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Abstract   19 

The Illumina Infinium MethylationEPIC provides an efficient platform for profiling DNA 20 

methylation in humans at over 850,000 CpGs. Model organisms such as mice do not 21 

currently benefit from an equivalent array. Here we used this array to measure DNA 22 

methylation in mice. We defined probes targeting conserved regions and performed a 23 

comparison between the array-based assay and affinity-based DNA sequencing of 24 

methyl-CpGs (MBD-seq). Mouse samples consisted of 11 liver DNA from two strains, 25 

C57BL/6J (B6) and DBA/2J (D2), that varied widely in age. Linear regression was 26 

applied to detect differential methylation. In total, 13,665 probes (1.6% of total probes) 27 

aligned to conserved CpGs. Beta-values (β-value) for these probes showed a 28 

distribution similar to that in humans. Overall, there was high concordance in 29 

methylation signal between the EPIC array and MBD-seq (Pearson correlation r = 0.70, 30 

p-value < 0.0001). However, the EPIC probes had higher quantitative sensitivity at 31 

CpGs that are hypo- (β-value < 0.3) or hypermethylated (β-value > 0.7). In terms of 32 

differential methylation, no EPIC probe detected significant difference between age 33 

groups at a Benjamini-Hochberg threshold of 10%, and the MBD-seq performed better 34 

at detecting age-dependent change in methylation. However, the top most significant 35 

probe for age (cg13269407; uncorrected p-value = 1.8 x 10-5) is part of the clock CpGs 36 

used to estimate the human epigenetic age. For strain, 219 Infinium probes detected 37 

significant differential methylation (FDR cutoff 10%) with ~80% CpGs associated with 38 

higher methylation in D2. This higher methylation profile in D2 compared to B6 was also 39 

replicated by the MBD-seq data. To summarize, we found only a small subset of EPIC 40 

probes that target conserved sites. However, for this small subset the array provides a 41 
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reliable assay of DNA methylation and can be effectively used to measure differential 42 

methylation in mice. 43 

Keywords: DNA methylation, epigenetics, microarray, cross-species comparison 44 
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Introduction 46 

There has been a surge in large-scale epigenetic studies in recent years. In particular, 47 

epigenome-wide association studies (EWAS) of DNA methylation have shown 48 

association with physiological traits [1,2], diseases [3-5], environmental exposures [6,7], 49 

aging [8], and even socioeconomic [9] and emotional experiences [10]. The 50 

development of robust and reliable methylation microarrays has been an important 51 

driving force. In particular, the Illumina Human Methylation BeadChips have made it 52 

both convenient and cost-effective to incorporate an epigenetic arm to large 53 

epidemiological studies [11,12]. The latest version, the Illumina Infinium 54 

MethylationEPIC BeadChip (EPIC), provides an efficient high throughput platform to 55 

quantify methylation at 866,836 CpG sites on the human genome [13,14]. A remarkable 56 

biological insight that has emerged from these array-based studies is the definition of 57 

the methylation-based “epigenetic clock,” a biomarker of human age and aging (i.e., the 58 

epigenetic clock) that is defined using specific probes represented on these arrays [8].  59 

Currently there is no equivalent microarray platform for model organisms and work in 60 

experimental species have largely relied on high-throughput sequencing. For instance, 61 

while the human DNA methylation age can be calculated from a few hundred probes on 62 

the Illumina BeadChips, a similar effort in mice required a more extensive sequencing of 63 

the mouse methylome [15]. However, CpG islands (CGIs) are largely conserved 64 

between mice and humans and the two species share similar numbers of CGIs and 65 

similar proportions of CGIs in promoter regions of genes [16]. Considering that these 66 

CpGs and CGIs are highly conserved in gene regulatory regions, it is feasible that 67 
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probes on the human microarrays that target these sites may have some application in 68 

research using rodent models. This was previously evaluated for the two older versions 69 

of the Illumina HumanMethylation BeadChips [17]. The work by Wong et al. 70 

demonstrated that a subset of the probes targeting highly conserved sites provide 71 

reliable measures of DNA methylation in mice, and could be feasibly used to evaluate 72 

tissue specific methylation and in cancer related studies using the mouse as a model 73 

system.  74 

In the present work, we extend the conservation analysis to the EPIC platform, and 75 

evaluate the capacity of these probes to detect differential methylation. We begin by 76 

defining the conserved probes and the key features of the corresponding CpG sites in 77 

the context of the larger mouse and human genome. We also compare the methylation 78 

signal detected by the conserved probes with affinity-based methyl-CpG enriched DNA 79 

sequence (MBD-seq) data from the same samples and evaluate if the conserved 80 

probes are informative of age and strain differences in mice.  81 

Materials and Methods  82 

Defining Conserved EPIC probes  83 

Sequences for the 866,836 CpG probes were obtained from Illumina 84 

(http://www.illumina.com/). The probe sequences were aligned to the mouse genome 85 

(mm10) using bowtie2 (version 2.2.6) with standard default parameters. A total of 86 

34,981 probes aligned to the mouse genome of varying alignment quality. Conserved 87 

probes were then defined based on quality of alignment. For this, we filtered out all 88 
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sequences with a low mapping quality (MAPQ) of less than 60 (15,717 excluded) and 89 

those that contain more than two non-matching base pairs (1,092). To retain only the 90 

high quality probes, we further filtered probes based on confidence in DNA methylation 91 

signal and based on this, 4,507 probes with detection p-values > 0.0001 were removed. 92 

This generated a list of 13,665 high quality probes that are conserved sequences and 93 

provide reliable methylation assays in mice (these are listed in Supplementary Data 94 

S1). CpG island annotations [18] for the respective genome were downloaded from 95 

UCSC Genome Browser (http://genome.ucsc.edu) and distribution of conserved probes 96 

and positions of CGIs  were plotted to the human (GRCh37) and mouse (mm10) 97 

genomes using CIRCOS [19]. 98 

For conserved sequences, there is high correspondence in functional and genomic 99 

features between mouse and human genomes and we referred to the human probe 100 

annotations provided by Illumina to define the location of conserved probes with respect 101 

to gene features and CpG context  (i.e., islands, shores, shelves) (Supplementary 102 

Data S1). To evaluate if the conserved set is enriched in specific features relative to the 103 

full background set, we performed a hypergeometric test using the phyper function in R.  104 

Animals and sample preparation  105 

Tissues samples were derived from mice that were part of an aging cohort maintained 106 

at the University of Tennessee Health Science Center (PI: Robert W. Williams). Details 107 

on animal rearing and sample collection are described in Mozhui and Pandey 2017 [20]. 108 

All animal procedures were approved by the UTHSC Animal Care and Use Committee. 109 
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Liver tissues were collected from mice aged at ~4 months (mos; young), ~12 mos (mid), 110 

and ~24 mos (old). The mice were of two different strains—C57BL/6J (B6) and DBA/2J 111 

(D2)—and as the colony was set up to study aging in females, the majority of the mice 112 

in this study are females (Table 1). Mice were euthanized by intraperitoneal injection of 113 

Avertin (250 to 500 mg/kg of a 20 mg/ml solution), followed by cardiac puncture and 114 

exsanguination. All sample collection procedures were done on the same day within a 115 

3-hour timeframe. Liver samples were snap-frozen and stored at -80°C until use. 116 

DNA was purified from the liver tissue using the Qiagen AllPrep kit 117 

(http://www.qiagen.com) on the QIAcube system. Nucleic acid quality was checked 118 

using a NanoDrop spectrophotometer (http://www.nanodrop.com). As reference, we 119 

also included two human samples. These are DNA derived from the buffy coats from 120 

two individuals. 121 

Table 1: Sample details and average methylation signal intensity  122 

     Full set 
(850K) 

 Conserved set 
(13665) 

Sample Age 
Age 

(months) 
Strain

1 
Sex Mean Median  Mean Median 

Mouse1 young 4 D2 F 505 394  3206 1898  

Mouse2 young 4 D2 F 926 524  10989 10278 

Mouse7 young 4 B6 F 877 538  9866 8702 

Mouse8 young 4 B6 F 766 397  10386 9975 

Mouse3 mid 12 D2 F 852 483  10615 9880 

Mouse4 mid 12 D2 F 818 430  10866 10542 

Mouse5 mid 12 D2 M 845 456  11545 10982 

Mouse9 mid 12 B6 M 852 444  11433 11187 

Mouse6 old 24 D2 F 737 379  10206 9611 

Mouse10 old 24 B6 F 845 448  10767 10436 

Mouse11 old 24 B6 F 886 490  11302 10741 

Human1     7568 7218  8710 8616 

Human2     10668 10288  11761 11599 
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1 D2: DBA/2J; B6: C57BL/6J 123 

 124 

DNA methylation microarray and data processing  125 

DNA methylation assays were performed as per the standard manufacturer’s protocol 126 

(http://www.illumina.com/). In brief, 500 ng of DNA extracted from the mouse liver was 127 

treated with sodium bisulfite to convert cytosine to uracil. The 5-methyl cytosine remains 128 

unreactive to sodium bisulfite. The DNA is then hybridized to the EPIC BeadChip. After 129 

washing off unhybridized DNA, a single base extension was recorded to calculate the 130 

methylation level at the CpG probe site. DNA methylation assays were performed at the 131 

Genomic Services Lab at the HudsonAlpha Institute for Biotechnology 132 

(http://hudsonalpha.org). Raw intensity data files (idat files) for both mouse and human 133 

samples were processed using the R package, Minfi [21]. 134 

The intensity and β-values were used to evaluate the performance of the EPIC probes 135 

in mice and humans. Comparisons were based on the full set of 850K probes and the 136 

conserved set of 13,665 probes. We also used the β-values and signal intensity scores 137 

for the 13,665 probes to perform hierarchical clustering and principal component 138 

analysis for the mouse samples. From initial quality checks, we identified one outlier 139 

mouse sample (Supplementary Fig. S1) that had lower intensity and higher detection 140 

p-value compared to the other mouse samples. This sample was excluded from the 141 

statistical tests. 142 

MBD-seq comparison 143 
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The mouse samples we report here were previously assayed for DNA methylation using 144 

MBD-seq [20]. This is an affinity-based enrichment of methylated CpGs using the 145 

methyl binding domain (MBD) of methyl-CpG-binding protein 2, followed by high 146 

throughput sequencing (MBD-seq) [22-24]. Sequencing was performed on Life 147 

Technologies’ Ion Proton platform. Data have been deposited to the NCBI’s Gene 148 

Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/; GEO accession ID 149 

GSE95361) and Sequence Repository Archive (https://www.ncbi.nlm.nih.gov/sra/; SRA 150 

accession ID SRP100703). To compare methylation signal detected by the conserved 151 

EPIC arrays, we extracted MBD-seq reads at the corresponding sites. MBD-seq does 152 

not provide single-base resolution as the resolution is limited to the fragment size, in this 153 

case ~300 bp. However, since methylation levels at neighboring CpGs are largely 154 

correlated [25], we derived quantitative data from the number of read fragments that 155 

map to a CpG region. For the sites in the mouse genome targeted by the conserved 156 

EPIC probes, we expanded the window to 300 bp bins, and extracted the MBD-seq 157 

fragment counts. The CpG density-normalized methylation level was then quantified 158 

using the MEDIPS R package [26]. We then used Pearson’s correlation to compare the 159 

EPIC β-values and the relative methylation score (rms or the CpG density normalized 160 

methylation) detected by MBD-seq [27]. 161 

Analysis of differential methylation  162 

Statistical analyses were done in R (https://www.r-project.org/) and JMP Statistics (JMP 163 

Pro 12). Mice were grouped into three age categories (young, mid, and old; additional 164 

sample details are in Table 1). To evaluate differential methylation detected by the 165 
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13,655 conserved probes, we applied a regression model with age, strain and sex as 166 

predictors (~ageGroups + strain + sex) for each probe using the R glm function and type 167 

III anova to calculate test statistics (equations are provided in Supplementary Data 168 

S1). For the MBD-seq reads, we performed differential methylation analysis of the read 169 

counts using the edgeR R package [28]. The same linear regression model was applied 170 

(~ageGroups + strain + sex) and equations are provided in Supplementary Data S1. 171 

We then cross-compared differential methylation detected by the two methods. Treating 172 

the EPIC data as a discovery set, we applied the Benjamini-Hochberg (BH) procedure 173 

to control the false discovery rate (FDR) [29,30]. We then defined differentially 174 

methylated CpGs (DMCpGs) and evaluated the corresponding region in the MBD-seq 175 

data to test replication at a lenient uncorrected p-value threshold of 0.05. Likewise, in 176 

the reverse comparison, we applied an FDR threshold to identify differentially 177 

methylated regions (DMRs) in the MBD-seq data, and tested replication of the 178 

corresponding CpG at an uncorrected p-value threshold of 0.05.  179 

Results 180 

Conserved Infinium MethylationEPIC probes 181 

The human EPIC array contains 866,836 50-mer probes. Out of these, we defined a 182 

total of 13,665 probes that align to conserved sites in the mouse genome and provide 183 

high quality methylation signal (details on mapping quality scores and methylation signal 184 

confidence are provided in Supplementary data S1). In the full set of EPIC probes, 185 

71% are located within annotated gene features or within 200–1,500 bp upstream of 186 

transcription start sites (TSS). Compared to this background set, a higher percent of the 187 
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conserved probes (88%; 11,972 probes) target such functionally annotated regions. 188 

Probes that target CpGs located in exons, 5’ UTR, and within 200 bp upstream of TSS 189 

(TSS200) are highly overrepresented among the conserved set (Table 2). This is 190 

expected, since sequences in these functional regions are conserved across species. 191 

The upstream regulatory regions and the first exon harbor a large percent of CGIs, and 192 

compared to the background set, there is close to a 2.5-fold higher enrichment in CGIs 193 

among the conserved probes (Table 2). In contrast, there is no enrichment in probes 194 

that target CpGs that are between 200–1,500 bp upstream of TSS (TSS1500), gene 195 

body (mostly intronic), 3’ UTRs, and non-genic regions. Locations of the conserved 196 

probes and CGI densities in the human and mouse genomes are shown in Fig. 1. 197 

Table 2: Genomic features of CpGs and enrichment in conserved sites 198 

 Full set 
(850K)  Conserved set 

(13665)  

Feature Counts Percent 
Total  Counts Percent 

Total Enrichment p3 

Gene features1 

TSS1500 107193 12  1195 9 ns 

TSS200 65152 8  1940 14 <1.0E-15 

5'UTR 73070 8  1269 9 1.8E-04 

1stExon 26433 3  2028 15 <1.0E-15 

Exon 5680 1  282 2 <1.0E-15 

3'UTR 21594 2  340 2 ns 

Body 318165 37  4918 36 ns 

Non-Genic 249549 29  1693 12 ns 

CpG islands and flanking regions2 

Islands 161598 19  6270 46 <1.0E-15 

Shores 154735 18  2267 17 ns 

Shelves 61811 7  664 5 ns 

Open Sea 488692 56  4464 33 ns 
1 CpG position relative to gene features based on annotations from Illumina (UCSC_RefGene_Group). 199 

TSS1500 and TSS200 are CpGs at 0–200 or 200–1500 upstream of are transcription start sites; Non-200 

genic are CpG with no annotated gene features. 201 
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2 Shores = 0–2 kb from islands; shelves = 2–4 kb from islands 202 
3 Enrichment of gene features and CpG regions in the conserved set compared to the full set based on 203 

hypergeometric test 204 

 205 

 206 

Fig. 1. Location of conserved Illumina HumanMethylationEPIC probes and CpG 207 

densities in the human and mouse genomes.  208 

The outer circle displays the chromosomes and circular karyotype of the human and 209 

mouse genomes. CpG island (CGI) density is shown in the second circle. The 210 

innermost circle displays the positions of CpGs targeted by the 13,665 conserved 211 

probes. 212 

 213 

Comparison of probe performance in mouse and human samples  214 

We used data generated from two human samples as reference. Using the full set of 215 

850K probes, the mouse samples showed low overall signal intensity (Fig. 2A). The 216 

mean signal intensity for the two human samples was 9,118 ± 2,192 (Table 1). For the 217 

mouse samples, the mean signal intensity was 810 ± 114 (Table 1). The β-value 218 

distribution also showed poor performance for mice with a peak β-value at 0.4 that 219 

indicates failure for probes. The methylation β-values in human samples showed the 220 

expected bimodal distribution that characterizes the Illumina methylation arrays (Fig. 221 

2B) [13,14].  222 

The EPIC BeadChip clearly performed poorly in mice when we considered the full set of 223 

probes. However, when we considered only the 13,665 conserved probes, the 224 

methylation signal became comparable between the mouse and human samples. Total 225 
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mean signal intensity for the mouse samples ranged from 9,866 to 11,545 (Mouse1, 226 

which failed the initial QC, has very low signal intensity compared to the other mouse 227 

samples; this was excluded from differential methylation analysis) (Table 1). Mean 228 

signal intensity for the two human samples were 8,711 and 11,761 (Table 1). The 229 

bimodal β distribution was also observed for this set of conserved probes in mouse 230 

samples (Fig. 2C, 2D). 231 

 232 

Fig. 2. Distribution of signal intensities and methylation β-values in mice and 233 

humans. 234 

For the full set of 866,836 probes on the Illumina Infinium MethylationEPIC, the mouse 235 

samples have (A) low signal intensity compared to the two human samples, and (B) the 236 

β-values have a unimodal distribution that peaks at ~0.4. The two human samples have 237 

the expected bimodal distribution for β-values. For the conserved set of 13665 probes, 238 

both the (C) signal intensity, and (D) the β-value distribution in the mouse samples are 239 

comparable to the two human reference samples. The signal intensity for mouse1 is 240 

relatively low for the conserved set of probes and this sample plots as an outlier in the 241 

principal component analysis. 242 

 243 

Comparison with MBD-seq 244 

To determine if we could find concordant methylation signal, we compared the 245 

microarray β-values with the CpG density-normalized rms derived from MBD-seq data 246 

(average β-values and rms are provided in Supplementary data S1). Overall, there 247 
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was concordance between the two technologies, and the β-values and rms were 248 

significantly correlated (Pearson’s correlation of 0.70, p < 0.0001). We grouped the 249 

EPIC probes into three categories based on β-values—hypomethylated for β < 0.3, 250 

hemimethylated for 0.3 ≤ β ≤ 0.7, and hypermethylated for β > 0.7—and examined 251 

correlations with the rms within each category. Given the high representation of islands 252 

and CpGs in 5’ regions of genes, which generally remain hypomethylated [16,31], the 253 

majority of the conserved probes fell into the hypomethylated category (Table 3). For 254 

the hypomethylated probes, 82% of the corresponding CpG regions also had rms < 0.3 255 

(Table 3) and there was modest correlation between the rms and β-values (Pearson’s r 256 

= 0.18; p = 0.0001; Fig. 3A). For many of the CpGs regions that correspond to the 257 

hypomethylated probes, the rms were close to 0 and appeared unmethylated in the 258 

MBD-seq data. For hemimethylated probes, 58% of the corresponding regions had 0.3 259 

≤ rms ≤ 0.7 and 31% had rms < 0.3. This subset showed the highest correlation 260 

between the β-values and rms (r = 0.46; p < 0.0001; Fig. 3B). For hypermethylated 261 

probes, only 40% of corresponding regions were associated with rms > 0.7, and 54% 262 

had 0.3 ≤ rms ≤ .7. This subset showed lower correlation between the β-values and rms 263 

(r = 0.04, p = 0.0392; Fig. 3C). The corresponding CpG regions for this 264 

hypermethylated set tended to have rms close to 0.75. This clustered rms distribution 265 

for CpG regions at the lower and upper levels of methylation indicate that the MBD-seq 266 

has lower quantitative sensitivity at these regions.  267 

Overall, the strong concordance with the MBD-seq data shows that the conserved EPIC 268 

probes provide a reliable quantification of methylation in mice. However, for CpGs that 269 
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are hypomethylated or hypermethylated, the EPIC technology may have an advantage 270 

and provide higher quantitative sensitivity compared to the MBD-seq.  271 

Table 3. Counts of Illumina HumanMethylationEPIC probes by β-value and 272 

concordance with MBD-seq at corresponding CpG regions 273 

  Counts of CpG regions by rms value2 
CpG 

Category1 
Probes 
counts1 rms < 0.3 0.3 ≤ rms ≤ 0.7 rms > 0.7 

Hypo 
β < 0.3 7548 6198 1000 350 

Hemi 
0.3 ≤ β ≤ 0.7 3159 973 1827 359 

Hyper 
β > 0.7 2956 171 1599 1186 

1Conserved probes on the HumanMethylationEPIC arrays were grouped by β-value. These are counts in 274 

each category. 275 
2CpG For each category of probes, the corresponding CpG regions were counted and grouped by CpG 276 

density normalized relative methylation score (rms) to determine concordance between the array and 277 

MBD-seq 278 

 279 

 280 

Fig. 3. Correlation between MethylationEPIC and MBD-seq data 281 

The 13,665 conserved MethylationEPIC probes were classified into three categories 282 

based on average β-values: hypo for β < 0.3, hemi for 0.3 ≤ β ≤ 0.7, and hyper for β > 283 

0.7. For each probe, the 300 bp window around the corresponding CpG was determined 284 

and the CpG density-normalized relative methylation score (rms) was estimated for that 285 

region from MBD-seq data. A comparison between the β-values and rms showed (A) 286 

modest correlation for the hypomethylated CpGs (Pearson r = 0.18; p = 0.0001), (B) 287 

strong correlation for hemimethylated CpGs (r = 0.46; p < 0.0001), and (C) low 288 

correlation for hypermethylated CpG (r = 0.04, p = 0.0392). For CpGs with low β-values, 289 

the corresponding regions showed rms that cluster close to 0, and for CpG with high β-290 

values, the corresponding rms tended to cluster close to 0.75. 291 
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Differential Methylation Analysis 292 

We applied linear regression to examine differential methylation by age group and 293 

strain, and cross-referenced the DM-CpGs detected by the EPIC array with DMRs 294 

detected by MBD-seq. For the effect of age, no conserved EPIC probe passed a 10% 295 

FDR threshold (full results and p-values are provided in Supplementary data S1). 296 

However, we note that the probe that detected the most significant effect of age, 297 

cg13269407, is among the 353 CpGs that are used to estimate the human epigenetic 298 

age [8]. This CpG is hemimethylated (average β-value of 0.55) and associated with a 299 

~2.4-fold decline in methylation between young and old age (uncorrected p-value = 1.8 300 

x 10-5). In the MBD-seq, the corresponding region is classified as hypomethylated with 301 

rms = 0 for most of the samples and no reliable statistics could be carried out for this 302 

region due to small number of mapped reads. We then performed a reverse comparison 303 

to identify age-dependent DMRs (age-DMRs) in the MBD-seq data and evaluated 304 

replication by the EPIC probes. At the same FDR threshold of 10%, the MBD-seq 305 

detected seven age-DMRs. These strong age-DMRs have rms between 0.3 and 0.7 and 306 

are associated with an increase in methylation with age. Most occur in CGIs that have 307 

been reported previously [20]. Out of these seven age-DMRs, six corresponding EPIC 308 

probes replicated the age-dependent increase in methylation at a nominal p-value cutoff 309 

of 0.05 (Table 4).  310 

 311 

 312 
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Table 4. Age-dependent differentially methylated CpGs/regions detected by 313 

conserved probes and by MBD-seq 314 

    EPIC1  MBD-seq1 

ProbeID Gene2 Region2 Position 
(mm10) 3 Coef. Age 

(P)  logFC Age 
(P) 

cg08949408 C1QL3 Body; 
Island 

chr2:13.01 0.32 0.001  3.3 1.3E-10 

cg10444382 RFX4 Body; 
Island 

chr10:84.76 0.24 9.4E-04  2.9 2.5E-08 

cg22384902 LRRC4; 
SND1 

TSS1500; 
island 

chr6:28.83 0.22 0.009  2.0 2.0E-06 

cg06945399 LRRC4; 
SND1 

TSS200; 
Island 

chr6:28.83 0.18 0.057  1.5 2.2E-05 

cg23398076 MEIS1 Body; 
Shelf 

chr11:19.02 0.13 0.007  1.5 2.4E-05 

cg05393688 TSC22D1 Body; 
Shore 

chr14:76.51 0.17 0.005  1.5 2.8E-05 

cg20563498 USP35 Body; 
Shelf  chr7:97.32 -0.02 0.27  1.1 3.2E-05 

1These are age-dependent differentially methylated CpG regions discovered in the MBD-seq at an FDR of 315 

10%; replicated for the corresponding CpG in the EPIC microarray at an uncorrected p-value cutoff of 316 

0.05. Coef. is the linear regression coefficient (i.e., change in methylation β-value from young to old). 317 

LogFC is log2 fold change in methylation from young to old. 318 
2CpG location in relation to gene features and CpG region based in probe annotations for the human 319 

methylation microarray; gene feature annotations are the same for the corresponding regions in the 320 

mouse genome. 321 
3Chromosome and Megabase coordinate based on mm10 mouse reference genome 322 

 323 

For strain effect, 219 conserved EPIC probes detected significant difference in 324 

methylation between B6 and D2 at an FDR threshold of 10% (strain-DMCpGs). Close to 325 

80% of these CpGs (175 out of 219) are associated with higher methylation in D2 326 

relative to B6. In the MBD-seq data, only 29 of the 219 corresponding regions replicated 327 

strain effect at an uncorrected p-value cutoff 0.05 (Table 5). Of these, 9 were 328 

associated with higher methylation in B6, and 20 were associated with higher 329 

methylation in D2. In the reverse comparison, we identified only 37 strain-dependent 330 

DMRs (strain-DMRs) at an FDR cutoff of 10%. Consistent with the EPIC data, the 331 

majority of these regions (21 of the 37) showed higher methylation in D2 relative to B6. 332 
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Of these, 16 strain differences were replicated at the corresponding CpG in the EPIC 333 

data (6 with higher methylation in B6 and 10 with higher methylation in D2) (Table 5).  334 

Table 5. Strain-dependent differentially methylated CpGs/regions detected by 335 

both EPIC probes and by MBD-seq 336 

    EPIC1  MBD-seq1 

ProbeID Gene3 Region4 Position 
(mm10) 3 Coef.2 Strain 

(P)  logFC2 Strain 
(P) 

Differentially methylated CpGs detected by EPIC probe at FDR 10%; 
replicated by MBD-seq 

cg21064315 SZT2 3'UTR; 
Shore chr4:118.36 -0.82 5.5E-09  -2.0 1.7E-04 

cg14945867 CNIH 1stExon; 
Island chr14:46.79 0.27 1.3E-06  6.0 1.2E-09 

cg04546815 KANK4 Body chr4:98.78 0.34 1.6E-06  1.7 4.4E-04 

cg10277781 CNIH 1stExon; 
Island chr14:46.79 0.35 1.9E-06  6.0 1.2E-09 

cg00049718 CSDE1 5'UTR chr3:103.02 0.40 2.6E-06  6.8 9.8E-15 

cg07211292 C20orf160 3'UTR; 
Island chr2:153.08 -0.46 5.0E-06  -1.5 1.4E-05 

cg24255125 GRIK4 Body; 
Island chr9:42.52 -0.36 7.8E-06  -3.0 5.9E-09 

cg03517030 MTCH2 1stExon; 
Island chr2:90.85 0.35 1.6E-05  6.7 2.3E-14 

cg05781968 WNT5A Body; 
Island chr14:28.51 0.31 4.4E-05  2.3 1.0E-05 

cg04154281 UBTF Body; 
Shore chr11:102.31 0.17 6.5E-05  0.7 0.03 

cg06861375 ZNF697 Body; 
Island chr3:98.43 0.36 6.7E-05  4.5 2.8E-04 

cg24959134 - - chr10:92.44 -0.33 9.4E-05  -2.4 0.01 
cg06552810 - - chr2:106.19 0.26 1.1E-04  2.9 0.002 
cg01663821  Shore chr3:98.94 0.19 1.3E-04  0.9 0.02 
cg00597112 - - chr11:109.01 0.21 1.4E-04  0.5 0.002 

cg26857408 UBTF Body; 
Shore chr11:102.31 0.24 2.1E-04  0.7 0.03 

cg15172734 SLMAP 5'UTR; 
Shore chr14:26.53 -0.11 3.4E-04  -2.5 0.01 

cg09990537 WNT5A 5'UTR; 
Shore chr14:28.51 0.17 3.4E-04  1.0 0.004 

cg12849734 - - chr2:157.71 0.14 4.4E-04  0.9 0.01 

cg21746387 NDUFA4L2 TSS1500; 
Shore chr10:127.51 -0.17 5.5E-04  -3.4 0.001 

cg11382417 - - chr2:96.32 -0.21 6.0E-04  -4.7 1.3E-07 
cg02865068 - Shore chr2:105.66 0.11 9.7E-04  2.9 0.04 

cg14275842 CHRNE Body; 
Island chr11:70.62 0.18 0.001  1.0 0.005 

cg02159996 GABRR1 5'UTR chr4:33.13 0.13 0.001  1.2 2.5E-04 
cg00920372 - - chr19:45.33 -0.08 0.001  -1.5 8.8E-04 
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cg03422015 ERC1 Body chr6:119.69 0.04 0.001  1.1 0.02 
cg04340318 - - chr4:86.04 0.16 0.001  2.3 0.001 

cg14465355 DYNC1H1 Body; 
Shore chr12:110.64 0.06 0.001  0.6 0.02 

cg15002641 SOX13 Body chr1:133.39 -0.10 0.001  -1.0 0.02 

Differentially methylated regions detected by MBD-seq at FDR 10%; 
replicated by EPIC 

cg05362127 WNT5A TSS200; 
Island chr14:28.51 0.33 0.002  2.3 9.4E-06 

cg24142850 - - chr8:92.55 -0.09 0.005  -2.9 9.4E-05 

cg15585318 WNT5A Body; 
Island chr14:28.51 0.22 0.006  1.8 2.1E-06 

cg09595163 WNT5A Body; 
Island chr14:28.51 0.18 0.006  2.3 1.2E-05 

cg13868216 BAIAP2L2 Body; 
Island chr15:79.26 0.11 0.01  1.6 1.8E-04 

cg09972454 PDXDC1 Body; 
Shore chr4:147.94 -0.06 0.01  -2.9 1.5E-06 

cg18120446 - Island chr5:41.75 0.01 0.02  -2.2 2.7E-08 
1These are strain-dependent differentially methylated CpGs (EPIC microarray) and CpG regions (MBD-337 

seq) based on a “false discovery threshold” (FDR) cutoff of 10% and replication at an uncorrected p-value 338 

threshold of 0.05.  339 
2Coef. is the linear regression coefficient (i.e., difference in methylation relative to C57BL/6J; negative is 340 

lower methylation in DBA/2J; and positive is higher methylation in DBA/2J compared to C57BL/6J). 341 

LogFC is log2 fold difference in methylation (i.e., difference in methylation relative to DBA/2J; negative is 342 

lower methylation in DBA/2J; and positive is higher methylation in DBA/2J compared to C57BL/6J). 343 
3CpG location in relation to gene features and CpG region based in probe annotations for the human 344 

methylation microarray. For most conserved regions, mouse annotations are analogous to humans. 345 
4Chromosome and Megabase coordinate based on mm10 mouse reference genome 346 

 347 

Discussion 348 

Given the high sequence conservation between the mouse and human genomes, we 349 

used the recently released Illumina MethylationEPIC microarray to assay DNA 350 

methylation at conserved CpGs in the mouse genome. We evaluated both the 351 

qualitative features as well as the quantitative performance and compared it with MBD-352 

seq data that was generated on the same DNA samples from mice. Such a cross-353 

species approach has been previously used to examine gene expression and perform 354 

comparative genomics studies [32-35]. The Illumina methylation array relies on bisulfite 355 

conversion and the probes are designed to target bisulfite-converted sequences. The 356 
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two older versions of this Illumina methylation microarrays, the Infinium 357 

HumanMethylation 27K (HM27) and HumanMethylation 450K (HM450), have been 358 

carefully evaluated for use in mice [17]. The number of probes that map to the mouse 359 

genome can vary somewhat depending on the alignment algorithm. In the work by 360 

Wong et al. [17], alignment to the bisulfite-converted mouse genome resulted in the 361 

highest number of conserved probes. Using a stringent parameter of 100% sequence 362 

identity to the bisulfite genome, Wong et al. identified a total of 1,308 (4.7% of total) 363 

uniquely aligned probes in the 27K array, and 13,715 (2.8% of total) uniquely aligned 364 

probes in the 450K array that can be used to interrogate conserved CpGs in the mouse. 365 

In our present work, we performed alignment in a non-bisulfite space. While we required 366 

unique alignment, we tolerated up to two non-matching base pairs and added detection 367 

confidence as another parameter to identify probes that we can use for reliably 368 

quantitative assays. With these parameters, we identified 1.6% of total probes (13,665 369 

in the 850K MethylationEPIC array) that aligned uniquely to the mouse genome and 370 

associated with high confidence in signal detection. In this set of 13,665 conserved 371 

EPIC probes, 9,429 (69%) were CpG loci carried over from the HM450 array and 7,483 372 

of these were also in Wong’s list of conserved HM450 probes [17]. While alignment to 373 

the bisulfite-converted genome may have yielded a higher proportion of aligned probes, 374 

for our purposes the 13,665 probes provided a representative subset that we can use to 375 

assess quantitative performance in mouse samples and utility in detecting methylation 376 

variation. 377 

The conserved probes mostly target CpGs located within annotated genes and in 378 

regulatory regions. In particular, exons, 5’ UTRs, CGIs in proximal regulatory regions 379 
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(within 200 bp of TSS) are highly overrepresented among the set of 13,665 probes. This 380 

is expected since these coding and regulatory regions are the most conserved portions 381 

of the genome. Humans and mice have similar complements of CGIs and the genomic 382 

positions of these CGIs are also highly conserved, with 50% of CGIs located near 383 

annotated TSSs in both species [16,31,36]. In terms of quantitative variation in 384 

methylation, CGIs and promoter region CpGs show significant population variation [37]. 385 

However, compared to intergenic CpGs, the extent of inter-individual variability in 386 

methylation is reported to be much lower in these conserved sites [38,39]. Hence, an 387 

obvious limitation in using the conserved EPIC probes is that we attain only a narrow 388 

perspective of the mouse methylome and we may be sampling the portion of CpGs that 389 

shows the least quantitative variability in a population. Nonetheless, CpGs in regulatory 390 

regions and CGIs play crucial roles in development and cell differentiation, and are 391 

implicated in tumor development and aging [16,31,36,40,41]. While narrow in 392 

perspective, the conserved probes likely represent a subset of CpGs with high 393 

functional relevance and application in cross-species study of DNA methylation.  394 

To evaluate the quantitative performance of the EPIC probes, we compared methylation 395 

levels measured by a complementary technology, MBD-seq. The type of methylation 396 

information measured by the microarray and MBD-seq are somewhat different. The 397 

EPIC probes, based on bisulfite conversion, measure the methylation status at a single 398 

CpG dinucleotide. MBD-seq, on the other hand, relies on affinity capture of DNA 399 

fragments by the methyl-CpG binding domain protein [22-24]. The affinity is directly 400 

proportional to the number of methylated CpGs in the DNA fragment and the 401 

methylation level is indirectly estimated based on the counts of sequenced reads that 402 
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map to that region. This means that the resolution is inherently limited by the sizes of 403 

the fragments (in this case ~300 bp). Since methylation of neighboring CpGs is 404 

generally correlated [42-44], MBD-seq provides information on the methylation level of 405 

CpGs in a region rather than one CpG site. For the 13,665 conserved EPIC probes, we 406 

extracted read counts from within 300 bp bins of the targeted CpGs and derived the 407 

CpG density-normalized read counts. Overall, there is strong concordance in 408 

methylation levels measured by the two technologies and the correlation between the β-409 

values and rms was strongest for CpGs that are moderately methylated (we define 410 

these as β-values between 0.3 to 0.7 methylated). However, for CpGs that are 411 

hypomethylated and hypermethylated, the rms for the corresponding regions showed a 412 

more clustered distribution and indicated a limited quantitative sensitivity for MBD-seq 413 

and limited capacity in discerning quantitative variation at such CpG regions. Our 414 

observations agree with a previous study that compared HM450 and MBD-seq data 415 

generated using the same commercial kit we used [45].  416 

For a direct comparison between the EPIC probes and MBD-seq, we applied the same 417 

regression model and crosschecked the DMCpGs and DMRs detected by the two 418 

technologies. While we expected a higher quantitative sensitivity for the EPIC probes as 419 

to age, the EPIC probes did not detect significant differential methylation at an FDR 420 

threshold of 10%. However, the topmost significant probe, cg13269407, is part of the 421 

353 clock CpGs that are used to estimate human DNA methylation age [8]. Consistent 422 

with the negative correlation with age in humans, this age-informative CpG was 423 

associated with a ~2.4-fold reduction in methylation in the old mice relative to the young 424 

mice. Aside from cg13269407, only 10 other human clock CpG probes were in the 425 
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conserved set and none of these are associated with age in mice. Overall, the effect of 426 

age was weak when we considered individual CpGs. When we examined the 427 

corresponding CpG regions, the MBD-seq was more effective at detecting age-428 

dependent methylation. At an FDR cutoff of 10%, we identified seven CpG regions that 429 

are classified as age-DMRs. These age-DMRs have been previously reported and show 430 

increases in methylation with age in mice [20]. For these age-DMRs identified by MBD-431 

seq, we then checked whether the EPIC probes could verify the age effect. For this 432 

cross-verification, we used a less stringent statistical threshold of 0.05 for uncorrected 433 

p-values and found that six of the targeted CpGs are also associated with a significant 434 

age-dependent increases in β-values. Our observations suggest that age-dependent 435 

changes in methylation at these conserved sites may be more pronounced if we 436 

consider the correlated change of neighboring CpGs rather than methylation status of a 437 

single CpG. Despite the low overall quantitative sensitivity, the MBD-seq provides a 438 

complementary approach that may perform better for detecting methylation changes in 439 

regions harboring multiple correlated CpGs. 440 

DNA methylation can vary substantially between mouse strains and a large fraction of 441 

this is likely due to underlying sequence differences between strains [20,46,47]. Strain 442 

variation in methylation has been shown to associate with complex phenotypes in mice 443 

such as insulin resistance, adiposity, and blood cell counts [48]. In our analysis, we 444 

detected 219 CpGs (i.e., 1.6% of the 13,365 interrogated CpGs) with a significant 445 

difference between strains at an FDR cutoff of 10%. A large majority (175 out of 219 446 

CpGs) was associated with higher methylation in D2 compared to B6. While the overall 447 

lower methylation in B6 is intriguing, such variation between strains must be cautiously 448 
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interpreted. It is well known that SNPs in probe sequences can have a strong 449 

confounding effect. This is particularly pernicious for mouse specific microarrays in 450 

which probe sequences are usually based on the B6 mouse reference, and as a result, 451 

there is more efficient hybridization for B6-derived samples, which results in a positive 452 

bias for this canonical mouse strain [49-51]. In the present work, since the EPIC array is 453 

based on the human sequence, we do not expect a systematic bias for one strain over 454 

the other. For replication, we referred to the MBD-seq data and only 29 out of the 219 455 

corresponding CpG regions had consistent differential methylation between B6 and D2 456 

in the MBD-seq.  457 

Unlike using a human array that should not bias one mouse strain over another, the 458 

MBD-seq data is more vulnerable to technical artifacts caused by sequence differences. 459 

As is the general practice, we performed the alignment of the MBD-seq reads to the 460 

mouse reference genome. This means the alignment will be more efficient for 461 

sequences from B6, while sequences from D2 will have more mismatches. Since 462 

methylation quantification is estimated from the relative number of aligned reads, this 463 

may result in a systematic negative bias for D2, and methylation levels in regions with 464 

sequence differences will tend to have lower methylation due to poorer alignment. As a 465 

result, a higher fraction of strain-DMR will have lower methylation in D2 compared to B6 466 

[20]. In the case that these conserved CpGs have higher methylation in D2 compared to 467 

B6, then the negative bias will lessen the quantitative difference between the strains. 468 

This may explain why the effect of strain is less pronounced in the MBD-seq data. In the 469 

MBD-seq, there were only 37 DMRs between B6 and D2 at an FDR threshold of 10%, 470 

and the EPIC probes replicated 16 of these. Out of the 37 strain-DMRs, the majority (21 471 
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of the 37) was associated with higher methylation in D2. Both the EPIC and MBD-seq 472 

therefore show an overall lower methylation profile in B6 compared to D2 that warrants 473 

further investigation and verification. Such strain differences in overall methylation has 474 

been previously reported for A/J and WSB/EiJ, with the A/J strain exhibiting higher 475 

methylation of CGIs in normal liver tissue compared to WSB/EiJ. This difference in the 476 

methylome was suggested to contribute to differential susceptibility for nonalcoholic 477 

fatty liver disease that characterizes the two strains [46]. In the case of B6 and D2, the 478 

two strains are highly divergent in a number of complex phenotypes ranging from 479 

behavioral and physiological to aging traits. The panel of recombinant inbred progeny 480 

derived from B6 and D2 (the BXD panel) has been used extensively in genetic research 481 

[52-56]. If there is indeed a distinct profile in DNA methylation between B6 and D2, then 482 

it will be of interest to evaluate if it segregates in the BXDs and how the methylome 483 

contributes to some of the phenotypic differences. The BXD panel could be an 484 

extremely rich and as yet untapped resource for methylome-wide analysis of complex 485 

traits that can then be integrated with the extensive systems genetics work that has 486 

already been done with this mouse family [57,58]. No doubt, large-scale analysis of 487 

genome-wide DNA methylation in mouse genetic reference panels will be greatly 488 

accelerated with the development of a mouse version of the Infinium methylation arrays. 489 

And as is the case with other types of arrays, it will be crucial that the probes are 490 

designed against a more diverse panel of strains so that investigators can derive a more 491 

unbiased readout of methylation [59].  492 

To conclude, we have catalogued a small subset of EPIC probes that target conserved 493 

CpGs in the mouse genome and that provide reliable quantification of DNA methylation 494 
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in mouse samples. While detection for age-dependent methylation was weaker for the 495 

EPIC probes compared to MBD-seq, we have identified significant strain variation in 496 

methylation at the conserved CpGs. Our results indicate lower methylation for B6 497 

compared to D2 at sites that have significant strain effect. It is unclear how much of the 498 

strain variation results from underlying sequence differences between B6 and D2, and 499 

this strain-specific profile needs to be further evaluated and verified 500 
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