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Highlights  
 
• Reliable functional brain network subtypes accompany cognitive impairment in AD 
 
• Symptom-related subtypes exist in the default-mode, limbic and salience networks  
  
• A limbic subtype is associated with a familial risk of AD in healthy older adults  
  
• Limbic subtypes also associate with beta amyloid deposition and ApoE4 

In Brief  
 
We found reliable subtypes of functional brain connectivity networks in older adults, 
associated with AD-related clinical symptoms in patients as well as several AD risk 
factors/biomarkers in asymptomatic individuals. 

Summary  
  
The heterogeneity of brain degeneration has not been investigated yet for functional 
brain network connectivity, a promising biomarker of Alzheimer’s disease. We coupled 
cluster analysis with resting-state functional magnetic resonance imaging to discover 
connectivity subtypes in healthy older adults and patients with cognitive disorders 
related to Alzheimer’s disease, noting associations between subtypes and cognitive 
symptoms in the default-mode, limbic and salience networks. In an independent 
asymptomatic cohort with a family history of Alzheimer’s dementia, the connectivity 
subtypes had good test-retest reliability across all tested networks. We found that a 
limbic subtype was overrepresented in these individuals, which was previously 
associated with symptoms. Other limbic subtypes showed associations with 
cerebrospinal fluid Aβ1-42 levels and ApoE4 genotype. Our results demonstrate the 
existence of reliable subtypes of functional brain networks in older adults and support 
future investigations in limbic connectivity subtypes as early biomarkers of Alzheimer’s 
degeneration. 
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Introduction 
 
Alzheimer's disease (AD) is a chronic neurodegenerative condition that gives rise to the 
most common form of dementia, with severe memory and cognitive impairments. 
Importantly, the clinical expression of AD becomes apparent only decades after the 
development of neuropathological processes, such as the accumulation of amyloid-β 
(Aβ) plaques and tau neurofibrillary tangles. The long preclinical buildup of AD 
pathology presents an opportunity to prevent, rather than repair, neurodegeneration 
(Dubois et al., 2016; Sperling et al., 2012). Functional brain connectivity measured with 
resting-state functional magnetic resonance imaging (rs-fMRI) may capture early 
synaptic dysfunction in AD (Selkoe, 2002; Tampellini, 2015) and is thus a promising 
candidate biomarker for AD (Badhwar et al., 2017; Brier et al., 2014; Jones et al., 2016; 
Vemuri et al., 2012). However, the current literature has largely relied on comparisons 
between group averages of patients and cognitively healthy individuals. Such cross-
sectional analyses neglect the considerable phenotypic heterogeneity present both in 
patient and control populations. The primary objective of this work was to characterize 
the heterogeneity of functional brain connectivity in older adults, and identify network 
subtypes associated with AD at the clinical and preclinical stages.  
  
A prevalent model of AD postulates that symptoms arise as a consequence of 
disruptions in distributed networks, rather than local, circumscribed alteration in neural 
processing (Delbeuck et al., 2003; Seeley et al., 2009). The seminal work of (Greicius et 
al., 2004) in symptomatic AD demonstrated alterations in functional brain connectivity in 
the so-called default-mode network (DMN), whose topography overlaps substantially 
with patterns of end-stage Aβ deposition (Buckner et al., 2005). A recent meta-analysis 
concluded to convergent evidence across over 30 publications looking at functional 
brain connectivity in clinical cohorts, i.e. patients with mild cognitive impairment or AD 
dementia, and confirmed the DMN as a key affected brain component (Badhwar et al., 
2017). Connectivity disturbances in other large-scale brain networks were also found 
consistently, in particular in the limbic and salience networks. At a preclinical stage, rs-
fMRI connectivity has been shown to be impacted in cognitively healthy older adults at 
risk of AD due to abnormal levels of cerebrospinal fluid (CSF) Aβ1-42 or tau proteins 
(Jiang et al., 2016; Wang et al., 2013), increased cerebral Aβ deposits (Elman et al., 
2016), and presence of apolipoprotein E ε4 allele - ApoE4 (Sheline et al., 2010), the 
major genetic risk factor in sporadic AD. A familial history of sporadic AD in first-degree 
relatives is the second most important risk factor of AD (Tanzi, 2012), and was shown to 
impact DMN connectivity even in ApoE4 non-carriers, thus highlighting additional 
genetic risk factors (Wang et al., 2012).  
 
Despite mounting evidence of rs-fMRI as an early marker of AD, the current literature  
neglects the considerable heterogeneity present in both patients and controls. Post-
mortem histological examination of AD pathology in brain tissue samples (Hyman et al., 
2012) indeed does not align closely with clinical diagnosis. Between 30 and 50% of 
patients diagnosed with AD dementia in fact do not present Alzheimer’s pathology, 
depending on the level of neuropathological confidence (Beach et al., 2012). 
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Conversely, the same study reported that close to 40% of patients diagnosed with non-
AD dementia show minimal signs of AD pathology. Some cognitively healthy persons 
included in control groups may also suffer from preclinical AD, with 10% to 30% of them 
having Aβ deposition in their brain (Chételat et al., 2013), and some of them exhibiting 
high loads of neurofibrillary tangles (Mufson et al., 2016). Data-driven analysis of 
structural MRI subtypes in AD further showed that symptomatic heterogeneity (Belleville 
et al. 2007; Scheltens et al. 2016) is at least partly related to different modes of atrophy 
spreading in AD (Dong et al., 2017; Zhang et al., 2016). Complementary to subtypes of 
brain atrophy, a recent work (Doan et al., 2017) showed that connectivity subtypes can 
also be observed using diffusion magnetic resonance imaging, in patients suffering from 
AD dementia, MCI or subjective cognitive impairment, with subtypes accompanying the 
severity of cognitive impairment. The established heterogeneity in structural brain 
degeneration calls to re-examine the current evidence for rs-fMRI as an AD biomarker 
using a subtyping approach.  
 
The overarching goal of the present work was to identify one or multiple subtypes of 
functional brain connectivity associated with AD, either at a clinical or preclinical stage. 
We first applied a data-driven cluster analysis to identify subgroups of subjects with 
homogeneous subtypes of brain connectivity within a mixed cohort of 130 subjects, 
including patients with AD dementia  (AD subjects, N = 21), patients with mild cognitive 
impairment (MCI subjects, N= 44), and elderly healthy controls (HC subjects, N= 65) 
(Figure 1, Table 1). This mixed cohort, referred to as the ADNI2-MTL 
sample,poolsdatafrom 2 sites of ADNI2 (ADNI2a and ADNI2b) and 3 studies conducted 
at Montreal sites (MNI, CRIUGMa and CRIUGMb), in an attempt to extract robust 
subtypes that will generalize well to new studies (Orban et al., 2017). For each brain 
network and connectivity subtype, we tested whether a particular subtype was 
associated with the presence of mild or severe symptoms. We then investigated if the 

 
 
Figure 1. Matching between ADMCI patients and HC 
(A) Patients and controls were matched with respect to sample size, gender, age and motion 
levels after scrubbing (residual frame displacement, rFD). (B) Between-site differences on 
such variables are shown irrespective of clinical status. (C) The number of patients and 
controls are perfectly balanced within sites. 
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subtype membership was a reliable quantity using test-retest data in an independent 
sample of 231 cognitively healthy older adults, with a familial history of AD (FH subjects) 
(Orban et al., 2015). As those subjects are at risk for AD, we tested if the subtypes 
associated with symptoms would already be overrepresented in the asymptomatic FH 
cohort. We further tested in these FH subjects the association between functional 
subtypes and known biomarkers/risk factors of AD, namely CSF Aβ1-42, Tau levels as 
well as ApoE4 genotype.  

Results 
  
Subtypes of functional brain networks 
  
To identify subtypes of functional brain networks, we first generated individual functional 
connectivity maps for seven large-scale networks together covering the entire brain 
(Figure 2A-B). These reference networks were obtained from an independent dataset 
from 200 healthy young subjects (Bellec et al. 2015), and were labeled as cerebellar, 
limbic, motor, visual, default-mode, fronto-parietal and salience networks. For each 
network, a hierarchical cluster analysis was applied on 130 individual network maps 
from the ADNI2-MTL dataset, after regression of phenotypic and site confounds, in 
order to identify subgroups of subjects with homogeneous brain maps. Visual inspection 
suggested the presence of at least three voxelwise connectivity subgroups (Figure 2C-
D). A brain map averaged across all subjects within a subgroup defined a subtype of 
network connectivity, highlighting specific brain areas that differed between that 
subgroup and the overall population average (Figure 2E). Subtype maps revealed high 
connectivity with their reference network, yet also exhibited noticeable variations. These 
differences were not only observed in the associated network (within-network 
connectivity) but also in other brain areas (between-network connectivity). For instance, 
subtypes of the DMN could be distinguished from one another not only in terms of 
connectivity levels within the precuneus or anterior medial prefrontal cortex, two key 
nodes of the default-mode network, but also with regards to connectivity strength in the 
anterior cingulate, associated with the salience network. For each network, we 
generated the spatial correlations between individual connectivity maps and each 
average subtype map, hereafter referred to as weights (Figure 2F). These continuous 
subtype weights revealed that some individual maps were highly correlated with the 
subtypes, while others had only milder correlations, sometimes of similar amplitude for 
different subtypes. The subtype decomposition was therefore a discrete approximation 
of a continuous distribution of individual maps, rather than a set of clear-cut entities. 
 
A comparison of clustering outcomes for the seven networks revealed that 3 subgroups 
of subjects at least could be evidenced in all networks (Figure 3A). As observed for the 
DMN, subtype maps showed distributed variations inside and outside the network of 
reference for all networks. While between-subject correlation values had similar 
amplitudes across networks, the size of the subgroups varied from one network to 
another. We tested the correspondence of subject clustering solutions between 
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networks by computing the adjusted rand index (ARI) for all pairwise comparisons 
(Figure 3B). The near-chance level of this metric (0.04 ± 0.04) demonstrated that 
subjects with similar connectivity maps for a given network did not have particularly 
similar maps for other networks, thus highlighting heterogeneity in functional brain 
connectivity patterns.  

 
 
 
 
 
 

 
 
Figure 2. Extraction of subtypes and weights 
(A) Functional subtypes were identified separately for 7 networks delineated at the whole-
brain level in an independent sample of healthy subjects. The procedure is shown for the 
default-mode network (DMN). (B) Network-based connectivity maps were computed for each 
subject through the correlation of every voxel’s time course of activity with the average signal 
in the reference network. (C) Site, gender, age and motion were regressed out from 
functional connectivity maps across subjects. (D) A hierarchical cluster analysis was 
conducted to identify 3 homogeneous subgroups of subjects with similar connectivity maps. 
(E) Difference subtypes show how the average connectivity maps of each separate subgroup 
of subjects differ from the grand average. (F) Weights consisted in correlations between the 
connectivity maps of every subject with that of each subtype. 
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Brain network subtypes are associated with clinical symptoms 
  
Given the observation that subtypes reflected both continuous and discrete phenomena, 
we adopted a dual statistical evaluation of their association with clinical symptoms in 
ADMCI subjects (Figure 4). In the former case, differences in average subtype weights 
between ADMCI and HC were assessed independently for each subtype of the seven 
reference networks, using a linear regression model. Significant associations were 
found for one limbic, two default-mode and two salience subtypes (q < 0.05 with FDR 
correction over 21 network subtypes), in line with our expectations. An uncorrected 
effect was also seen for an additional limbic subtype (p < 0.05). Effects were of medium 
size (0.09 < Cohen's f2 < 0.25). Of these six subtypes, half of the associations with 
symptoms were positive (i.e. higher average weight load in ADMCI persons) and the 
remainder negative (i.e. lower average weight load in ADMCI patients). Instances of 
positive and negative associations with symptoms were observed in all three 
aforementioned networks.  

 
Figure 3. Correspondence of cluster (subtype) solutions across networks 
(A) For each of the 7 networks (columns) are given the similarity matrix that shows the 
similarity of network connectivity maps between all pairs of subjects (first row), the adjacency 
matrix that reveals homogeneous subgroups of subjects identified by cluster analysis 
(second row), the average network connectivity map for all subjects (third row), and the 
difference subtype connectivity maps obtained by differences between the group average 
and the average connectivity maps for each subgroup of subjects (fourth to sixth rows). (B) 
The adjusted rand index (ARI) reveals the correspondence of subject clustering solutions 
between all pairs of networks. CER, cerebellum; LIM, limbic; MOT, motor; VIS, visual; DMN, 
default-mode; FPN, fronto-parietal; SAL, salience.  
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Figure 4. Functional network subtypes 
associated with clinical symptoms 
Significant associations with ADMCI were found in 
the limbic (A), default-mode (B) and salience (C) 
networks. For each network are shown the group 
average connectivity map and the connectivity 
subtypes that are significantly more or less 
present in ADMCI patients than controls 
(difference maps are given). Pie charts report the 
distributions of subjects across subtypes in each 
group. Violin plots show the distribution of weights 
in the two groups for each subtype with a 
significant association. ** and * respectively 
denote significance at qFDR<0.05 and p<0.05 
(uncorrected). 
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A general observation was that subtypes positively associated with symptoms (PAS) 
had increased within-network connectivity but decreased between-network connectivity 
as compared to sample averages of networks. The PAS limbic subtype was notably 
defined by increased hippocampal connectivity (within-network) but decreased 
connectivity in dorsomedial prefrontal areas located in the DMN (between-network). An 
inverse pattern was seen in subtypes negatively associated with symptoms (NAS). The 
NAS limbic subtype had decreased connectivity in the hippocampus but increased 
connectivity in the insula. Subtypes of the default-mode and salience network provided 
mirror pictures of PAS and NAS connectivity profiles. Decreased connectivity in the 
posterior cingulate and medial prefrontal region relative to the sample average was NAS 
for the default-mode network but PAS for the salience network. Similarly, decreased 
connectivity in the insula and anterior cingulate cortex compared to the sample average 
was evidenced to be NAS for the salience network but PAS for the default-mode 
network.  

 
Statistics on discrete effects provided concordant effects at uncorrected thresholds. For 
each network, we evaluated with Chi2 tests whether ADMCI and HC subjects were 
distributed unevenly across subtypes. Unequal distributions were seen for the limbic (p 
< 0.05), default-mode (p = 0.1) and salience (p < 0.05) networks. Effect sizes were in 
the small-to-moderate range, with Cramer's V values of 0.27, 0.19 and 0.24 in the 
limbic, default-mode and salience networks, respectively. 
 
Connectivity maps in FH subjects are reproducibly matched to subtypes from the 
clinical cohort  
 
We assessed the reliability of matching connectivity maps in FH subjects from the 
PREVENT-AD cohort with the subtypes defined in the MTL-ADNI2. We thus generated 
individual functional connectivity maps separately for two runs, in each of the seven 
networks. Weights were computed for individual network maps, indicating their similarity 
with each of the 21 network subtypes previously defined in the MTL-ADNI2 sample 
(Figure 5). Intraclass correlations (ICC) indicated a fair-to-good correspondence of 
subtype weights between runs. Weights of all network subtypes had ICC values > 0.45 
(max = 0.68, mean = 0.56), except for the PAS salience subtype (0.29). The default-
mode and limbic PAS subtype weights had ICCs of 0.50 and 0.55, respectively.  
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Figure 5. Reliability of subtype matching 
in FH subjects 
(A) Matching of connectivity maps in FH 
subjects with subtypes found in the mixed 
population of ADMCI patients and controls is 
shown for the DMN in two separate runs. (B) 
Test-retest between runs was determined 
with intra-class correlation (ICC), showing 
fair-to-good correspondence across 
networks and subtypes. 
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Subtypes are associated with biomarkers of AD in FH subjects  
  
We next examined the possibility that cognitively healthy FH older adults already 
exhibited PAS subtypes, and more so than typical healthy elderly individuals. Individual 
functional connectivity maps were averaged for the two separate runs in 231 FH 
subjects from the PREVENT-AD cohort. For each of the three networks found to be 
associated with clinical symptoms, FH subjects were matched to network subtypes 
defined in the MTL-ADNI sample based on maximal weights. Distributions of FH 
subjects across subtypes were not significantly different than those of either ADMCI or 
HC participants in the default-mode and salience networks (Figure 6A). However, 
proportions of FH subjects across limbic subtypes differed significantly from those of 
typical HC older adults (q < 0.05) but not from ADMCI patients (p = 0.9). 
          
The idea that connectivity subtypes might reflect a covert pathological AD process in 
cognitively healthy elderly individuals would be reinforced by the observation that such 
connectivity profiles correlate with known biomarkers of AD. We thus further 
investigated the relationship between connectivity subtypes and APOE genotype (N = 
228) as well as CSF levels of Aβ1-42, tTau and pTau (N = 59) (Figure 6C). Surprisingly, 
APOE allele 4 carriers showed less association than non carriers with the limbic PAS 
subtype (q < 0.05), with a small effect size (Cohen's f2 = 0.04). However, findings 
consistent with predictions were observed for CSF Aß42 levels and another limbic 
subtype. Subjects with high levels of CSF Aβ1-42 had limbic connectivity maps that 
resembled more the NAS limbic network (q < 0.05; Cohen's f2 = 0.13). Low levels of 
CSF Aβ1-42 were associated with another limbic subtype that shared some similarities 
with the PAS limbic subtype, for instance increased hippocampal connectivity (q < 0.05; 
Cohen's f2 = 0.1). No associations were found between Tau or pTau CSF levels and 
any subtype of either the limbic, default-mode or salience networks.  
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Discussion 
 
Capturing heterogeneity through subtyping  
 
Our subtyping approach was motivated by the lack of specificity and sensitivity of a 
clinical diagnosis of AD dementia against a histopathological diagnosis of AD pathology 
(Beach et al., 2012) and the variability of cognitive and neurobiological alterations in AD 
(Lam et al., 2013; Scheltens et al., 2016). As done previously for structural atrophy 
patterns (Dong et al., 2017; Hwang et al., 2016; Zhang et al., 2016) and white matter 
structural dysconnectivity (Doan et al., 2017), we employed a subtype analysis that 
identified subgroups of subjects sharing similar functional brain connectivity, in a fully 
data-driven way and irrespective of clinical diagnosis. This is an important conceptual 
difference with more traditional cross-sectional comparisons between clinical cohorts, 
which assumes some homogeneity in connectivity within each group, e.g. (Badhwar et 
al., 2017, 2016; Jones et al., 2016; Korolev et al., 2016). Improved characterization of 
the inherent heterogeneity of brain dysconnectivity in AD will ultimately facilitate more 
personalized diagnosis and treatment. This new line of inquiry is made possible by large 
neuroimaging databases such as the ADNI, and will become increasingly important with 
the emergence of populational cohorts with associated neuroimaging repositories, such 
as the UK biobank (Miller et al., 2016).   
 

 

 
 
Figure 6. Connectivity subtypes in FH subjects 
(A) Pie charts show that FH subjects differ from controls but not ADMCI patients in their 
distribution across subtypes for the limbic network (B). (C) Three distinct limbic network 
subtypes show either positive or negative associations with ApoE4 status or CSF Aβ1-42 
levels. ** denotes significance at qFDR<0.05 . 
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Association between connectivity subtypes and clinical symptoms 
 
Using rs-fMRI, we identified functional brain connectivity subtypes associated both 
positively and negatively with symptoms. A variety of causal mechanisms may explain 
such associations, which may co-exist. An association may reflect the direct 
progression of AD neurodegeneration in the brain (Jones et al., 2016), the presence of 
comorbidities (Profenno et al., 2010), as well as some form of cognitive reserve, or lack 
thereof (Stern, 2006). The existence of an association in itself is not enough to 
disambiguate between these different interpretations. Associations between connectivity 
subtypes and symptoms were selectively detected in the default-mode, salience and 
limbic networks. These three networks have consistently been reported in the literature 
as altered in patients with AD dementia or MCI, see (Badhwar et al., 2017; Vemuri et 
al., 2012) for reviews. The associated subtype maps pointed at changes both within 
networks, e.g. higher intra-network connectivity in PAS DMN subtype, and between 
networks, e.g. decreased inter-network connectivity in PAS DMN subtypes with regions 
of the salience network. 
 
Translation of connectivity subtypes from clinical to non-clinical individuals 
 
The distribution of connectivity subtypes in a group of cognitively normal FH individuals 
was found to resemble more the subtype distribution of a patient group than that of  a 
control group. This observation was made only for the limbic network, but not the 
default-mode and salience networks. Assuming functional connectivity subtypes partly 
reflect the progression of AD pathology, finding early dysconnectivity in the limbic 
network is consistent with the Braak staging of neurodegeneration (Braak and Braak, 
1991) and the increased risk of sporadic AD due to family history (Tanzi, 2012). 
Conversely, the limbic subtype negatively associated with symptoms was under-
represented in FH individuals, and was shown to positively associate with CSF Aβ1-42 
levels. Taken together, these associations support the notion that different subtypes of 
limbic connectivity reflect the progression of AD pathophysiology at a preclinical stage. 
A finding that was more difficult to interpret was that ApoE4 carriers had significantly 
less weight on the limbic subtype positively associated with symptoms. With previous 
literature on ApoE4 and resting-state connectivity sometimes reporting contradictory 
findings (Filippini et al., 2009; Sheline et al., 2010), we believe longitudinal data on a 
large cohort would be necessary to clarify the relationships among resting-state 
connectivity, Aβ deposition and ApoE4 status. 
 
Generalization of brain connectivity subtypes across datasets 
 
The translation of connectivity across cohorts raises the question of generalization 
across scanning sites. Research has indeed indicated that multisite scanning generates 
substantial site-specific bias in connectivity measures (Dansereau et al., 2017; Yan et 
al., 2013). In our multisite clinical sample, we took great care to control for confounding 
site effects on brain connectivity subtypes. The identification of network subtype was 
thus invariant to scanning site to a large extent. However, the cohort of individuals at 
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risk of AD due to their familial history was entirely scanned at a single site. The fact that 
we found associations with known biomarkers or risk factors of AD specifically in the 
limbic network supports that brain connectivity subtypes are fairly robust to site effects. 
Subtype weights also had good test-retest reliability in the PREVENT-AD cohort, 
although the subtype maps were generated on ADNI-MTL. Important areas for future 
work will be to identify imaging protocols that further minimize differences in brain 
connectivity subtypes across scanners.  
 
Finer subtypes 
 
Groups of patients that defined subtypes did not overlap a lot across networks, including 
for subtypes positively associated with symptoms. There is thus some degree of 
independence between subtypes across networks, possibly reflecting heterogeneity of 
neurodegeneration across patients. Even though we estimated only 3 subtypes per 
network, there are still a very large number of possible combinations of subtypes across 
7 networks. Subtype maps being an average of a subgroup of subjects, a minimum 
number of 20 subjects seems warranted to stabilize the subtype maps. The total sample 
size of our discovery dataset thus constrained the maximal number of subtypes we 
could feasibly investigate. We thus decided to use low numbers of subtypes and 
networks for this first evaluation of the feasibility of functional subtypes in AD, yet higher 
numbers could be explored in a larger sample.   
 
Multi-network and multimodal subtypes  
 
A natural extension of this work would be to integrate subtypes across multiple 
networks, imaging modalities and measures into a single predictor of AD status. 
Associations with clinical symptoms or AD biomarkers reported here had weak to 
moderate effect sizes, despite reaching statistical significance. Recent state-of-the-art 
model of progression from MCI to dementia indeed merge biomarkers across multiple 
domains, including cognitive evaluations, imaging and plasma markers (Korolev et al., 
2016). High-dimensional imaging biomarkers such as structural and diffusion MRI are 
amenable to subtyping (Doan et al., 2017; Hwang et al., 2016; Zhang et al., 2016). We 
believe that subtyping could be used in the near future to identify a highly accurate 
multimodal predictor of AD, both for diagnosis and prognosis purposes. Resting-fMRI 
will likely contribute to such a multimodal predictor, as it is uniquely sensitive to brain 
function, at least compared to other MRI modalities. Our findings suggest that limbic 
subtypes in particular are promising biomarkers for the purpose of early AD diagnosis.  
 
Conclusions 
 
The present work demonstrates that rs-fMRI can be used to subtype the heterogeneity 
of functional networks in older adults. We found that subtypes have a good test-retest 
reliability and associate with symptoms in patients suffering from MCI or AD dementia. 
We also found that subtypes associate with various biomarkers and risk factors of AD in 
cognitively normal individuals: familial history of AD dementia, beta amyloid deposition, 
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ApoE4 status. Our findings support the notion that rs-fMRI subtypes are sensitive to AD 
progression up to the preclinical stage, and may contribute to future efforts towards an 
accurate early diagnosis of AD using multimodal biomarkers.  

 
Experimental procedures 
 
Participants 
  
The MTL-ADNI2 multisite sample aggregated data from 5 different studies: 3 samples 
from the Montreal area (one from the Montreal Neurological Institute, MNI, and two from 
the Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, CRIUGMa 
and CRIUMGb), and 2 samples with distinct acquisition protocols from the Alzheimer's 
Disease Neuroimaging Initiative 2 (ADNI2a and ADNI2b) (Table 2). We selected 
subsamples of the MNI, CRIUGMa, CRIUGMb, ADNI2a and ADNI2b datasets such that 
patients and controls groups had identical sample size for each acquisition protocol or 
study, respectively 13, 13, 8, 20 and 11 subjects per group. The combined sample 
included 65 patients diagnosed with either amnestic MCI or AD dementia and 65 
cognitively normal controls. Patients and controls were selected from a larger initial pool 
such that they would be matched for age, gender ratio as well as motion (see rs-fMRI 
preprocessing section). Distributions of age, gender and motion were as follows for 
patients vs. controls: age (mean ± std) = 72.7 ± 7.9 vs. 72.6 ± 7.3 years old, 41/24 vs. 
41/24 females/males, residual frame displacement (mean ± std) = 0.22 ± 0.07 vs. 0.23 ± 
0.08. All subjects gave informed consent to participate in these studies, which were 
approved by the research ethics committees of the institutions involved in data 
acquisition. Consent was obtained for data sharing and secondary analysis, the latter 
being approved by the ethics committee at the CRIUGM.   
         The PREVENT-AD dataset used in the present analysis included 231 cognitively 
healthy older adults with a known family history of AD, as reflected by a diagnosis of AD 
dementia in parent or first-degree relatives. PREVENT-AD participants were younger 
(mean ± std: 64.1 ± 5.7 years old) than subjects in the MTL-ADNI2 multisite sample and 
were not balanced for gender (172/59 females/males). All subjects had given informed 
consent and the study was approved by the "Research, Ethics and Compliance 
Committee" of McGill University. 
 
Note on the cohorts 
 
The ADNI2 data used in the preparation of this article were obtained from the 
Alzheimer's Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The 
ADNI was launched in 2003 by the National Institute on Aging (NIA), the National 
Institute of Biomedical Imaging and Bioengineering (NIBIB), the Food and Drug 
Administration (FDA), private pharmaceutical companies and non-profit organizations, 
as a $60 million, 5-year public-private partnership representing efforts of many co-
investigators from a broad range of academic institutions and private corporations. A 
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central goal of ADNI is to facilitate the discovery of biomarkers of very early AD 
progression, using MRI among other techniques. ADNI was followed by ADNI-GO and 
ADNI-2. In this study, we only included subjects from the two ADNI2 scanners (Achieva 
and Intera) associated with the largest samples. For up-to-date information, see 
www.adni-info.org. 
The PREVENT-AD data were obtained from the Pre-symptomatic Evaluation of Novel 
or Experimental Treatments for Alzheimer's Disease (PREVENT-AD) program data 
release 2.0 (November 30, 2015). The cohort of this program was composed of 
cognitively healthy individuals at increased risk of AD dementia because they have / 
had a first-degree relative (parent or sibling) who has / had dementia suggestive of AD.  
This cohort includes volunteers of age 60 or older (55 or older if current age is within 15 
years of affected relative’s estimated age at onset of dementia). One current project 
consists of an observational study where participants are followed longitudinally once a 
year with a battery of tests and imaging modalities. In the present work, we focused on 
baseline data. A subset of test-retest rsfMRI data in 80 PREVENT-AD subjects has 
been shared publicly (Orban et al., 2015).  
Clinical evaluation 
 
All subjects from the MTL-ADNI2 and PREVENT-AD samples underwent 
neuropsychological testing to assess cognitive function, including memory, language 
and executive abilities. However, the neuropsychological tests administered to 
participants varied across sites, as did criteria and clinical scales used for diagnosis of 
either MCI or AD. Briefly, patients with (amnestic) MCI had memory complaints and 
objective cognitive loss, yet showed intact functional abilities and did not meet criteria 
for a diagnosis of dementia in contrast with AD patients. HC demonstrated intact 
cognitive functions. Details on clinical evaluation for each cohort per site follow.  
In ADNI2, the Mini-Mental State Evaluation (MMSE) and Clinical Dementia Rating 
(CDR) were used to distinguish between HC, MCI and AD subjects. MMSE scores were 
inclusively comprised between 24-30, 24-30 and 20-26 for HC, MCI and AD subjects, 
respectively. MCI patients had a CDR of 0.5 and AD patients a CDR of 0.5 or 1. An 
objective memory loss was evidenced with the Wechsler Memory Scale Logical Memory 
II in MCI, yet other cognitive domains and functional activities were unaffected. In 
addition, there was an absence of dementia, by contrast with AD patients who met the 
National Institute of Neurological and Communicative Disorders and Stroke / 
Alzheimer's Disease and Related Disorders Association (NINCDS/ADRDA) criteria for 
probable AD (McKhann et al. 1984). The MNI sample only included MCI patients, who 
were similarly diagnosed using the MMSE, following Petersen Criteria (Petersen 2004). 
Subjects in the CRIUGM samples were administered the MMSE as well as the Montreal 
Cognitive Assessment (MoCA) (Nasreddine et al., 2005) and the Mattis Dementia 
Rating Scale (Schmidt et al. 1994). The diagnosis of MCI was made based on scores 
equal to or >1.5 standard deviations below the mean adjusted for age and education on 
memory tests, with input from a neurologist. A diagnosis of AD was determined 
according to the Diagnostic and Statistical Manual of Mental Disorders (4th ed.; 
American Psychiatric Association, 2000) and NINCDS/ADRDA clinical criteria, with 
input from a neurologist. Participants in the PREVENT-AD were evaluated for any 
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cognitive impairment and symptoms suggestive of AD using the Repeatable Battery for 
the Assessment of Neuropsychological Status - RBANS (Randolph et al., 1998), the 
CDR, the MoCA and the AD8 Dementia screening (Galvin et al., 2005). Exclusion 
criteria common to all participants included contraindications to MRI, presence or history 
of neurologic disease with potential impact on cognition (e.g., Parkinson’s disease), and 
presence or history of substance abuse.  
  
Genetic and CSF biomarkers in PREVENT-AD subjects 
  
In 228 PREVENT-AD subjects, DNA was isolated from 200 ul of whole blood using a 
QIASymphony apparatus and the DNA Blood Mini QIA Kit (Qiagen, Valencia, CA, USA). 
The standard QIASymphony isolation program was performed as per the 
manufacturer's instructions. APOE single nucleotide polymorphism (SNP) genotyping 
was performed using pyrosequencing (PyroMArk96) and processed with GenomeStudio 
(version 2010.3) using standard methods . 
  
         CSF samples were obtained by lumbar puncture in 59 subjects of the PREVENT-
AD cohort. For each subject, 25 ml of CSF was centrifuged 10 minutes +/- 2000g at 
room temperature and aliquoted in 50 vials of 0.5 ml and frozen at -80C for further 
analysis. Protein levels of Aβ1-42, total tau (tTau) and phosphorylated tau (pTau) were 
determined by enzyme-linked immunosorbent assay (ELISA) from Innotest technology 
(Fujirebio). These measurements were standardized with the European project 
BIOMARKAPD (Reijs et al., 2015), which intends to harmonize assays that are used to 
measure biological markers in neurodegenerative diseases.          
MRI acquisition 
  
The MTL-ADNI2 multisite resting-state dataset included brain imaging data acquired on 
3T MRI scanners (Table 2). Vendors differed between sites (Siemens Magnetom Tim 
Trio in MTL sites and Phillips Achieva or Intera in ADNI2). Analyses were performed on 
the first usable scan, typically the baseline scan when several scans were available. 
Functional scan acquisition parameters varied from one site to another, notably in run 
duration (ranges: 5min20s-8min), number of volumes (range: 140-240 vols), voxel size 
(range: 3-4x3-3.6x3.3-4mm3) and repetition time (range: 2-3s). Brain imaging data of 
the PREVENT-AD dataset were collected on a single 3T MRI scanner (Siemens, 
Magnetom Tim Trio). Two consecutive resting-state runs of 150 functional volumes 
were acquired, each run lasting 5min 04s. Spatial and temporal resolutions were as 
follows: voxel size = 4x4x4mm3 and repetition time = 2000ms. Table 2 reports scan 
acquisition parameters for all data.  
  
rs-fMRI preprocessing 
  
Datasets were preprocessed and analyzed using the NeuroImaging Analysis Kit - NIAK 
- version 0.12.17 (http://niak.simexp-lab.org), under CentOS with Octave 
(http://gnu.octave.org) version 3.6.1 and the MINC toolkit (http://bic-mni.github.io/) 
version 0.3.18. Analyses were executed in parallel on the "Guillimin" supercomputer 
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(http://www.calculquebec.ca/en/resources/compute-servers/guillimin), using the pipeline 
system for Octave and Matlab - PSOM (Bellec et al., 2012). 
  
         Each fMRI dataset was corrected for differences in timing of slice acquisitions; a 
rigid-body motion was then estimated using Minctracc (Collins and Evans, 1997) for 
each time frame, both within and between runs, as well as between one fMRI run and 
the T1 scan for each subject. The T1 scan was itself non-linearly co-registered to the 
Montreal Neurological Institute (MNI) ICBM152 stereotaxic symmetric template (Fonov 
et al., 2011), using the CIVET pipeline (Ad-Dab’bagh et al., 2006). The rigid-body, fMRI-
to-T1 and T1-to-stereotaxic transformations were all combined to resample the fMRI in 
MNI space at a 3 mm isotropic resolution. To minimize artifacts due to excessive 
motion, all time frames showing an average frame displacement (FD) greater than 0.5 
mm were removed (Power et al., 2012). The following nuisance covariates were 
regressed out from the fMRI time series: slow time drifts (basis of discrete cosines with 
a 0.01 Hz high-pass cut-off), average signals in conservative masks of the white matter 
and the lateral ventricles as well as the first principal components (accounting for 95% 
variance) of the six rigid-body motion parameters and their squares (Giove et al., 2009; 
Lund et al., 2006). The fMRI volumes were finally spatially smoothed with a 6 mm 
isotropic Gaussian blurring kernel. A more detailed description of the pipeline can be 
found on the NIAK website (http://niak.simexp-lab.org/pipe_preprocessing.html). 
  
Individual voxel-wise connectivity maps based on large-scale network templates 
  
For all 361 subjects included in the analyses, we computed voxel-wise connectivity 
maps associated with each of 7 network templates extracted from a functional brain 
atlas generated on 200 healthy subjects 
(https://doi.org/10.6084/m9.figshare.1285615.v1). The atlas included cerebellar, limbic, 
visual, motor, default-mode, fronto-parietal and salience networks. For each subject and 
each network, a network connectivity map was obtained by computing the Fisher-
transformed Pearson's correlations between the average time course within the network 
template and the time course of every voxel in the brain grey matter. For each network, 
subject by voxel connectivity matrices were defined at the group level,  separately for 
the MTL-ADNI and PREVENT-AD samples. Two general linear models were used to 
regress the following confounds on the group connectivity matrices: age, sex and 
residual (after scrubbing) FD, as well as acquisition protocols / study using dummy 
variables, i.e. MNI, CRIUGMa, CRIUGMb, ADNIa, ADNIb. The inclusion of constant 
terms in the models effectively normalized network connectivity maps to a zero grand 
mean across all subjects, separately for the MTL-ADNI and PREVENT-AD samples. 
  
  
Network subtypes defined by a cluster analysis in MTL-ADNI2 subjects 
  
For each of the 7 rsfMRI networks, a subject by subject similarity (Pearson's correlation) 
matrix summarized the between-subject correspondence of connectivity maps for all 
pairs of the 130 subjects in the MTL-ADNI multisite sample. A hierarchical cluster 
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analysis was performed to identify 3 clusters of subjects whose network connectivity 
maps were similar in terms of spatial extent and/or strength. For each cluster, we 
defined a subtype of functional connectivity as the average connectivity map for 
subjects within this cluster. In total, there were thus 21 subtypes being investigated. 
Subtype weights were obtained by calculating the correlation between individual 
connectivity maps and each of the network subtype maps. Weights thus range between 
-1 and 1, with 1 meaning perfect correspondence, 0 lack of correspondence and -1 
perfect but inverted correspondence.  
  
Statistical tests of association with clinical symptoms in MTL-ADNI2 subjects 
  
We tested the association between subtypes of network connectivity and clinical 
symptoms in the 130 MTL-ADNI2 subjects. To this end, we employed two distinct 
statistical approaches: one approach treated subtypes as discrete units, where each 
subject belongs to one and only one cluster;  a second approach used subtype weights, 
which are continuous measures. Despite these conceptual differences, we expected 
both statistical approaches to provide mostly concordant results. In the first approach, 
Chi2 tests were used to reveal unequal distributions of HC and ADMCI patients across 
the subtypes of each network. We report Cramer's V effect sizes for which values of 0.1, 
0.3 and 0.5 are respectively termed small, medium and large. In our second approach, 
we used general linear models to test separately the associations between the weights 
of each network subtype and clinical symptoms (HC vs. ADMCI). Because confounds 
(age, sex, rFD, sites) were regressed out prior to conducting this analysis, no factors of 
interest were entered in the general linear model. We provide Cohen's f2 effect sizes for 
which values of 0.02, 0.15 and 0.35 are termed small, medium and large, respectively 
(Cohen, 1988). In both statistical approaches, results were deemed significant if they 
survived false-discovery rate (FDR) correction at q<0.05 across networks and subtypes. 
  
Matching of FH subjects to PAS subtypes 
 
We next aimed to match connectivity maps in 231 cognitively normal FH older adults 
with PAS subtypes identified in the MTL-ADNI2 dataset. For each network and each 
PREVENT-AD subject, subtype weights were obtained by correlating his/her 
connectivity map (averaged over 2 runs) with each of the 3 subtype maps identified in 
the clinical sample. Each FH subject was assigned to the subtype for which the weight 
was maximal. We then tested, for each network, the similarity of subject distributions 
across subtypes between FH subjects in the PREVENT-AD cohort vs the distribution of 
ADMCI patients or HC subjects in the MTL-ADNI multisite sample. Chi2 tests were used 
to assess significance of differences in distributions and Cramer’s V values described 
effect sizes.  
 
Test-retest reliability of MTL-ADNI2 subtypes in FH subjects 
 
Intra-class correlation coefficients quantified the reproducibility of weights between the 
two consecutive resting-state runs of the PREVENT-AD cohort. With 7 networks and 3 
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subtypes, we thus obtained 21 ICC measures. ICC measures were interpreted as 
follows (Cicchetti, 1994): less than 0.40 = poor, between 0.40 and 0.59 = fair, between 
.60 and 0.74 = good, between 0.75 and 1 = excellent.  
  
Statistical tests of association with AD biomarkers 
  
We finally assessed whether the subtype weights of FH subjects would be associated 
with known biomarkers or risk factors of AD in PREVENT-AD. Namely, we investigated 
the possible association between APOE4 genotype, CSF Aβ1-42 and Tau levels with 
symptom associated network subtypes. Associations were tested in the framework of 
general linear models and were considered significant if they survived false-discovery 
rate (FDR) correction at q<0.05 across networks and subtypes. Because confounds 
(age, sex, rFD) were regressed out prior to conduct this analysis, no factors of interest 
were entered in the general linear models. Effect sizes are reported with Cohen's f2 
measures. 
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Tables 
  
      MTL-ADNI2     PREVENT-AD 

  MNI CRIUGMa CRIUGMb ADNI2a ADNI2b   

              

N controls 13 13 8 20 11 n/a 

Mean age (s.d.) 67 (5.8) 71.2 (4.8) 72.6 (7.8) 75.3 (6.5) 75.9 (8.7) n/a 

Number male (%) 5 (38.5) 4 (30.8) 5 (62.5) 9 (45) 1 (9.1) n/a 

              

              

N ADMCI patients 13 13 8 20 11 n/a 

N MCI patients 13 0 8 13 10 n/a 

N AD dementia 
patients 

0 13 0 7 1 n/a 

Mean age (s.d.) 71.6 (8.4) 75 (7) 79.9 (6.1) 72 (7.9) 67 (5) n/a 

Number male (%) 5 (38.5) 2 (15.4) 3 (37.5) 7 (35) 7 (63.6) n/a 

       

       

       

              

N FH subjects n/a n/a n/a n/a n/a 231 

Mean age (s.d.) n/a n/a n/a n/a n/a 64.1 (5.7) 

Number male (%) n/a n/a n/a n/a n/a 59 (25.5) 

N Aβ1-42 n/a n/a n/a n/a n/a 79 

Mean Aβ1-42 (s.d.) n/a n/a n/a n/a n/a 1079.7 (280.9) 

N ApoE4 n/a n/a n/a n/a n/a 228 

N ApoE4 carriers 
(%) 

n/a n/a n/a n/a n/a 78 (34.2) 

              

Table 1. Demographics  

Basic demographics (sample size, mean age, sex proportions) are given for the HC, ADMCI 

and FH groups. Levels of CSF Aβ1-42 and proportions of ApoE4 carriers are given for FH 

subjects. 
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      MTL-ADNI2     PREVENT-AD 

  MNI CRIUGMa CRIUGMb ADNI2a ADNI2b   

              

Scanner 
manufacturer 

Siemens Siemens Siemens Phillips Phillips Siemens 

              

              

Structural             

N channels 32 32 32 8 8 12 

N slices 176 176 176 170 170 176 

Voxel size (mm3) 1x1x1 1x1x1 1x1x1 1x1x1.2 1x1x1.2 1x1x1 

Matrix size 256x256 256x256 240x256 256x256 256x256 256x256 

FOV (mm2) 256 256 240/256 256 256 256? 

TR (s) 2.3 2.53 2.3 6.8 6.8 2.3 

TE (ms) 2.98 1.64 2.91 3.09 3.09 2.98 

FA (degrees) 9 9 9 9 9 9 

              

              

Functional             

N channels 32 32 32 8 8 12 

N slices 38 33 33 48 48 32 

Voxel size (mm3) 3.6x3.6x3.6 3x3x4 3x3x4 3.3x3.3x3.3 3.3x3.3x3.3 4x4x4 

Matrix size 64x64 64x64 64x64 64x64 64x64 64x64 

FOV (mm2) 230 192 192 212 212 256? 

TR (s) 2 2 2 3 3 2 

TE (ms) 30 30 30 30 30 30 

FA (degrees) 90 90 90 80 80 90 

No. volumes 160 240 240 140 140 150 (x 2) 

Scan duration 
(min:s) 

5:20 8:00 8:00 7:00 7:00 5:04 (x2) 

  
Table 2. MRI acquisition protocols 

Scan parameters are given for structural and functional data across the 5 MTL-ADNI samples 

as well as the PREVENT-AD dataset.  

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 28, 2017. ; https://doi.org/10.1101/195164doi: bioRxiv preprint 

https://doi.org/10.1101/195164
http://creativecommons.org/licenses/by/4.0/


 

24 

References 

Ad-Dab’bagh, Y., Lyttelton, O., Muehlboeck, J.S., Lepage, C., Einarson, D., Mok, K., 
Ivanov, O., Vincent, R.D., Lerch, J., Fombonne, E., Others, 2006. The CIVET 
image-processing environment: a fully automated comprehensive pipeline for 
anatomical neuroimaging research. In: Proceedings of the 12th Annual Meeting of 
the Organization for Human Brain Mapping. Florence, Italy, p. 2266. 

Badhwar, A., Tam, A., Dansereau, C., Orban, P., Hoffstaedter, F., Bellec, P., 2017. 
Resting-state network dysfunction in Alzheimer’s disease: A systematic review and 
meta-analysis. Alzheimer’s & Dementia: Diagnosis, Assessment & Disease 
Monitoring 8, 73–85. 

Badhwar, A., Tam, A., Dansereau, C., Orban, P., Toro, R., Bellec, P., 2016. Resting-
state network dysfunction in Alzheimer’s disease: a systematic review and meta-
analysis. Alzheimers. Dement. 

Beach, T.G., Monsell, S.E., Phillips, L.E., Kukull, W., 2012. Accuracy of the clinical 
diagnosis of Alzheimer disease at National Institute on Aging Alzheimer Disease 
Centers, 2005-2010. J. Neuropathol. Exp. Neurol. 71, 266–273. 

Bellec, P., Lavoie-Courchesne, S., Dickinson, P., Lerch, J.P., Zijdenbos, A.P., Evans, 
A.C., 2012. The pipeline system for Octave and Matlab (PSOM): a lightweight 
scripting framework and execution engine for scientific workflows. Front. 
Neuroinform. 6, 7. 

Braak, H., Braak, E., 1991. Neuropathological stageing of Alzheimer-related changes. 
Acta Neuropathol. 82, 239–259. 

Brier, M.R., Thomas, J.B., Ances, B.M., 2014. Network dysfunction in Alzheimer’s 
disease: refining the disconnection hypothesis. Brain Connect. 4, 299–311. 

Buckner, R.L., Snyder, A.Z., Shannon, B.J., LaRossa, G., Sachs, R., Fotenos, A.F., 
Sheline, Y.I., Klunk, W.E., Mathis, C.A., Morris, J.C., Mintun, M.A., 2005. Molecular, 
structural, and functional characterization of Alzheimer’s disease: evidence for a 
relationship between default activity, amyloid, and memory. J. Neurosci. 25, 7709–
7717. 

Chételat, G., La Joie, R., Villain, N., Perrotin, A., de La Sayette, V., Eustache, F., 
Vandenberghe, R., 2013. Amyloid imaging in cognitively normal individuals, at-risk 
populations and preclinical Alzheimer’s disease. Neuroimage Clin 2, 356–365. 

Cicchetti, D.V., 1994. Guidelines, criteria, and rules of thumb for evaluating normed and 
standardized assessment instruments in psychology. Psychol. Assess. 6, 284. 

Cohen, J., 1988. Statistical power analysis for the behavioral sciences Lawrence 
Earlbaum Associates. Hillsdale, NJ 20–26. 

Collins, D.L., Evans, A.C., 1997. Animal: Validation and Applications of Nonlinear 
Registration-Based Segmentation. Int. J. Pattern Recognit Artif Intell. 11, 1271–
1294. 

Dansereau, C., Benhajali, Y., Risterucci, C., Pich, E.M., Orban, P., Arnold, D., Bellec, 
P., 2017. Statistical power and prediction accuracy in multisite resting-state fMRI 
connectivity. Neuroimage 149, 220–232. 

Delbeuck, X., Van der Linden, M., Collette, F., 2003. Alzheimer’disease as a 
disconnection syndrome? Neuropsychol. Rev. 13, 79–92. 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 28, 2017. ; https://doi.org/10.1101/195164doi: bioRxiv preprint 

https://doi.org/10.1101/195164
http://creativecommons.org/licenses/by/4.0/


 

25 

Doan, N.T., Engvig, A., Persson, K., Alnæs, D., Kaufmann, T., Rokicki, J., Córdova-
Palomera, A., Moberget, T., Brækhus, A., Barca, M.L., Engedal, K., Andreassen, 
O.A., Selbæk, G., Westlye, L.T., 2017. Dissociable diffusion MRI patterns of white 
matter microstructure and connectivity in Alzheimer’s disease spectrum. Sci. Rep. 
7, 45131. 

Dong, A., Toledo, J.B., Honnorat, N., Doshi, J., Varol, E., Sotiras, A., Wolk, D., 
Trojanowski, J.Q., Davatzikos, C., Alzheimer’s Disease Neuroimaging Initiative, 
2017. Heterogeneity of neuroanatomical patterns in prodromal Alzheimer’s disease: 
links to cognition, progression and biomarkers. Brain 140, 735–747. 

Dubois, B., Hampel, H., Feldman, H.H., Scheltens, P., Aisen, P., Andrieu, S., 
Bakardjian, H., Benali, H., Bertram, L., Blennow, K., Broich, K., Cavedo, E., Crutch, 
S., Dartigues, J.-F., Duyckaerts, C., Epelbaum, S., Frisoni, G.B., Gauthier, S., 
Genthon, R., Gouw, A.A., Habert, M.-O., Holtzman, D.M., Kivipelto, M., Lista, S., 
Molinuevo, J.-L., O’Bryant, S.E., Rabinovici, G.D., Rowe, C., Salloway, S., 
Schneider, L.S., Sperling, R., Teichmann, M., Carrillo, M.C., Cummings, J., Jack, 
C.R., Jr, Proceedings of the Meeting of the International Working Group (IWG) and 
the American Alzheimer’s Association on “The Preclinical State of AD”; July 23, 
2015; Washington DC, USA, 2016. Preclinical Alzheimer’s disease: Definition, 
natural history, and diagnostic criteria. Alzheimers. Dement. 12, 292–323. 

Elman, J.A., Madison, C.M., Baker, S.L., Vogel, J.W., Marks, S.M., Crowley, S., O’Neil, 
J.P., Jagust, W.J., 2016. Effects of Beta-Amyloid on Resting State Functional 
Connectivity Within and Between Networks Reflect Known Patterns of Regional 
Vulnerability. Cereb. Cortex 26, 695–707. 

Filippini, N., MacIntosh, B.J., Hough, M.G., Goodwin, G.M., Frisoni, G.B., Smith, S.M., 
Matthews, P.M., Beckmann, C.F., Mackay, C.E., 2009. Distinct patterns of brain 
activity in young carriers of the APOE-ε4 allele. Proceedings of the National 
Academy of Sciences 106, 7209–7214. 

Fonov, V., Evans, A.C., Botteron, K., Almli, C.R., McKinstry, R.C., Collins, D.L., Brain 
Development Cooperative Group, 2011. Unbiased average age-appropriate atlases 
for pediatric studies. Neuroimage 54, 313–327. 

Galvin, J.E., Roe, C.M., Powlishta, K.K., Coats, M.A., Muich, S.J., Grant, E., Miller, J.P., 
Storandt, M., Morris, J.C., 2005. The AD8: a brief informant interview to detect 
dementia. Neurology 65, 559–564. 

Giove, F., Gili, T., Iacovella, V., Macaluso, E., Maraviglia, B., 2009. Images-based 
suppression of unwanted global signals in resting-state functional connectivity 
studies. Magn. Reson. Imaging 27, 1058–1064. 

Greicius, M.D., Srivastava, G., Reiss, A.L., Menon, V., 2004. Default-mode network 
activity distinguishes Alzheimer’s disease from healthy aging: evidence from 
functional MRI. Proc. Natl. Acad. Sci. U. S. A. 101, 4637–4642. 

Hwang, J., Kim, C.M., Jeon, S., Lee, J.M., Hong, Y.J., Roh, J.H., Lee, J.-H., Koh, J.-Y., 
Na, D.L., Alzheimer’s Disease Neuroimaging Initiative, 2016. Prediction of 
Alzheimer’s disease pathophysiology based on cortical thickness patterns. 
Alzheimers. Dement. 2, 58–67. 

Hyman, B.T., Phelps, C.H., Beach, T.G., Bigio, E.H., Cairns, N.J., Carrillo, M.C., 
Dickson, D.W., Duyckaerts, C., Frosch, M.P., Masliah, E., Mirra, S.S., Nelson, P.T., 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 28, 2017. ; https://doi.org/10.1101/195164doi: bioRxiv preprint 

https://doi.org/10.1101/195164
http://creativecommons.org/licenses/by/4.0/


 

26 

Schneider, J.A., Thal, D.R., Thies, B., Trojanowski, J.Q., Vinters, H.V., Montine, 
T.J., 2012. National Institute on Aging-Alzheimer’s Association guidelines for the 
neuropathologic assessment of Alzheimer's disease. Alzheimers. Dement. 8, 1–13. 

Jiang, Y., Huang, H., Abner, E., Broster, L.S., Jicha, G.A., Schmitt, F.A., Kryscio, R., 
Andersen, A., Powell, D., Van Eldik, L., Gold, B.T., Nelson, P.T., Smith, C., Ding, 
M., 2016. Alzheimer’s Biomarkers are Correlated with Brain Connectivity in Older 
Adults Differentially during Resting and Task States. Front. Aging Neurosci. 8, 15. 

Jones, D.T., Knopman, D.S., Gunter, J.L., Graff-Radford, J., Vemuri, P., Boeve, B.F., 
Petersen, R.C., Weiner, M.W., Jack, C.R., Jr, Alzheimer’s Disease Neuroimaging 
Initiative, 2016. Cascading network failure across the Alzheimer’s disease 
spectrum. Brain 139, 547–562. 

Korolev, I.O., Symonds, L.L., Bozoki, A.C., Alzheimer’s Disease Neuroimaging Initiative, 
2016. Predicting Progression from Mild Cognitive Impairment to Alzheimer’s 
Dementia Using Clinical, MRI, and Plasma Biomarkers via Probabilistic Pattern 
Classification. PLoS One 11, e0138866. 

Lam, B., Masellis, M., Freedman, M., Stuss, D.T., Black, S.E., 2013. Clinical, imaging, 
and pathological heterogeneity of the Alzheimer’s disease syndrome. Alzheimers. 
Res. Ther. 5, 1. 

Lund, T.E., Madsen, K.H., Sidaros, K., Luo, W.-L., Nichols, T.E., 2006. Non-white noise 
in fMRI: does modelling have an impact? Neuroimage 29, 54–66. 

Miller, K.L., Alfaro-Almagro, F., Bangerter, N.K., Thomas, D.L., Yacoub, E., Xu, J., 
Bartsch, A.J., Jbabdi, S., Sotiropoulos, S.N., Andersson, J.L.R., Griffanti, L., 
Douaud, G., Okell, T.W., Weale, P., Dragonu, I., Garratt, S., Hudson, S., Collins, 
R., Jenkinson, M., Matthews, P.M., Smith, S.M., 2016. Multimodal population brain 
imaging in the UK Biobank prospective epidemiological study. Nat. Neurosci. 19, 
1523–1536. 

Mufson, E.J., Malek-Ahmadi, M., Perez, S.E., Chen, K., 2016. Braak staging, plaque 
pathology, and APOE status in elderly persons without cognitive impairment. 
Neurobiol. Aging 37, 147–153. 

Nasreddine, Z.S., Phillips, N.A., Bédirian, V., Charbonneau, S., Whitehead, V., Collin, I., 
Cummings, J.L., Chertkow, H., 2005. The Montreal Cognitive Assessment, MoCA: 
a brief screening tool for mild cognitive impairment. J. Am. Geriatr. Soc. 53, 695–
699. 

Orban, P., Dansereau, C., Desbois, L., Mongeau-Pérusse, V., Giguère, C.-É., Nguyen, 
H., Mendrek, A., Stip, E., Bellec, P., 2017. Multisite generalizability of schizophrenia 
diagnosis classification based on functional brain connectivity. Schizophr. Res. 

Orban, P., Madjar, C., Savard, M., Dansereau, C., Tam, A., Das, S., Evans, A.C., Rosa-
Neto, P., Breitner, J.C.S., Bellec, P., PREVENT-AD Research Group, 2015. Test-
retest resting-state fMRI in healthy elderly persons with a family history of 
Alzheimer’s disease. Sci Data 2, 150043. 

Power, J.D., Barnes, K.A., Snyder, A.Z., Schlaggar, B.L., Petersen, S.E., 2012. 
Spurious but systematic correlations in functional connectivity MRI networks arise 
from subject motion. Neuroimage 59, 2142–2154. 

Profenno, L.A., Porsteinsson, A.P., Faraone, S.V., 2010. Meta-analysis of Alzheimer’s 
disease risk with obesity, diabetes, and related disorders. Biol. Psychiatry 67, 505–

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 28, 2017. ; https://doi.org/10.1101/195164doi: bioRxiv preprint 

https://doi.org/10.1101/195164
http://creativecommons.org/licenses/by/4.0/


 

27 

512. 
Randolph, C., Tierney, M.C., Mohr, E., Chase, T.N., 1998. The Repeatable Battery for 

the Assessment of Neuropsychological Status (RBANS): preliminary clinical 
validity. J. Clin. Exp. Neuropsychol. 20, 310–319. 

Reijs, B.L.R., Teunissen, C.E., Goncharenko, N., Betsou, F., Blennow, K., Baldeiras, I., 
Brosseron, F., Cavedo, E., Fladby, T., Froelich, L., Gabryelewicz, T., Gurvit, H., 
Kapaki, E., Koson, P., Kulic, L., Lehmann, S., Lewczuk, P., Lleó, A., Maetzler, W., 
de Mendonça, A., Miller, A.-M., Molinuevo, J.L., Mollenhauer, B., Parnetti, L., Rot, 
U., Schneider, A., Simonsen, A.H., Tagliavini, F., Tsolaki, M., Verbeek, M.M., 
Verhey, F.R.J., Zboch, M., Winblad, B., Scheltens, P., Zetterberg, H., Visser, P.J., 
2015. The Central Biobank and Virtual Biobank of BIOMARKAPD: A Resource for 
Studies on Neurodegenerative Diseases. Front. Neurol. 6, 216. 

Scheltens, N.M.E., Galindo-Garre, F., Pijnenburg, Y.A.L., van der Vlies, A.E., Smits, 
L.L., Koene, T., Teunissen, C.E., Barkhof, F., Wattjes, M.P., Scheltens, P., van der 
Flier, W.M., 2016. The identification of cognitive subtypes in Alzheimer’s disease 
dementia using latent class analysis. J. Neurol. Neurosurg. Psychiatry 87, 235–
243. 

Seeley, W.W., Crawford, R.K., Zhou, J., Miller, B.L., Greicius, M.D., 2009. 
Neurodegenerative diseases target large-scale human brain networks. Neuron 62, 
42–52. 

Selkoe, D.J., 2002. Alzheimer’s disease is a synaptic failure. Science 298, 789–791. 
Sheline, Y.I., Morris, J.C., Snyder, A.Z., Price, J.L., Yan, Z., D’Angelo, G., Liu, C., Dixit, 

S., Benzinger, T., Fagan, A., Goate, A., Mintun, M.A., 2010. APOE4 allele disrupts 
resting state fMRI connectivity in the absence of amyloid plaques or decreased 
CSF Aβ42. J. Neurosci. 30, 17035–17040. 

Sperling, R.A., Karlawish, J., Johnson, K.A., 2012. Preclinical Alzheimer disease—the 
challenges ahead. Nat. Rev. Neurol. 9, 54–58. 

Stern, Y., 2006. Cognitive reserve and Alzheimer disease. Alzheimer Dis. Assoc. 
Disord. 20, S69–74. 

Tampellini, D., 2015. Synaptic activity and Alzheimer’s disease: a critical update. Front. 
Neurosci. 9, 423. 

Tanzi, R.E., 2012. The genetics of Alzheimer disease. Cold Spring Harb. Perspect. 
Med. 2. 

Vemuri, P., Jones, D.T., Jack, C.R., Jr, 2012. Resting state functional MRI in 
Alzheimer’s Disease. Alzheimers. Res. Ther. 4, 2. 

Wang, L., Brier, M.R., Snyder, A.Z., Thomas, J.B., Fagan, A.M., Xiong, C., Benzinger, 
T.L., Holtzman, D.M., Morris, J.C., Ances, B.M., 2013. Cerebrospinal fluid Aβ42, 
phosphorylated Tau181, and resting-state functional connectivity. JAMA Neurol. 70, 
1242–1248. 

Wang, L., Roe, C.M., Snyder, A.Z., Brier, M.R., Thomas, J.B., Xiong, C., Benzinger, 
T.L., Morris, J.C., Ances, B.M., 2012. Alzheimer disease family history impacts 
resting state functional connectivity. Ann. Neurol. 72, 571–577. 

Yan, C.-G., Craddock, R.C., Zuo, X.-N., Zang, Y.-F., Milham, M.P., 2013. Standardizing 
the intrinsic brain: towards robust measurement of inter-individual variation in 1000 
functional connectomes. Neuroimage 80, 246–262. 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 28, 2017. ; https://doi.org/10.1101/195164doi: bioRxiv preprint 

https://doi.org/10.1101/195164
http://creativecommons.org/licenses/by/4.0/


 

28 

Zhang, X., Mormino, E.C., Sun, N., Sperling, R.A., Sabuncu, M.R., Yeo, B.T.T., Weiner, 
M.W., Aisen, P., Weiner, M., Petersen, R., Others, 2016. Bayesian model reveals 
latent atrophy factors with dissociable cognitive trajectories in Alzheimer’s disease. 
Proceedings of the National Academy of Sciences 113, E6535–E6544. 

Bellec, P., Benhajali, Y., Carbonell, F., Dansereau, C., Albouy, G., Pelland, M., 
Craddock, C., Collignon, O., Doyon, J., Stip, E., Orban, P., 2015. Impact of the 
resolution of brain parcels on connectome-wide association studies in fMRI. 
NeuroImage 123, 212–228. 

 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 28, 2017. ; https://doi.org/10.1101/195164doi: bioRxiv preprint 

https://doi.org/10.1101/195164
http://creativecommons.org/licenses/by/4.0/

