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Abstract9

Early warning signals of sudden regime shifts are a widely studied phe-
nomenon for their ability to quantify a system’s proximity to a tipping point
to a new and contrasting dynamical regime. However, this effect has been
little studied in the context of the complex interactions between disease dy-
namics and vaccinating behaviour. Our objective was to determine whether
critical slowing down (CSD) occurs in a multiplex network that captures
opinion propagation on one network layer and disease spread on a second
network layer. We parameterized a network simulation model to represent
a hypothetical self-limiting, acute, vaccine-preventable infection with short-
lived natural immunity. We tested five different network types: random,
lattice, small-world, scale-free, and an empirically derived network. For the
first four network types, the model exhibits a regime shift as perceived vaccine
risk moves beyond a tipping point from full vaccine acceptance and disease
elimination to full vaccine refusal and disease endemicity. This regime shift is
preceded by an increase in the spatial correlation in non-vaccinator opinions
beginning well before the bifurcation point, indicating CSD. The early warn-
ing signals occur across a wide range of parameter values. However, the more
gradual transition exhibited in the empirically-derived network underscores
the need for further research before it can be determined whether trends
in spatial correlation in real-world social networks represent critical slowing
down. The potential upside of having this monitoring ability suggests that
this is a worthwhile area for further research.
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1. Introduction12

Vaccine-preventable infectious diseases continue to impose significant bur-13

dens on populations around the world [1]. Access to vaccines remains a sig-14

nificant barrier to providing more widespread protection against infectious15

diseases. However, a growing obstacle to infection control is vaccine refusal,16

which can have a large effect on disease prevalence. For instance, the drop17

in vaccine coverage after Andrew Wakefield’s fraudulent 1998 paper about18

the mumps-measles-rubella vaccine reduced MMR coverage to as low as 6119

% in some areas of the United Kingdom [2].Lower vaccine coverage caused20

larger measles outbreaks in the years following the publication of the Wake-21

field paper [3][4]. Elimination of polio in Africa was similarly interrupted22

when a rumor that the vaccine could cause infertility or HIV infection began23

spreading in 2003, when leaders of three states in north-central Nigeria boy-24

cotted the vaccine until it could be tested independently. The impasse was25

not resolved until the following year, a time period during which these states26

accounted for over 50% of polio cases worldwide [5, 6]. Vaccine refusal and27

hesitancy are also common for influenza vaccine, with non-vaccinators citing28

concern for side effects, lack of perception of infection risk, and doubts about29

vaccine efficacy as reasons to not become vaccinated [7].30

Simple differential equation models such as the Kermack-McKendrick SIR31

(susceptible-infected-recovered) model published in 1927 (originally formu-32

lated as an integro-differential equation) [8], allow us to characterize useful33

measures such as the expected number of new infections caused by each in-34

fection, and are readily fitted to epidemiological data. Classical infection35

transmission models such as the Kermack-McKendrick model assume that36

members of the population mix homogeneously. However, in many situa-37

tions, infection transmission through a network–where individuals are nodes38

and contacts through which infection may pass are edges–are a more accu-39

rate description of infection dynamics [9]. Networks tend to be analytically40

intractable and therefore agent-based models are often used to simulate net-41

works. Agent-based simulations on networks allow us to specify complex in-42

dividual node behavior in a natural way. One of the most ambitious examples43

of these is the Global-Scale Agent Model, which models the daily behavior44

and relationships of 6.5 billion people using worldwide GIS data[10]. How-45

ever, agent-based network simulations have also been studied in the context46
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of nonlinear interactions between disease dynamics and individual behaviour47

concerning vaccines and contact avoidance [11, 12, 13, 14, 15].48

The trajectory that an infection takes as it moves through a population is49

heavily influenced by the spread of health information between individuals, so50

more sophisticated models of disease spread often combine disease dynam-51

ics and social dynamics. The coupled interactions between individual be-52

haviour and disease dynamics have been modelled under various frameworks53

and placed under various rubrics including: epidemic games [16], coupled54

behaviour-disease models [12, 17, 18], socio-epidemiology, economic epidemi-55

ology and behavioural modeling [19]. . A more recent trend in epidemio-56

logical modeling is to abstract these two subsystems into (1) an information57

transfer network through which information flows between individuals, and58

(2) a separate physical disease transmission network. A system where each59

node is part of two or more different networks is called a multiplex net-60

work, and is a natural way to implement a coupled disease-behaviour system61

[20, 18]. For instance, the simultaneous spread of disease and disease aware-62

ness over adaptive multiplex networks with scale-free degree distributions63

has been studied [21]. Similarly, a three layer network to model the diffusion64

of infection, awareness, and preventative measures along different contact65

networks was found to reasonably approximate empirical influenza data[22].66

Similar approaches consider coupled human and ecological dynamics, which67

present the opposite problem of species that humans wish to preserve instead68

of eradicate [23, 24, 25, 26].69

The nonlinear coupling between disease and social processes creates feed-70

back loops between infection prevention mechanisms and disease spread.71

Nonlinear feedback in other complex systems such as from solid state physics72

and theoretical socio-ecology has often been shown to yield critical transitions73

[27, 28, 26]. A critical transition is defined as an abrupt shift from an exist-74

ing dynamical regime to a strongly contrasting (and sometimes unfavourable)75

dynamical regime as some external parameter is pushed past a bifurcation76

point [29, 30]. Fortunately, critical transitions (and other regime shifts as-77

sociated with a bifurcation where the dominant eigenvalue of the Jacobian78

matrix around the equilibrium approaches zero) often exhibit characteris-79

tic early warning signals beforehand that allow these shifts to be predicted80

[31, 32, 30]. Critical slowing-down (CSD) based indicators were one of the81

first early warning signals to be studied. CSD occurs because the speed with82

which a system responds to perturbations slows as it approaches bifurcations83

where the magnitude of the dominant eigenvalue of the Jacobian approaches84
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zero at the bifurcation point. Since nearly all systems in the real world are85

subject to perturbations, the lag-1 autocorrelation of a time series can be86

used as a relatively universal (or at least potentially common) indicator of87

CSD. Lag-1 autocorrelation appears to be a robust statistic and has been88

shown to be present in predicting catastrophic bifurcations in complex real89

world systems such as the global climate[33], human nervous systems[34],90

and stock markets[35].91

The discrete fourier transform (DFT) of a network is another example92

of a CSD-based early warning signal. Under some assumptions, the Weiner-93

Kinchin Theorem shows that we can use the discrete Fourier transform (DFT)94

to measure spatial correlation in system state, and this has been shown to95

work in some ecological applications [36] [37]. Lag-1 spatial correlation can in96

some cases provide a better early warning signal than time-domain methods,97

because ”a spatial pattern contains much more information than does a single98

point in a time series, in principle allowing shorter lead times” before the99

critical transition occurs [38, 31]. This observation has been corroborated in100

three ecological dynamical systems[31].101

Early warning signals of regime shifts in coupled behaviour-disease net-102

works have received relatively little attention in the literature on modelling103

interactions between disease dynamics and human behaviour. This appears104

to be a significant knowledge gap because early warning signals for vaccine105

scares could help public health anticipate widespread vaccine refusal and106

prepare for outbreak response in advance, as well as build efforts to improve107

trust between the public and the health authorities. In this paper we use an108

agent-based model on a two-layer multiplex network to simulate the coupled109

disease dynamics of a vaccine-preventable infection and social dynamics of110

vaccination in a population. We show that spatial correlation can be used as111

an early warning signal for regime shifts in this system on most (but not all)112

network topologies. In the next section we discuss the model structure and113

methods of analysis, followed by a section on results and finally a discussion114

section.115

2. Methods116

2.1. Simulation117

Our agent-based model simulated a population of 10,000 individuals (nodes),118

where every node belongs to two different connectivity networks: a transmis-119

sion network and a social network. In the transmission network, each node120
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is connected to other nodes from which they can contract infection. Two121

nodes are linked in the social network if they can be influenced by one an-122

other’s opinions on vaccination. These networks were simulated as fixed123

graphs upon which stochastic processes occurred, with a variety of degree124

distributions and average path lengths.125

We modelled a hypothetical acute, self-limiting infection with rapidly126

waning natural immunity Each node on the physical layer is in one of four127

possible states: susceptible (S), infected (I), recovered (R), or vaccinated128

(V ). Each node on the social layer also has an opinion on the vaccine: they129

are either a non-vaccinator (η), or a vaccinator(ν). We will denote the the130

biological state of a node v by B(v), and the opinion of a node v by Θ(v).131

The transmission network is a graph denoted by T (V,ET ), and the social132

network is a graph denoted by O(V,EO). We assume that they share the133

same set of vertices V although this assumption could be relaxed in future134

work. The set of nodes in the neighbourhood of v is adjT (v) or adjO(v) for135

the transmission and the social network respectively.136

The algorithm used to simulate the social and transmission processes used137

discrete timesteps. At each time step, for each v ∈ V :138

• If B(v) = I, then for all u ∈ adjT (v) such that B(u) = S and Θ(u) 6= ν,139

set B(u) = I with probablility p (infection event)140

• If B(v) = I, let B(v) = R with probability r (natural recovery event)141

• If B(v) = R, set B(v) = S with probability γ (loss of immunity event)142

• If B(v) = S, set B(v) = I with probability σ � 1 (case importation143

event)144

• Choose some node u ∈ adjO(v) uniformly at random. If Θ(v) 6= Θ(u),145

then P (η → ν) = Φ(EV − EN), and P (ν → η) = 1 − Φ(EV − EN)146

where147

EV = −cv + cn, (1)
148

EN = −cIJ(v), (2)

where Φ is a sigmoid function such that Φ(∞) = 1, Φ(−∞) = 0,149

Φ(0) = 0.5 as described in previous models (opinion change event)150

[39]. In our implementation, Φ(x) = 1
1+e−βx

, cv is the perceived cost of151
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vaccination (due to infection risks), cI is the perceived cost of infection152

(due to infection risks), β controls the steepness of the sigmoid function,153

and J(v) = |{u ∈ adjT (v) : B(u) = I}| is the number of infected nodes154

adjacent to v in the transmission network. cn represents some outside155

incentive that a person might have for vaccinating, such as peer ap-156

proval, school admission requirements, or tax incentives. Normalizing157

both payoff equations by cI yields158

EV = −c+ ξ (3)
159

EN = −J(v) (4)

where c is the ratio of perceived vaccine risk to perceived disease risk,160

and ξ = cn
cI

is the ratio of the vaccination incentive to the perceived161

disease risk. Since changes in perceived vaccine risk are controlled162

through changes in c, we will vary c in our analysis. We assume the163

vaccine is perfectly efficacious.164

• With probability ε, v changes opinions (random opinion change event).165

That is, if Θ(v) = ν, set Θ(v) = η and vice-versa.166

• If the opinion of a node changes to vaccinator, then their physical state167

changes to immunized immediately. If they change back to a non-168

vaccinator, they become susceptible immediately.169

We applied synchronized updating to the network: the change in state re-170

sulting from each rule is stored and applied after every rule is checked, so171

the order of the above steps does not matter.172

The result of these rules is a feedback loop where, depending on the rel-173

ative costs of vaccination and infection, the population tends not to exhibit174

a mixture of strategies except near the critical values of c. When c < ξ, the175

payoff to vaccinate EV is positive and thus exceeds the payoff not to vacci-176

nate EN which always obeys EN ≤ 0. In this case, in the limit as β →∞, all177

nodes are therefore vaccinators and the infection dies out. However, when178

c > ξ and thus EV < 0, the disease-free equilibrium destabilizes since EN ≈ 0179

in the absence of sustained transmission. In general, since the vast major-180

ity of nodes do not have infected neighbours at the disease-free equilibrium,181

there is a rapid shift in the population to non-vaccinator opinions as well182

as epidemic outbreaks. For larger values of β, the function controlling the183

opinion-switching as a function of the payoff difference between vaccinator184
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and non-vaccinator strategies is steeper, and the population transition from185

non-vaccinator to vaccinator strategies is therefore sharper, yielding a crit-186

ical transition. However, we will use the more general term ‘regime shift’187

throughout this paper, since the transition can be made more or less abrupt188

by changing the value of β.189

2.2. Early Warning Signal Analysis190

As the system approaches a regime shift, the dominant eigenvalue of191

the underlying dynamical system will approach zero. Therefore, it will take192

longer for the system to recover from perturbations to the steady state. In193

a spatially extended population, this will increase population heterogeneity194

as small clusters of non-vaccinators begin to emerge, as well as causing long-195

range correlations to develop across the network in a detectable way [31].196

This development is reflected by an increase in a statistic called the lag-1197

spatial correlation (lag-1 SC). We used Moran’s I to measure the lag-1 SC198

of non-vaccinators as described in [40]. Moran’s I is widely used to calculate199

the spatial correlation for early warning signals [41, 42, 43].200

Let G = (V,E) be a graph with n nodes, adj(v) be the set of vertices201

adjacent to v, and f(v) be a binary function such that f(v) = 1 if v is a202

vaccinator, and f(v) = 0 otherwise. We define Moran’s I at lag-1, called M203

to prevent confusion with the Infected state, as:204

M =

∑n
v∈V Iv

|E|
(5)

Mv =
n(f(v)− x̄)

∑
w∈adj(v)(f(w)− x̄)∑n

w∈V (f(w)− x̄)2
(6)

where x̄ = 1
n

∑n
v∈V f(v) is the fraction of vaccinators in the network. Far205

from the regime shift, we have that x ≈ 1 and f ≈ 1 for all nodes, thus206

I ≈ 0. However, as resilience to perturbations declines close to the regime207

shift, the population become more heterogeneous. This causes f − x ≈ −1208

in correlated non-vaccinator clusters, thus I increases.209

For each realization, the simulation was run long enough for the spatial210

correlation to stabilize (3500 timesteps), and the equilibrium value was cal-211

culated as the average of the next 500 measurements. The equilibrium lag-1212

SC was obtained for 100 realizations of the simulation, and these values were213

averaged to obtain a data point for every value of c. The social network214

and the transmission network are always both the same type of network, but215

independently generated.216
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Parameter Value Definition
p 0.5 Probability that an infected node infects a given

susceptible neighbour
r 0.07143 Probability that an infected node recovers
γ 0.001369 Probability that a recovered node becomes suscep-

tible
ε 0.001369 Probability that a node randomly switches their

opinion on vaccination
σ 0.016666 Probability of disease reintroduction
ξ 0 Parameter governing incentive to become vacci-

nated
c 0.1 Ratio of perceived risk of vaccine to perceived risk

of disease
β 1 Rarameter controlling the steepness of Φ

Table 1: Parameter definitions and baseline parameter values in probability per timestep
(unless otherwise stated). One timestep was interpreted to correspond to one day.

2.3. Parameter Values217

Baseline parameter values appear in Table 1. The parameter values were218

chosen to qualitatively represent a hypothetical acute-self limiting infection219

with waning natural immunity, such as the case of meningococcal infection,220

influenza or pertussis [44, 45, 46, 47]. The value for r corresponds to a mean221

duration of infection of 14 days, the value for γ corresponds to losing nat-222

ural immunity after two years, and the value for σ corresponds to a case223

importation event in the network once every two months. We conduct uni-224

variate sensitivity analysis with respect to r and σ, since they are important225

parameters governing the natural history of the infection. For the baseline226

parameter values, ξ is set to zero without loss of generality. The value of227

c will be varied in the analysis of early warning signals. ε > 0 is required228

to prevent the population from fixating on one of the two strategies. To229

initialize each stochastic realization, one randomly chosen node is infected,230

and each node is a vaccinator with probability 0.5.231

2.4. Networks232

We ran our model on five different networks: Erdos-Renyi [48], Barabasi-233

Albert [49], square lattice (or grid), Kleinberg small world[50], and ten sub-234

sets of a network constructed by the Network Dynamics and Simulation and235
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Science Laboratory (NDSSL), based on GIS data from the city of Portland236

[51].237

An Erdos-Renyi network is simply given a set of nodes V and v, w ∈ V ,238

v is connected to w with some probability p. In our Erdos-Renyi network239

model, we used a connection probability of 0.001, so each node has degree240

10 on average.241

The Barabasi-Albert model yields networks with a scale-free (or power-242

law) node degree distribution. Starting with a small initial connected network243

(V,E), new nodes are added to V one at a time. Where the probability that244

the new node is connected to an existing node v ∈ V is pv = deg(v)∑
w∈V deg(w)

. To245

ensure that the network is always connected, new nodes are also connected246

to m existing vertices, chosen uniformly at random. The Barabasi-Albert247

networks we used had m = 1.248

Our lattice with n = 10, 000 nodes was built as follows: if the nodes249

are arranged on the integer points of a square
√
n units wide, each node is250

connected to the nodes within a unit distance up or down (but not both).251

Because lattice networks are not random, there is no difference between the252

social and transmission networks and therefore this is effectively not a mul-253

tiplex network.254

The Kleinberg small world network is defined as a square lattice, where255

additional edges are added between some nodes v and w with a probability256

proportional to 1/d(v, w). The result of this process is a network with a very257

short average path length. In our implementation, nodes only gain extra258

edges with 0.1 probability.259

The empirically-derived networks from the NDSSL dataset are designed to260

have some of the properties of a real contact network, being derived from the261

population of Portland, Oregon. We used a set of ten subnetworks sampled262

from the NDSSL dataset and constructed in such a way to share the same263

properties as the original dataset (see Ref. [39] and supplementary appendix264

for details). The subnetworks had an average path length of 4.020 ± 0.126,265

and an average clustering coefficient of 0.747 ± 0.006. For each run, two266

networks were chosen from the 10 networks uniformly at random and one267

was set as the social network, with the other as the transmission network.268
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3. Results269

3.1. Model dynamics270

We generated time series of the percentage of vaccinators and percent-271

age of infected persons for each of the networks, in order to illustrate the272

basic dynamics exhibited by the model. We used baseline parameter values273

everywhere (Table 1) except that c = 0.3. For all networks we initialized274

the population to have a low initial number of vaccinators and a large initial275

number of susceptible persons. These initial conditions caused the incidence276

of infection to skyrocket at the beginning of the simulation for all network277

types (Figure 1). Immediately after this initial outbreak, susceptible neigh-278

bours of infected persons get vaccinated, thereby reducing prevalence.279

After this initial spike, the dynamics settle down into pseudo-stable pat-280

terns that vary widely depending on network type. More frequent outbreaks281

appear to occur on networks with higher degree, which is consistent with intu-282

ition (Figure 1). The random network exhibits relatively regular outbreaks283

(Figure 1a), while the square lattice, Barabasi-Albert network, and small284

world network exhibit more irregular dynamics consisting of large outbreaks285

interspersed with periods of very low vaccine coverage and infection preva-286

lence (Figure 1b-d). However, during certain phases in the time series, the287

small-world network appears to transition to a regime of sustained endemic288

infection similar to that observed for the random network (Figure 1d). The289

empirically-derived network exhibits small stochastic fluctuations around an290

equilibrium, and the percentage of vaccinators is significantly higher in the291

empirically-derived network than in the other four networks (Figure 1e).292

3.2. Regime shifts293

We carried out this simulation experiment for a range of values of c to294

understand how dynamics respond to changes in the perceived vaccine risk295

c. We computed the long-term average prevalence of infected persons and296

vaccinators for each value of c tested. As c approaches zero from below (for297

ξ = 0), a transition from a regime of high vaccine coverage and low infection298

prevalence to a regime of low vaccine coverage and endemic infection should299

be observed, since for c > 0, the payoff to vaccinate becomes less than the300

payoff not to vaccinate.301

In the simulations we observe a transition in the percentage of non-302

vaccinators as a function of the perceived vaccine risk c in most of the network303

types (Figure 2). As c approaches zero, the prevalence of vaccinators declines304
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Figure 1: Time series for a typical simulation on each network type: a) random network, b)
square lattice, c) Barabasi-Albert network, d) Small world network, e) empirically-derived
networks. Red line is percentage of infected individuals in the population; blue line is
percentage of vaccinators in the population. Parameter values are as in Table 1 except
c = 0.3.
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dramatically in the first four networks. The transition appears gradual (non-305

critical) in the empirically-derived network (Figure 2e). We speculate this306

is due to the greater heterogeneity exhibited by the empirically-derived net-307

work than the other four idealized network types. The percentage of infected308

persons in each network shows similar transitions, even in the latter network309

(Figure 2e). We also note that the transition is sharper when the sigmoid310

function used in decision-making is steeper (higher β; results not shown).311

3.3. Early warning signals312

Indicators such as spatial correlation can signal an impending critical313

transition in spatially structured ecological systems [31]. Although theo-314

retical results are not available for coupled behaviour-disease dynamics on315

multiplex networks, the universality of dynamics near local bifurcations of316

dynamical systems [32] suggests that similar early warning signals should be317

observed in our system.318

In spatially extended critical phenomena, the plot of spatial correlation319

versus a bifurcation parameter such as c is linear on a log-linear plot [52].320

Hence, we computed the average lag-1 spatial correlation (SC) across the321

entire time series. We repeated this for many values of c and plotted lag-1322

AC versus c on a log-linear scale. As noted previously, we expect near the323

threshold c = 0 where the costs and benefits of the vaccine become balanced,324

that critical slowing down should emerge in the network, and that this should325

manifest as increased spatial correlation. As we increase c from negative to326

positive, small clusters of non-vaccinators begin to appear. Each day every327

node samples a random neighbour, and the only other way for that node to328

switch opinions is if the randomly sampled neighbour has a different opinion329

that they do (see Methods). As a result, we expect to see clusters of non-330

vaccinators emerge, which causes the lag-1 SC to increase before the critical331

transition (and after which almost everyone because a non-vaccinator) (figure332

3).333

This pattern is observed in simulations for all network types. As the334

regime shift at c = 0 is approached from negative values of c (corresponding335

to a rise in perceived vaccine risks), we observe a clear and linear increase336

in the time-averaged lag-1 SC, in plots of the natural logarithm of lag-1 SC337

versus c (Figure 4). This is robust to values of the disease transmission338

probability, p (Figure 4).339

However, there is a notable difference in y-axis scales for the random and340

small-world networks (Figure 4a,d). Overall these networks show a smaller341
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Figure 2: The time-averaged percentage of infected persons and vaccinators as a function of
relative vaccine cost c, showing a critical transition near c = 0 on the a) random network,
b) square lattice, c) Barabasi-Albert network, d) Small world network, and a more gradual
transition on the e) empirically-derived networks. All parameters are as in Table 1 except
for c, which is being varied. The blue line represents the percentage of vaccinators, and
the red line percentage of infected. Error bars represent the standard deviation over the
100 realizations.
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(a) c� 0 (b) c < 0 (c) c . 0

Figure 3: Visualization of non-vaccinator spatial correlation on a square lattice. As c
approaches the critical transition at c = 0, clusters of non-vaccinators (red) begin to appear,
increasing the spatial correlation of non-vaccinators.

increase in spatial correlation, possibly due to the smaller average path length342

in these networks. Furthermore, lag-1 SC in the empirically-derived network343

has a nonlinear and more gradual response to changes in c, which matches the344

lack of a sharp critical transition in that network. Sensitivity analyses over345

r and σ confirm the same patterns, except in the extreme case of r = 0.02346

where infected individuals never recover (Figure 5).347

We observe that the rise in the natural logarithm of lag-1 SC begins well348

before the number of non-vaccinators begins to increase appreciably (com-349

pare c ∈ [−0.8,−0.2] in Figure 4 versus Figure 2). Therefore, tracking lag-1350

SC can provide an early warning signals of potential shifts in population vac-351

cinating behaviour that would not be accessible simply by extrapolating the352

number of non-vaccinators using a linear regression, for instance. Moreover,353

this rise in lag-1 SC is highly robust to network type and parameter value,354

due to the fundamental assumption that a node’s vaccination status is influ-355

enced by the opinions of the nodes in their social neighbourhood. However,356

the location of the regime shift in c is related to the average node degree:357

with an average node degree of 100, the regime shift occurs at approximately358

c = 2.4.359

4. Discussion360

Here we studied regime shifts in coupled behaviour-disease dynamics on361

a multiplex network where an infectious disease is transmitted through the362

physical network layer, and the social layer describes a population where363

everyone has either a pro-vaccine or an anti-vaccine opinion. These simu-364

lation results show the presence of critical slowing down near a bifurcation365

in the multiplex network corresponding to a switch from predominant vac-366

cinating behaviour and disease elimination, to predominant non-vaccinating367
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Figure 4: The natural logarithm of the time-averaged lag-1 SC of nonvaccinators, and the
percentage of infected nodes, for a range of values of c, showing a linear increase in lag-1
SC in a log-linear plot as the critical transition is approached on a) random network, b)
square lattice, c) Barabasi-Albert network, d) Small world network, e) empirically-derived
networks. All other parameter values are as in Table 1.
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Figure 5: The natural logarithm of the time-averaged lag-1 SC of nonvaccinators for a
range of values of c at selected values of a) r and b) σ, showing a linear increase in lag-1
SC in a log-linear plot as the critical transition is approached. Networks types from top
row to bottom row are: random network, square lattice, Barabasi-Albert network, small
world network, and empirically-derived networks. All parameters besides r, σ and c are
the same as Table 1.
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behaviour and disease endemicity. Critical slowing down was clearly man-368

ifested in all network types and across a broad range of parameter values,369

with the exception of the empirically derived network. This exception may370

have been on account of the greater heterogeneity of the network structure371

causing lack of a sharp transition to non-vaccinating behaviour.372

Hence, the results suggest that it may be possible to use lag-1 spatial cor-373

relation in social networks as an early warning signal of widespread vaccine374

refusal in a population. However, the lack of a clear transition in the case of375

the network that was empirically derived (from NDSSL data) suggests that376

further research must be conducted in order to determine how and whether377

it would be possible to detect such early warning signals in real-world social378

networks, and what the trends in correlation indicators might signify. We379

speculate that our approach might have failed for the empirical network due380

to multiple sources of heterogeneity in network structure such as: a highly381

dispersed node degree distribution; the presence of disconnected subgraphs;382

and/or differing network structure in different parts of the network. How-383

ever, it is possible that including peer pressure (social norms) in the model384

might cause population opinion states to shift to bistable boundary equilibria385

corresponding to all-vaccinator or no-vaccinator population compositions–as386

has been observed in other socio-ecological models–and thus restore the fea-387

sibility of early warning signals [26]. Our model also assumed that networks388

are static and that the two layers are perfectly correlated. Neither condition389

holds in real populations, and these simplifying assumptions could be relaxed390

in future work.391

It is also possible to tailor this model to specific infectious diseases such as392

measles or influenza by modifying the model to include relevant vital dynam-393

ics, disease natural history, and vaccine characteristics. This is particularly394

important since disease natural history can have a significant impact on dis-395

ease dynamics [44, 53], and vaccine coverage can vary widely between both396

vaccines and populations [54, 55]. Further to this point, there are indica-397

tions that some disease dynamics, such as meningococcal disease, are in a398

state of self-evolved criticality in their naturally circulating dynamics (i.e.399

always close to a critical point) [56]. The impact of ever-present critical dis-400

ease dynamics on the detectability of early warning signals of a regime shift401

in a socio-epidemiological state require further research. For instance, the402

critical disease dynamics could serve to mask early warning signals of socio-403

epidemiological regime shifts. This would motivate a search for indicators404

that can distinguish the socio-epidemiological signal from the background of405
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critical disease dynamics.406

Finally, future research could seek early warnings signals in lag-1 SC407

measurements from social networks derived from social media data sources408

such as Twitter. Lag-1 SC is readily calculated if the sentiment of Twitter409

users toward vaccines can be assessed as pro- or anti-vaccine. However, the410

Twitter follower network is a directed graph that changes in time, therefore411

additional theoretical refinements are necessary. Moreover, our method as-412

sumes perfect knowledge of the state of nodes on the social layer, whereas in413

reality this information is partial. Future work should also explore whether414

censored data on vaccine opinions changes the reliability of the early warning415

indicators we explored in this paper. This could be addressed by extended416

models with a parameter for censoring and a distinction between actual and417

observed opinion status.418

Lag-1 spatial correlation appears to be a robust early warning signal for419

predicting regime shifts in vaccine uptake under the conditions we studied,420

indicating potential for worthwhile additional study in the context of coupled421

behaviour-disease interactions.422
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