions (such as DNA metabarcoding) offer considerable potential to increase the scale 545 

and resolution of data collection in ecological network analysis [38]. Where this is based on 546 

obtaining multiple interactions per sample, e.g. pollen on insects or faecal remains, data 547 

collected by such approaches are likely to be well-suited to estimation of interaction 548 

sampling completeness using 𝑆𝐶𝑊2, because DNA extraction methods tend to focus on 549 

individuals of the focal level. DNA metabarcoding may also facilitate the detection of multiple 550 

interactions per individual for interaction types where current sampling methods do not 551 

permit this, such as host-parasitoid interactions [37,39]. 552 

Conclusions 553 

Estimating sampling completeness is important because of its influence on descriptive 554 

network metrics. Our proposed approach for estimating the sampling completeness of 555 

interactions in quantitative bipartite networks is to calculate the weighted mean of the 556 

sampling completeness calculated for all observed species in the focal level. This builds 557 

upon the approach used by Traveset et al. [8], increasing its mathematical accuracy by 558 

reducing the influence of species with few interactions, and carries several advantages over 559 

the previously-used approaches. We show the difference between incidence-based and 560 

abundance-based methods and discuss when each method is appropriate. We show that 561 

further research is necessary to obtain measures of precision for estimates of sampling 562 

completeness, and that this would be valuable to the interpretation of sampling 563 

completeness estimates.  564 
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We recommend that future studies of bipartite networks estimate the sampling completeness 565 

of interactions by taking a mean of the estimated interaction sampling completeness of all 566 

focal species, weighted by the estimated interaction richness per species, and use this 567 

estimate to help interpret differences when undertaking comparative analyses of networks. 568 
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Table S1 604 

List of citations to example datasets included in the R package bipartite and analysed in the 605 

production of Fig. 2. 606 
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