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Abstract 

Humans have a comparatively higher rate of more polymorphisms in regulatory regions of the 

primate CCR5 gene, an immune system gene with both general and specific functions. This has been 

interpreted as allowing flexibility and diversity of gene expression in response to varying disease loads. A 

broad expression repertoire is useful to humans—the only globally distributed primate—due to our 

unique adaptive pattern that increased pathogen exposure and disease loads (e.g., sedentism, subsistence 

practices). The main objective of the study was to determine if the previously observed human pattern of 

increased variation extended to other members of our genus, Homo. The data for this study are mined 

from the published genomes of extinct hominins (four Neandertals and two Denisovans), an ancient 

human (Ust’-Ishim), and modern humans (1000 Genomes). An average of 15 polymorphisms per 

individual were found in human populations (with a total of 262 polymorphisms). There were 94 

polymorphisms identified across extinct Homo (an average of 13 per individual) with 41 previously 

observed in modern humans and 53 novel polymorphisms (32 in Denisova and 21 in Neandertal). Neither 

the frequency nor distribution of polymorphisms across gene regions exhibit significant differences within 

the genus Homo. Thus, humans are not unique with regards to the increased frequency of regulatory 

polymorphisms and the evolution of variation patterns across CCR5 gene appears to have originated 

within the genus. A broader evolutionary perspective on regulatory flexibility may be that it provided an 

advantage during the transition to confrontational foraging (and later hunting) that altered human-

environment interaction as well as during migration to Eurasia and encounters with novel pathogens.  
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Introduction  

Chemokine receptors facilitate communication between cells and the environment [1, 2] and mediate 

the activity of chemokines, proteins secreted by the immune system genes to chemically recruit immune 

cells to infection sites via chemotaxis [2, 3]. The cell surface chemokine receptor CCR5 (a G protein-

coupled receptor) is best known for its adaptive immune system role in binding the M-tropic human 

immunodeficiency virus (HIV) and creating a gateway to host cell infection [3-12]. In several mammals, 

CCR5 genes present high levels of gene conversion with the chromosomally adjacent CCR2 [13-18]. 

Primate CCR5 gene structure, open reading frame (ORF), and amino acid identity are evolutionary highly 

conserved [2, 19-21] and interspecific gene sequences are functionally similar [20]. There is, however, 

common and significant variation across species outside conserved regions. Most of these polymorphisms 

are not deleterious to health and tolerated due to the redundancy of the chemokine family in ligand 

binding [2, 22]. New World Monkeys have a high number of functional polymorphisms due to lentivirus 

resistance [23]. Further, humans have been found to have a significantly high number of cis-regulatory 

region polymorphisms in comparison to 36 non-human primate species of apes, Old World Monkeys, and 

New World Monkeys [20]. Humans also have a specific a 32bp deletion in Exon 3, CCR5Δ32 [24, 25], 

that results in a non-functional protein [24-29]) associated with HIV-resistance and West Nile Virus 

susceptibility in northern European populations [30-42]. 

Located on Chromosome 3 (3p21), human CCR5 is 6,065 bases long with an ORF of 1,056 bases that 

codes for a protein with 352 residues. Two common transcripts (B with three exons and the more stable A 

with four) likely resulted from non-coding upstream polymorphisms in two separate gene promotors (the 

functionally weaker cis-acting promoter (PU) upstream of Exon 1 and the downstream promoter (PD) 

upstream of Exon 3 [19, 20]. These transcripts cause alternate splicing (differential inclusion or exclusion 

of exons) in messenger RNA that affects regulation of cell surface receptor expression levels [20-22].  
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The plasticity in regulation of gene expression via alternate transcripts and increased polymorphisms 

[20-22] makes human CCR5 particularly interesting from a broader evolutionary perspective. Homo has 

one of the broadest adaptive ranges of any species [43] and human CCR5’s ability to rapidly respond to 

new pathogens [19, 20] may have served an adaptive function during evolutionary migration and shifts in 

human-environment relationships with changes to subsistence. Our genomes carry vast evidence of past 

disease responses [44-46] that are shared across the genus and reflect a unique disease pattern for Homo. 

For example, there is strong evidence for increased disease risk via genetic load in extinct Homo and past 

human populations [47] and archaeological evidence for past disease treatment (ingestion of anti-biotic 

and anti-fungal non-food plants) in Neandertals [48-52]. CCR5 has been well studied due to its role in 

HIV infection (with a focus on natural selection acting on the 32bp deletion) but no work has explored 

variation within the genus Homo more broadly.  

The plethora of research on the evolution CCR5 was conducted prior to the generation of deep 

coverage, high quality paleogenomes for extinct hominins, such as Neandertal species and the newer 

Denisova species. While paleogenomic sample sizes are not robust to make statements on selection or add 

to a discussion of other evolutionary forces acting on variation, they provide an evolutionary dimension to 

understanding the patterns of variation characterizing our genus and insights into possible adaptations to 

new environments, subsistence regimes, and pathogens [53]. Plus, the sample of ancient genome is 

increasing every year. Just a few insights gained from a single paleogenomes include ground-breaking 

studies on evolution of skin color in humans [54]and Neandertals [55] and the introgression of 

functionally adaptive polymorphisms into the human immune system genes from Altai Neandertal [56]. 

Understanding the differences between derived and specific variation also enables potential 

differentiation of challenges we overcame as a genus such as obligate bipedalism [57] or high-altitude 

adaptation [58] versus challenges we overcame as a species such as the biocultural evolution of sickle-cell 

trait and malaria infection [59]. Thus, the overall aim of this research is to place humans within the 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 27, 2018. ; https://doi.org/10.1101/195081doi: bioRxiv preprint 

https://doi.org/10.1101/195081
http://creativecommons.org/licenses/by-nc-nd/4.0/


5 

 

context Homo and examine if the pattern of humans having a significantly higher number of cis-

regulatory region polymorphisms (compared to 36 non-human primate species of apes, Old World 

Monkeys, and New World Monkeys) [20] is specific or one that is shared by our genus.  

Variation in CCR5 was examined in humans and extinct hominins to address the questions: are there 

shared patterns of variation across the genus for polymorphism frequency and is the distribution of 

polymorphisms across the gene suggestive of a common evolutionary trajectory? Based on previous 

studies on human-nonhuman primate gene structure and variation and the finding that human 

polymorphisms allow flexible CCR5 gene expression [19, 20], the expectation is that there is a shared 

pattern of variation that aided adaptation for members of the geographically and ecological dispersed 

genus Homo. Both expectations were met. 

Materials 

Modern human data is from the 1000 Genomes Project [60], which contains data for 2,504 

individuals from 26 populations (Table 1). While coverage is low per individual, the data are robust 

enough to identify the majority of polymorphisms at a frequency of at least 1% in the populations studied, 

which is suitable for the current study. Extinct Homo data are from two Denisova samples (Denisova 3 

and 2) and four samples from the Neandertal Genome Project (Vindija, Altai, El Sidron, Mezmaiskaya). 

These species are Pleistocene Eurasian hominins with Denisova representing an eastern Eurasian 

Pleistocene population and Neandertal a western one (with some overlap with Denisova in Siberia). All 

genomes have high coverage (excepting Mezmaiskaya and Sidron); contamination with modern human 

DNA is estimated to be less than 1% for the extinct hominins [50, 61-64]. 

Table 1: Samples plus polymorphism totals 

Region Population Name n Var AvVar/Pop 

Africa African Caribbeans in Barbados 96 1464 15 

 Americans of African Ancestry in SW USA 61 1049 17 
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 Esan in Nigeria 99 1499 15 

 Gambian in Western Divisions in the Gambia 113 1744 15 

 Luhya in Webuye, Kenya 99 1469 15 

 Mende in Sierra Leone 85 1420 17 

 Yoruba in Ibadan, Nigeria 108 1786 17 

America Colombians from Medellin, Colombia 94 1688 18 

 Mexican Ancestry from Los Angeles USA 64 1111 17 

 Peruvians from Lima, Peru 85 1184 14 

 Puerto Ricans from Puerto Rico 104 1699 16 

East Asia Chinese Dai in Xishuangbanna, China 93 2222 24 

 Han Chinese in Bejing, China 103 2278 22 

 Southern Han Chinese 105 2328 22 

 Japanese in Tokyo, Japan 104 1929 19 

 Kinh in Ho Chi Minh City, Vietnam 99 2411 24 

Europe 
Utah Residents (CEPH) with Northern and Western European 

Ancestry 
99 1664 17 

 Finnish in Finland 99 1484 15 

 British in England and Scotland 91 1417 16 

 Iberian Population in Spain 107 1755 16 

 Toscani in Italia 107 2132 20 

South Asia Bengali from Bangladesh 86 1729 20 

 Gujarati Indian from Houston, Texas 103 1818 18 

 Indian Telugu from the UK 102 1907 19 

 Punjabi from Lahore, Pakistan 96 1831 19 

 Sri Lankan Tamil from the UK 102 1952 19 

Homo Altai 1 7 7 

 Denisova 3 1 10 10 

 Denisova 2 1 39 39 

 El Sidron 1 0 0 

 Mezmaiskaya 1 28 28 

 Ust'-Ishim 1 15 15 

  Vindija 1 8 8 

 

Methods 

The human reference sequences for two common transcript variants for the CCR5 gene (NM_000579 

and NM_001100168) were downloaded from the National Center for Biotechnology Information (NCBI). 
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The modern human variation data (CCR5 and cis-acting elements) were downloaded from 1000 Genomes 

via ftp as variant call format (VCF) files (ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/). All data were 

downloaded to and analyzed using the University of Alaska Research Computing Systems. All files were 

aligned to the human genome GRCh37/hg19.  VCF files for six extinct hominin species and one extingt 

human (Ust’-Ishim) were downloaded from the Max Planck Institute Leipzig. Ancient DNA often 

contains C-to-T deaminations at the end of reads [for a review see 65].  The lack of variation identified 

from paleogenomic sequence reads is unlikely to be a result of typical problems associated with ancient 

DNA sequence reads since chemical processes like deamination would increase SNPs (whether false or 

not). More significantly, the paleogenomes were generated using protocols [typically as reported in 66] 

that largely eliminates this error. Despite high levels of variation at this locus and evidence for balancing 

selection in humans at this locus, strong levels of introgression from inter-breeding with Neandertals in 

Eurasia have not been reported at this locus, as they have for other immune system loci in similar 

scenarios [27, 67-72]; introgression data from the Reich lab (https://reich.hms.harvard.edu/datasets) [73] 

confirm this is the case. Moreover, the African genetic variation is similar to European genetic variation 

which suggests that diversity was already present in modern humans prior to any admixture with archaic 

species in Europe.  

Distribution of polymorphisms was guided by the structure provided by Mummidi et al. [19] and 

included promoter regions (PU and PD), ORF, and CCR5. The target area for PU was the most inclusive 

range (-1976 to +33) which avoided overlap with PD and because little difference was noted between 

putative PU regions studied by Mummidi et al [19]. The target area for PD was the most productive range 

(+119 to +828). Significant difference in distribution of polymorphisms across gene structure for all 

samples was tested using Monte Carlo methods for the exact test. 

Results and Discussion 
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Previous research has examined gene structure [19], gene variation within primate species [20], and 

selection acting on the gene primarily in response to viral load [21, 22, 33, 40, 41, 74] [6, 10, 21, 33, 36, 

37, 40, 41, 74, 75]. The goal of this research was to establish if the pattern of human variation and 

distribution of polymorphisms in CCR5 [20] is specific (i.e., unique in the human species) or genus-wide 

(i.e., a pattern shared by Homo).  

Are there shared patterns of variation across the genus for polymorphism frequency? In the modern 

human sample, 262 known SNPs were observed (Table 2, Supplementary Table 2 contains all 1000 

Genomes variants). SNP frequency per individual (total SNPs in a population/total number of individuals) 

within the 26 populations ranged from 14 to 24, with East Asians exhibiting the highest variation and 

Africa and the Americas the least (Table 1). There were 94 polymorphisms identified across all extinct 

Homo samples (Altai, Denisova 3 and 2, Mezmaiskaya, Ust’-Ishim, Vindija, and El Sid), an average of 13 

per individual included in analysis (Table 1 and 2; Supplementary Table 1). No polymorphisms were 

found in the El Sidron specimen and, as a result, it is not included in the tables. Some polymorphisms in 

extinct Homo (n=41) have been previously observed in modern humans (Table 2). There were 53 novel 

polymorphisms identified, 32 in Denisova (1 in Denisova 3, 31 in Denisova 2) and 21 in Mezmaiskaya. 

Table 2 summarizes extinct Homo polymorphisms.  

Table 2: Homo CCR5 Polymorphisms 

Position RefSeq Ref Alt Stucture 1KG Alt Den3 Den2 Mez Ust Vin 

46409845 Novel C A PU     *   

46410036 rs7637813 G A PU * * * *  * * 

46410114 Novel C G PU     *   

46410146 Novel G A PU     *   

46410306 rs41499550 T C PU *  * *    

46410494 rs2856757 A C PU *     *  

46410499 rs41395049 T C PU *  * *    

46410507 rs41412948 C T PU * *   *  * 

46410936 rs2734225 G T PU *     *  

46410992 Novel G A PU     *   

46411074 Novel C T PU     *   

46411080 Novel C T PU     *   
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46411083 rs553230690 C T PU *    *   

46411133 rs41475349 G A PU *  * *    

46411295 Novel C T PU     *   

46411390 Novel C G PU     *   

46411542 rs2227010 G A PU * * * *  * * 

46411782 Novel G C CCR5    *    

46411784 Novel G A CCR5    *    

46411790 Novel T G CCR5    *    

46411840 rs2734648 G T CCR5 *  *   *  

46411869 Novel G A CCR5     *   

46411870 Novel G A CCR5     *   

46411935 rs1799987 A G CCR5 * * * * * * * 

46412208 Novel G A CCR5     *   

46412259 rs1799988 C T CCR5 * * *  * * * 

46412271 Novel G A CCR5     *   

46412285 Novel C T CCR5     *   

46412308 rs1800023 A G CCR5 *     *  

46412495 Novel G A CCR5     *   

46412559 rs1800024 C T CCR5 *     *  

46413157 Novel G A CCR5    *    

46413192 Novel G A CCR5    *    

46413193 Novel G A CCR5    *    

46413334 rs2856762 C T CCR5 * *   *  * 

46413418 rs2254089 C T CCR5 *     *  

46413629 Novel T G CCR5    *    

46413631 Novel G T CCR5     *   

46413632 rs188423028 G A CCR5 *    *   

46413633 Novel C G CCR5    *    

46413638 Novel A G CCR5    *    

46413647 Novel C A CCR5     *   

46413743 rs2856764 C T CCR5 *     *  

46413911 Novel T C CCR5    *    

46413914 Novel A C CCR5    *    

46413927 Novel G T CCR5    *    

46413950 rs2856765 G A CCR5 *     *  

46414035 rs41515644 A G CCR5 *     *  

46414612 Novel C G CCR5, PD, ORF    *    

46414618 rs1800941 T C CCR5, PD, ORF *   *    

46414794 Novel T A CCR5, PD, ORF    *    

46414925 rs199824195 T C CCR5, PD, ORF *   *    

46414926 Novel G C CCR5, PD, ORF    *    

46414975 Novel G T CCR5, PD, ORF    *    
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46415095 Novel G A CCR5, PD, ORF     *   

46415202 Novel G C CCR5, PD, ORF    *    

46415216 Novel T C CCR5, PD, ORF    *    

46415264 Novel T G CCR5, ORF    *    

46415383 Novel G C CCR5, ORF    *    

46415453 Novel C T CCR5, ORF     *   

46415501 Novel T A CCR5, ORF    *    

46415771 Novel C T CCR5    *    

46415857 Novel G A CCR5    *    

46415858 Novel G A CCR5    *    

46416030 Novel G A CCR5    *    

46416038 Novel G T CCR5    *    

46416216 rs17765882 C T CCR5 *      * 

46416413 Novel G C CCR5    *    

46416470 rs1800874 G T CCR5 *     *  

46416512 Novel T G CCR5    *    

46416517 Novel A G CCR5    *    

46416525 Novel T C CCR5    *    

46416633 Novel C T CCR5     *   

46417004 Novel C T CCR5     *   

46417069 rs41442546 C A CCR5 *    *   

46417219 Novel A T CCR5    *    

46417302 Novel T C CCR5   *     

46417312 rs746492 G T CCR5 * * *   * * 

46417614 Novel G A CCR5         *     

 

Is the distribution of polymorphisms across the gene suggestive of a common evolutionary trajectory? 

The frequency of polymorphisms across gene structure are used rather than counts because the human 

sample is much larger and captures an exponentially greater number of polymorphisms as a result (see 

Supplementary Table 3 for raw count sumamry). Both humans and extinct members of our genus exhibit 

more polymorphisms in gene regulatory regions (Table 3) suggesting a shared pattern of variation across 

Homo. When polymorphisms occur in both PU and PD, there is a greater frequency in the functionally 

stronger regulatory area, PD, but in four ancient samples (Altai, Denisova 3, Vindija, and Ust-Ishim), they 

only occur in PU (see Supplementary Table 3); only Denisova 2 and Mezmaiskaya had no polymorphisms 

in the ORF. The comparatively lower frequency across all samples reflects the conservation trend noted in 
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primates [19, 20]. A structural analysis of the distribution of polymorphisms via an Exact Test indicated 

no significant statistical differences among all samples (results not shown). Given the expected frequency 

of polymorphism (based on the perception of CCR5 covered by an area of interest—see Table 3 

footnotes), there is a significant pattern in the samples. First, modern humans and Denisova 2 have a 

greater than expected number of polymorphisms in the ORF (even if these are exceeded by 

polymorphisms in regulatory regions). All samples (except Denisova 2) have a greater than expected 

number of polymorphisms in the promoter regions.  

Table 3: Variation in gene structure, polymorphisms as percentage  

  Expected Actual             

 RefSeq 1kg alt den3 den2 mez ust vin 

ORF 17.46% 22.33% 0.00% 0.00% 32.35% 11.11% 0.00% 0.00% 

PU 33.80% 32.94% 75.00% 100.00% 28.89% 55.00% 36.36% 60.00% 

 
1 Percent CCR5 covered by ORF 
2 Percent Promoter+CCR5 covered by promoters 

 

Prior research found that humans have a potentially unique plasticity in gene expression due to the 

effect of alternate splicing [57]. The distribution of polymorphisms across gene regions in Homo suggests 

plasticity in gene regulation and expression in response to viral loads, as noted in previous studies [19, 

20]. The pattern of immune gene introgression, particularly regulatory haplotypes in the antiviral OAS 

gene cluster [67], has suggested that selective forces in our close relatives operated on expression, not 

protein variation—same as seen in non-human primate CCR5 variation [19, 20]—and those adaptations 

were also useful to humans. Thus, an increase in polymorphisms that allowed plasticity in regulation and 

expression in CCR5 makes sense even if it is not due to introgression. Without functional testing, the 

exact nature of the polymorphisms is not known other than by inference and comparative analysis, as 

done here. And, without more paleo-genomes to compare, we cannot know if the variation in these 

genomes represents true species variation but the data presented here indicate that the pattern is not 

human specific, rather one shared by recent members of Homo. 
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The expectation that extinct hominins and modern humans would share this pattern of increased 

variation in the regulatory areas of the gene is met in the current study. Our genus has several unique 

behavioral and genetic adaptations compared to nonhuman primates and these adaptations might hold 

some avenues for further research. For instance, a genus-wide shift in subsistence activities occurred 

during the Plio-Pleistocene (roughly 2 million years ago) from opportunistic non-confrontational 

scavenging to confrontational scavenging and, later, top predatory behaviors; this alteration to hominin-

environment interaction brought hominins into greater and regular contact with animal carcasses [76-81]. 

Neandertals in Europe have also been shown to be active hunters and foragers [82] who experienced 

increased pathogen exposure and disease load as a result [48, 49, 51, 83]. Humans and European 

Neandertals would have shared similar ecological adaptive pressures in Europe—broad and varied—

whereas Altai Neandertal (related to European Neandertals) and Denisova would have shared similar 

ecological adaptive pressures in Siberia with Ust’-Ishim—less varied. Key pathogens year-round in 

tropical to temperate zones are more likely to be viral (vector-borne) or bacterial (zoonotic) with 

transmission via interaction with the environment [84]; high latitude pathogens year-round are more 

likely parasitic due to the reliance on marine mammals [85] and the short season for viral vector 

reproductive cycles to transmit infection from insects to hominins [35]. Evidence for gene introgression 

from extinct hominin species to modern humans is clustered (among other domains) in immune system 

genes [27, 69, 73, 86]; in particular, the OAS anti-viral gene cluster on Chromosome 12 shows signatures 

of positive selection [69, 73], which suggests that adaptation to Eurasian pathogens may have been partly 

facilitated by prior adaptative mutations to local viral loads. At a minimum, the environmental challenge 

faced by non-human members of Homo facilitated human adaptation to a new environment—a shared 

challenge with a similar solution.  

While previous studies have examined variation in CCR5, particularly CCR5Δ32 which has a more 

recent origin [36-42], as a product of more recent human-disease interaction, the widespread pattern of 
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increased variation in the gene across the genus Homo identified in this study suggests a potential 

evolutionary adaptation. A key event distinguishing members of the genus Homo from the last common 

ancestor with Australopithecus was the shift to confrontational scavenging and, later, hunting; this 

alteration to human-environment interaction added a new point of disease contact as evidenced by modern 

data showing hunting bushmeat (which ancient hominins did too [80]) alters disease exposure via 

introduction of retroviruses and other pathogens [87-91]. Given CCR5‘s role in both innate and adaptive 

immune system functioning, its plasticity may have provided an advantage to members of Homo across 

these varied disease ecologies and its potentially greater than normal interaction with the environment in 

foraging and hunting activities. As more ancient genomes become sequenced, we can have more robust 

data with which to work and invest resources into functional testing and experimentation of what function 

these polymorphisms might have had.  
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