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Abstract Viral infection can dramatically alter a cell’s transcriptome. However, these changes8

have mostly been studied by bulk measurements on many cells. Here we use single-cell mRNA9

sequencing to examine the transcriptional consequences of influenza virus infection. We find10

extremely wide cell-to-cell variation in production of viral gene transcripts – viral transcripts11

compose less than a percent of total mRNA in many infected cells, but a few cells derive over half12

their mRNA from virus. Some infected cells fail to express at least one viral gene, and this gene13

absence partially explains variation in viral transcriptional load. Despite variation in total viral load,14

the relative abundances of viral mRNAs are fairly consistent across infected cells. Activation of15

innate immune pathways is rare, but some cellular genes co-vary in abundance with the amount of16

viral mRNA. Overall, our results highlight the complexity of viral infection at the level of single cells.17

18

Introduction19

Viruses can cause massive and rapid changes in a cell’s transcriptome as they churn out viral mRNAs20

and hijack cellular machinery. For instance, cells infected with influenza virus at high multiplicity21

of infection (MOI) express an average of 50,000 to 100,000 viral mRNAs per cell, corresponding22

to 5 to 25% of all cellular mRNA (Hatada et al., 1989). Infection can also trigger innate-immune23

sensors that induce the expression of cellular anti-viral genes (Killip et al., 2015; Iwasaki and Pillai,24

2014; Crotta et al., 2013). This anti-viral response is another prominent transcriptional signature of25

high-MOI influenza virus infection in bulk cells (Geiss et al., 2002).26

However, initiation of an actual influenza infection typically involves just a few virions infecting27

a few cells (Varble et al., 2014; Poon et al., 2016; Leonard et al., 2017; McCrone et al., 2017). The28

dynamics of viral infection in these individual cells may not mirror bulk measurements made29

on many cells infected at high MOI. Over 70 years ago, Max Delbruck showed that there was a30

∼100-fold range in the number of progeny virions produced per cell by clonal bacteria infected31

with clonal bacteriophage (Delbruck, 1945). Subsequent work has shown similar heterogeneity32

during infection with other viruses (Zhu et al., 2009; Schulte and Andino, 2014; Combe et al., 2015;33

Akpinar et al., 2016), including influenza virus (Heldt et al., 2015).34

In the case of influenza virus infection, targeted measurements of specific proteins or RNAs35

have shed light on some factors that contribute to cell-to-cell heterogeneity. The influenza virus36

genome consists of eight negative-sense RNA segments, and many infected cells fail to express37

one more of these RNAs (Heldt et al., 2015; Dou et al., 2017) or their encoded proteins (Brooke38

et al., 2013). In addition, activation of innate-immune responses is inherently stochastic (Shalek39

et al., 2013, 2014; Bhushal et al., 2017; Hagai et al., 2017), and only some influenza-infected cells40

express anti-viral interferon genes (Perez-Cidoncha et al., 2014; Killip et al., 2017). However, the41

extent of cell-to-cell variation in these and other host and viral factors remains unclear, as does the42
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Figure 1. Experimental design. (A)We engineered a virus that carried two synonymous mutations near the 3’
end of each mRNA. At top are the mutations for PB2. At bottom are locations of the synonymous mutations
relative to the typical distribution of read depth for our 3’-end sequencing. (B) The wild-type and synonymously
barcoded viruses transcribe their genes with similar kinetics. The abundance of the viral hemagglutinin (HA)
transcript relative to the cellular housekeeping gene L32 was assessed by qPCR in A549 cells infected at an MOI
of 0.5 (as determined on MDCK-SIAT1 cells). Error bars ± S.D., n=3. (C) For the single-cell mRNA sequencing,
A549 cells were infected with an equal mixture of wild-type and synonymously barcoded virus. Immediately
prior to collection, cells were physically separated into droplets and cDNA libraries were generated containing
the indicated barcodes. The libraries were deep sequenced, and the data processed to create a matrix that
gives the number of molecules of each transcript observed in each cell. Infected cells were further annotated by
whether their viral mRNAs derived from wild-type virus, synonymously barcoded virus, or both.
Figure 1–source data 1. Sequences of wild-type and barcoded viruses are in viralsequences.fasta.

association among them in individual infected cells.43

Here we use single-cell mRNA sequencing to quantify the levels of all cellular and viral mRNAs44

in cells infected with influenza virus at low MOI. We find extremely large variation in the amount45

of viral mRNA expressed in individual cells. Both co-infection and activation of innate-immune46

pathways are rare in our low-MOI infections, and do not appear to be the major drivers of cell-47

to-cell heterogeneity in viral transcriptional load. Individual infected cells often fail to express48

specific viral genes, and such gene absence explains some but certainly not all of the cell-to-cell49

heterogeneity. A variety of cellular genes, including ones involved in the oxidative-stress response,50

co-vary with viral transcriptional load. Overall, our work demonstrates remarkable heterogeneity in51

the transcriptional outcome of influenza virus infection among nominally identical cells infected52

with a relatively pure population of virions.53

Results54

Strategy to measure mRNA in single virus-infected cells.55

We performed single-cell mRNA sequencing using a droplet-based system that physically isolates56

individual cells prior to reverse transcription (Zheng et al., 2017;Macosko et al., 2015; Klein et al.,57

2015). Each droplet contains primers with a unique cell barcode that tags all mRNAs from that58

droplet during reverse-transcription. Each primer also contains a unique molecular identifier (UMI)59

that is appended to eachmRNAmolecule during reverse transcription. The 3’ ends of themRNAs are60

sequenced and mapped to the human and influenza virus transcriptomes to determine transcript61

identities. This information is combined with that provided by the UMIs and cell barcodes to62
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Figure 2. The viral stocks in our experiments are relatively pure of defective particles. (A) Our viral stocks have
a higher ratio of infectious particles to HA virion RNA compared to a high-defective stock propagated at high
MOI. HA viral RNA was quantified by qPCR on virions. Error bars ± S.D., n=6 (qPCR replicates). (B) Our viral
stocks have a higher ratio of infectious particles to particles capable of expressing HA protein. A549 cells were
infected at an MOI of 0.1, and the percentage of cells expressing HA protein at 9 hours post-infection was
quantified by antibody staining and flow cytometry. (C) Our viral stocks are less immunostimulatory than virus
propagated at high MOI. Measurements of IFNB1 transcript by qPCR normalized to the housekeeping gene L32
in A549 cells at 10 hours post infection at an MOI of 0.5. Error bars ± S.D., n=3. Note that MOIs were calculated
by TCID50 on MDCK-SIAT1 cells, whereas the experiments in this figure involved infection of A549 cells.
Figure 2–Figure supplement 1. Full flow cytometry data for panel B .

quantify the number of molecules of each mRNA species that have been captured for each cell.63

Infected cells will express viral as well as cellular mRNAs – however the cell barcodes and UMIs64

cannot distinguish whether a cell was initially infected by one ormultiple viral particles. We therefore65

engineered an influenza virus (strain A/WSN/1933) that additionally carried viral barcodes consisting66

of synonymousmutations near the 3’ end of each transcript (Figure 1A). Critically, these synonymous67

mutations did not greatly impact viral growth kinetics (Figure 1B). We infected A549 human lung68

carcinoma cells with an equal mix of the wild-type and synonymously barcoded viruses. Cells69

infected by a single virion will exclusively express mRNAs from either wild-type or synonymously70

barcoded virus, whereas cells that are co-infected with multiple virions will often express mRNAs71

from both the wild-type and synonymously barcoded viruses (Figure 1C).72

We took care to generate stocks of virus that were relatively “pure” of defective particles.73

Stocks of viruses typically contain an array of biologically active viral particles, some of which are74

defective for replication owing to mutations or deletions in essential viral genes (von Magnus, 1954;75

Huang et al., 1970; Brooke, 2014; Fonville et al., 2015; Lauring and Andino, 2010; Dimmock et al.,76

2014; Saira et al., 2013). These defective particles become prevalent when a virus is grown at77

high MOI, where complementation permits the growth of otherwise deleterious genotypes. To78

minimize the levels of defective particles, we propagated our viral stocks at low MOI for a relatively79

brief period of time (Xue et al., 2016). We validated that our stocks exhibited greater purity of80

infectious particles than a stock propagated at high MOI by verifying that they had a higher ratio81

of infectious particles to virion RNA (Figure 2A) and to particles capable of inducing expression of82

a single viral protein (Figure 2B). In addition, viral stocks with many defective particles are more83

immunostimulatory (Tapia et al., 2013; Lopez, 2014). We confirmed that our viral stocks induced84

less interferon than a stock propagated at higher MOI (Figure 2C).85

Single cells show an extremely wide range of expression of viral mRNA.86

We infected A549 cells at low MOI with a mixture of the wild-type and synonymously barcoded87

viruses, and collected cells for sequencing at 6, 8, and 10 hours post-infection, including a replicate88

a 8-hours. We replaced the infection inoculum with fresh media at one-hour post-infection, thereby89

ensuring that most infection was initiated during a narrow time window. The exception was the90

replicate 8-hour sample, for which we did not perform this media change and instead left the91
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Figure 3. There is a very wide distribution in the amount of viral mRNA per cell. (A) Number of cells sequenced
for each sample. (B) The number of cellular and viral mRNAs detected for each cell is plotted as a point. The
blue lines show the overall distribution of the number of cellular mRNAs per cell. The orange rug plot at the left
of each panel shows the distribution of the number of viral mRNAs per cell. Cells outside the dotted green lines
were considered outliers with suspiciously low or high amounts of cellular mRNA (possibly derived from two
cells per droplet), and were excluded from all subsequent analyses.

cells in the original infection inoculum. We recovered between 3,000 and 4,000 cells for each92

sample (Figure 3A). As expected for a low-MOI infection, most cells expressed little or no viral mRNA93

(Figure 3B). Also as expected, the amount of viral mRNA per cell among infected cells increased over94

time (Figure 3B). But what was most notable was how widely the number of viral mRNA molecules95

varied among infected cells. While the fraction of mRNA derived from virus was <0.1% for most96

cells, viral mRNA constituted half the transcriptome in a few cells at 8 and 10 hours (Figure 3B).97

A complicating factor is that uninfected cells could have small amounts of viral mRNA due98

to leakage of transcripts from lysed cells. It is therefore important to establish a threshold for99

identifying truly infected cells. We can do this by taking advantage of the fact that roughly half the100

infecting virions bear synonymous barcodes. Reads derived from lysed cells will be drawn from101

both wild-type and synonymously barcoded viral transcripts. However, most cells are infected by at102

most one virion, and so the reads from truly infected cells will usually derive almost entirely from103

one of the two viral variants. Figure 4A shows the fraction of viral reads in individual cells from each104

viral variant, and Figure 4B indicates the fraction of viral reads from the most abundant variant in105

that cell. Most cells with large amounts of viral mRNA have viral transcripts exclusively derived from106

one viral variant – indicating non-random partitioning as expected from viral infection. However,107

cells with a small amount of viral mRNA often have viral transcripts from both variants, as expected108

from the random partitioning associated with simple mRNA leakage. Finally, a few cells with large109

amounts of viral mRNA have viral transcripts from both variants, reflecting co-infection.110

We determined the threshold amount of viral mRNA per cell at which the barcode partitioning111

clearly resulted from infection rather than leakage (Figure 4C), and used this threshold to annotate112

cells that we were confident were truly infected. We also annotated as co-infected cells above this113

threshold that had mRNA from both viral variants. Figure 4D shows the number of cells annotated114

as infected and co-infected for each sample – these cells are just a small fraction of the number of115

cells with any viral read. These annotation thresholds are conservative, and will miss some true116

low-level infections, as well as any co-infections with the same viral variant. However, it is important117

that the analyses below are restricted to cells that are truly infected with virus, so we accepted118

the loss of some low-level infections in order to avoid false positives. Because most cells are not119

infected, we subsampled the uninfected cells to the numbers shown in Figure 4D to balance the120

proportions of infected and uninfected cells for all subsequent analyses.121

Strikingly, the extreme variation in the number of viral transcripts per cell remains even after we122

apply these rigorous criteria for annotating infected cells (Figure 4E). The fraction of viral mRNA per123

infected cell follows a roughly exponential distribution, with many cells having few viral transcripts124

and a few cells having many. At 6 and 8 hours <10% of infected cells are responsible for over half125

the viral transcripts, while at 10 hours ≈15% of infected cells produce over half the viral transcripts126
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Figure 4. Synonymous barcodes on the viral mRNAs distinguish true infections from cells that contain viral
mRNAs derived from leakage of lysed cells. (A) Cells with at least two viral mRNAs for which the barcode could
be called, arranged in order of increasing influenza transcript counts. Bar heights denote the number viral
mRNAs on a log10 scale, bar coloring is linearly proportional to the fractions of viral mRNAs derived from
wild-type and synonymously barcoded virus. (B) Same as (A), but each bar is colored according to the relative
fraction of the more common (major) and less common (minor) virus variant. At low levels of viral mRNA there
is often a roughly equal mix, suggesting contamination with viral mRNAs leaked from lysed cells. At higher
levels of viral mRNA, cells generally have only one viral variant, suggesting infection initiated by a single virion. A
few cells are also obviously co-infected with both viral variants. (C)We determined a cutoff for calling “true”
infections by finding the amount of viral mRNA per cell at which the viral barcode purity no longer increases
with more viral mRNA. The purity is the fraction of all viral mRNA in a cell derived from the most abundant viral
barcode in that cell. We fit a curve to the mean purity of all cells with more than the indicated amount of viral
mRNA, and drew the cutoff at the point where this curve stopped increasing with the fraction of total mRNA
derived from virus. See the Methods for details. (D) The number of cells identified as infected and co-infected
for each sample, as well as the number of cells with any viral read. For all subsequent analyses, we subsampled
the number of uninfected cells per sample to the greater of 50 or the number of infected cells. (E) Distribution
of the fraction of mRNA per cell derived from virus for both infected and co-infected cells.
Figure 4–Figure supplement 1. Number of viral barcodes called.
Figure 4–Figure supplement 2. Fraction of total viral mRNA derived from a given fraction of infected cells.

(Figure 4-Figure supplement 2). Notably, co-infected cells do not express dramatically more viral127

mRNA than other cells (Figure 4), suggesting that the initial infectious dose is not the major driver128

of cell-to-cell variation in our low-MOI infections.129
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Absence of viral genes partially explains cell-to-cell variability in viral load.130

The influenza genome is segmented, and cells can fail to express a viral mRNA if the encoding131

gene segment is not packaged in the infecting virion or fails to initiate transcription after infection.132

Indeed, several groups have reported that the majority of infected cells fail to express at least133

one viral gene (Brooke et al., 2013; Heldt et al., 2015; Dou et al., 2017). We wondered if the134

absence of specific viral genes might be associated with reduced amounts of viral mRNA within135

single infected cells. In particular, transcription of influenza virus mRNAs is performed by the viral136

ribonucleoprotein (RNP) complex, which consists of the three proteins that encode the tripartite137

polymerase (PB2, PB1, and PA) as well as nucleoprotein (NP) (Huang et al., 1990). Each viral gene138

segment is associated with one RNP in incoming infecting virions, but secondary transcription by139

newly synthesized RNPs requires the presence of the viral genes encoding each of the four RNP140

proteins (Vreede et al., 2004; Eisfeld et al., 2015). This secondary transcription is a major source141

of viral mRNAs, as evidenced by the fact that blocking synthesis of the RNP proteins reduces the142

amount of viral mRNA by several orders of magnitude in bulk cells (Figure 5-Figure supplement 1).143

We examined the total amount of viral mRNA versus the expression of each viral gene (Figure 5A,144

Figure 5-Figure supplement 2). Cells that lack an RNP gene never derive more than a few percent of145

their mRNAs from virus, confirming the expected result that all four RNP genes are essential for146

high levels of viral transcription. However, we observe cells that lack each of the other non-RNP147

genes but still derive ≈40% of their mRNAs from virus, suggesting that none of the other genes are148

important for high levels of viral transcription. These results are statistically supported by Figure 5B,149

which shows that absence of any RNP gene but not any other viral gene is associated with reduced150

amounts of viral mRNA. However, gene absence clearly does not explain all of the variability in viral151

gene expression, since even cells expressing all viral genes exhibit a very wide distribution in the152

amount of viral mRNA that they express. Specifically, at both 8 and 10 hours, the amount of viral153

mRNA in individual cells expressing all eight viral genes still ranges from <1% to >50% (Figure 5A,154

Figure 5-Figure supplement 2).155

We also quantified the fraction of infected cells that completely failed to express a given gene. We156

limited this analysis to examining the presence / absence of the non-RNP genes in cells expressing157

all four RNP genes, since we might fail to detect viral transcripts that are actually present at low158

levels in RNP-deficient cells due to the lower viral burden in these cells. At the 8- and 10-hour time159

points, between 5% and 17% of cells fail to express any one of the four non-RNP genes (Figure 5C).160

The absence of a given gene appears to be an independent event, as the probability of observing161

all four non-RNP genes in a cell is well predicted by simply multiplying the probabilities of observing162

each gene individually (Figure 5C). If we extrapolate the frequencies at which cells lack non-RNP163

genes to the RNP genes, then we would predict that 40-50% of infected cells express mRNAs from164

all eight genes. This estimate of the frequency at which infected cells express mRNAs from all eight165

gene segments is slightly higher than previous estimates of 13% (Brooke et al., 2013) and 20% (Dou166

et al., 2017). At least one difference is that Brooke et al. (2013) stained for proteins whereas we167

examined the expression of mRNAs – it is likely that some cells contain mutated viral genes that fail168

to produce stable protein even when mRNA is expressed.169

The relative amounts of different viral mRNAs are more consistent across cells.170

The results above show that the amount of viral mRNA in infected cells varies over several orders171

of magnitude. Does the relative expression of viral genes exhibit similar cell-to-cell variability?172

To address this question, we focused on cells that derived >5% of their mRNA from virus, since173

estimates of relative viral gene expression will be less noisy in cells with more viral mRNAs.174

In contrast to the extreme variability in the total viral mRNA per cell, the fraction of this mRNA175

derived from each gene is much more consistent across cells (Figure 6A). Total viral mRNA varies by176

orders of magnitude, but the fraction from any given viral gene is fairly tightly clustered around the177

median value for all cells (Figure 6B). The relative levels of each viral mRNA in our cells are similar178

to prior bulk measurements made by Northern blots (Hatada et al., 1989), which also found an179
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Figure 5. The absence of viral genes explains some of the variability in the amount of viral mRNA per cell. (A)
Fraction of mRNA in each infected cell derived from virus as a function of the normalized expression of each
viral gene in that cell, taken over all time points. Cells with high viral burden always express all RNP genes, but
some cells with high viral burden lack each of the other genes. (B) Box and whisker plots showing the per-cell
viral burden among cells with >0.5% of their mRNA from virus, binned by whether or not the cells express each
gene. A Wilcoxon signed-rank test was used to test the null hypothesis that absence of each gene does not
affect viral burden: **** = P < 10−4, *** = P < 10−3, * = P < 0.05, ns = not significant. (C) The fraction of cells
that express each of the four other genes among cells that express all RNP genes, as well as the fraction that
express all four of the other genes. The fraction that express all four genes is well predicted by simply
multiplying the frequencies of cells that express each gene individually, indicating that gene absence is
approximately independent across these genes.
Figure 5–Figure supplement 1. Secondary transcription is a major source of viral mRNA during bulk infections.
Figure 5–Figure supplement 2. Like panel (A), but shows samples individually.
Figure 5–Figure supplement 3. Like panel (B) but for the 10-hr sample only.
Figure 5–source data 1. The numerical data for panel (C) are in p_missing_genes.csv.

expression hierarchy of M > NS≫ NP > NA > HA≫ PB2 ∼ PB1 ∼ PA. The cell-to-cell consistency in180

the relative expression of different viral genes is even tighter if we limit the analysis only to cells181

that express all eight viral genes (Figure 6C,D). Therefore, with the exception of complete gene182

absence, the factors that drive the dramatic cell-to-cell variability in the amount of viral mRNA183

have roughly similar effects on all viral genes in a given cell. This finding is consistent with prior184
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Figure 6. Relative expression of influenza virus genes in highly infected cells (>5% of total mRNA from virus).
(A) The fraction of viral mRNA from each viral gene for each cell. (B) Box plots showing the distribution of the
fraction of viral mRNA per cell from each viral gene. The black lines at the notches are the medians, and the
tops and bottoms of boxes indicate the first and third quartiles. Whiskers extend to the highest or lowest data
point observed within 1.5x the interquartile range, outliers shown as circles. Notches extend 1.58x the
interquartile range divided by the square root of the number of observations. (C), (D) The same plots, but only
including cells for which we observed at least one molecule of each viral gene.
Figure 6–source data 1. The raw data are in p_flu_expr.csv.

work showing positive correlations among the abundance of several viral genome segments in185

individual cells (Heldt et al., 2015). It is also reminiscent of the observation that total cellular mRNA186

varies among single cells as a function of factors such as volume that affect all mRNA species187

concordantly (Padovan-Merhar et al., 2015).188

Co-infection can provide infected cells with the full complement of viral genes.189

Our sequencing enables us to identify the rare cells that were co-infected with both wild-type and190

synonymously barcoded viral variants. Overall, we captured 10 such co-infected cells that had >5%191

of their mRNA derived from virus (Figure 7). Seven of these 10 cells expressed all eight viral genes.192

Remarkably, the majority (4 of 7) of these cells would not have expressed all the viral genes in the193

absence of co-infection, since they have at least one gene exclusively derived from each viral variant.194

For instance, the cell with 11.2% of its mRNA from virus in the upper right of Figure 7 expresses195

M only from the wildtype viral variant, and NP and HA only from the synonymously barcoded196

variant. Our data therefore provide direct single-cell support for the idea that co-infection can197

rescue missing viral genes (Brooke et al., 2013, 2014; Fonville et al., 2015; Aguilera et al., 2017).198

Another observation from Figure 7 is that co-infected cells usually express roughly equal199

amounts of transcripts from each of the two viral variants. This observation is consistent with the200

finding by Dou et al. (2017) and Huang et al. (2008) that the temporal window for co-infection is201

short – if both viral variants infect a cell at about the same time, then neither will have a headstart202

and so each will have a roughly equal opportunity to transcribe its genes.203

To support this idea with a larger dataset albeit at lower resolution, we generated a virus204

in which the HA coding sequence was replaced by GFP. We then co-infected cells with a mix of205
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Figure 7. The abundance of each viral transcript in cells that are co-infected with the two viral variants and
have >5% of their mRNA derived from virus. The bars show the logarithms of the numbers of each viral mRNA
detected, and are colored in linear proportion to the fraction of that mRNAs derived from wild-type or
synonymously barcoded virus.
Figure 7–Figure supplement 1. Co-infected cells express roughly equal amounts of a gene from each infecting
viral variant.
Figure 7–source data 1. The raw data plotted in this figure are in p_co-infection.csv.
Figure 7–source data 2. The sequence of the HA viral RNA carrying the GFP gene is in HAflank-eGFP.fasta.

wildtype and ΔHA-GFP virus and used flow cytometry to score cells for the presence of HA only206

(infection by wildtype virus), GFP only (infection by ΔHA-GFP virus), or both (co-infection) as shown207

in Figure 7 Figure supplement 1. As in our single-cell sequencing data, we found that expression208

of HA and GFP were highly correlated, indicating that co-infected cells typically expressed roughly209

equal amounts of transcript from each viral variant.210

Activation of the interferon response is rare in single infected cells.211

Because our sequencing captured all polyadenylated transcripts, we can examine whether there212

are prominent changes in the host-cell transcriptome in sub-populations of infected cells. Influenza213

virus infection can trigger innate-immune sensors that lead to the transcriptional induction of214

type I and III interferons, and subsequently of anti-viral interferon-stimulated genes (Killip et al.,215

2015; Iwasaki and Pillai, 2014; Crotta et al., 2013). However, activation of the interferon response216

is stochastic and bi-modal at the level of single cells (Chen et al., 2010; Shalek et al., 2013, 2014;217

Perez-Cidoncha et al., 2014; Bhushal et al., 2017; Hagai et al., 2017). We therefore hypothesized218

that we might see two sub-populations of infected cells: one in which the interferon response219

inhibited viral transcription, and another in which the virus was able to express high levels of its220

mRNA by evading or blocking this response.221

To examine whether there were distinct sub-populations of virus-infected cells, we used a222

semi-supervised t-SNE approach (Van der Maaten and Hinton, 2008) to cluster cells by genes that223

co-varied with viral infection status. As shown in Figure 8A,B, this approach effectively grouped cells224

by the amount of viral mRNA that they expressed. Sample-to-sample variation was regressed away225

during the clustering, as cells did not obviously group by time-point, with expected exception that226

the uninfected and 6-hour samples had few cells in the region of the plot corresponding to large227

amounts of viral mRNA (Figure 8C).228

But to our surprise, we did not see a prominent clustering of infected cells into sub-populations229

as expected if the interferon response was strongly activated in some cells. To investigate fur-230

ther, we annotated each cell by the total number of type I and III interferon transcripts detected.231

Remarkably, only a single cell expressed detectable interferon (Figure 8D). We also examined232
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Figure 8. A t-SNE plot created by semi-supervised clustering using genes that co-vary with viral infection status.
Each point is a single cell, and each panel shows an identical layout but colors the cells according to a different
property. (A), (B) Cells colored by the fraction of their mRNA derived from virus. (C) Cells colored by the
experimental sample. (D), (E) Cells colored by the number of detected transcripts from type I and III interferons
(IFN). Only one cell has detectable interferon expression (in orange, indicated with arrow). (E) Cells colored by
the expression of the interferon-stimulated gene IFIT1. (F) Cells colored by whether they express the viral NS
gene. The one interferon-positive cell is lacking NS, but so are many interferon-negative cells.

interferon-stimulated genes, which are induced by autocrine and paracrine interferon signaling.233

Figure 8E shows expression of one such gene, IFIT1 (Fensterl and Sen, 2011). As with interferon234

itself, expression of IFIT1 was rare and most prominent in the single interferon-positive cell, pre-235

sumably due to the higher efficiency of autocrine versus paracrine signaling. Notably, interferon236

and interferon-stimulated genes were also relatively ineffective at blocking viral transcription in the237

single cell in which they were potently induced, since >10% of the mRNA in this cell was derived238

from virus (Figure 8A,B,D,E).239

We posited that the paucity of interferon induction might be due to the activity of influenza240

virus’s major interferon antagonist, the NS1 protein (García-Sastre et al., 1998; Hale et al., 2008).241

We therefore identified cells that expressed substantial amounts of viral mRNA but lacked the242

NS gene (Figure 8F). Consistent with the idea that NS1 is important for suppressing interferon,243

the one interferon-positive cell lacked detectable expression of the NS gene. But other cells that244

lacked NS expression still failed to induce a detectable interferon response, despite often having a245

substantial amount of their mRNA derived from virus (Figure 8). This result is in line with other work246

showing that NS1-deficient influenza virus does not deterministically induce interferon (Killip et al.,247

2017; Kallfass et al., 2013). Therefore, many individual infected cells fail to activate innate-immune248

responses even when the virus lacks its major interferon antagonist.249
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Figure 9. Cellular genes that co-vary in expression with the amount of viral mRNA in cells expressing all eight
viral genes. The columns are cells, ordered from left to right by the fraction of mRNA derived from virus. Each
row is a gene that is differentially expressed as a function of the fraction of mRNA derived from virus at a false
discovery rate of 0.1. Genes for which the color goes from blue at left to red at right are expressed at higher
levels in cells with more viral mRNA. The scale bar indicates the number of standard deviations above or below
the mean expression, truncated at 3-fold on both sides.
Figure 9–source data 1. The full results of the differential expression test is in p_sig_cellular_genes.csv.
Figure 9–source data 2. The results of a gene-set analysis are in p_sig_cellular_genes.csv.
Figure 9–Figure supplement 1. Many genes that co-vary with viral load are involved in the oxidative stress
response.

Some host genes co-vary with viral gene expression.250

We examined whether any host genes were differentially expressed in cells with more viral mRNA.251

We restricted this analysis to infected cells with all eight viral genes in order to focus on cellular252

genes that were associated with viral mRNA burden independent of effects due to the presence or253

absence of particular viral transcripts. We identified 45 cellular genes that co-varied with viral gene254

expression at a false discovery rate of 0.1 (Figure 9).255

Many of the genes with increased expression in cells with more viral mRNA are known or256

suspected to be regulated by the Nrf2 master regulator in response to oxidative stress. These genes257

produce proteins that are involved in detoxification of reactive oxygen species or resultant products,258

the management of misfolded proteins, the electron transport chain, or a general stress response259

(Figure 9-Figure supplement 1). We additionally see reduced expression of the nitric oxide synthase260

interacting protein (NOSIP). Transient oxidative stress is known to occur during viral infection, and261

may act in a proviral fashion via MAPK activation driving vRNP export (Amatore et al., 2014). The262

antioxidant response is thought to be largely antiviral, potentially through inhibition of MAPK activity263
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(Lin et al., 2016; Sgarbanti et al., 2014). Our data do not reveal whether the expression of genes264

involved in the response to oxidative stress are a cause or a symptom of higher levels of viral mRNA,265

and further investigation of this topic is an interesting area for future work.266

Discussion267

We have quantified the total transcriptome composition of single cells infected with influenza virus.268

While we observe a general increase in the amount of viral mRNA over time as expected from269

bulk measurements (Hatada et al., 1989; Shapiro et al., 1987), there is wide variation in viral gene270

expression among individual infected cells.271

The most obvious form of heterogeneity is the complete failure of some infected cells to express272

one ormore viral genes, which we estimate occurs in about half the infected cells in our experiments.273

The absence of some viral genes in some infected cells has been noted previously (Brooke et al.,274

2013; Heldt et al., 2015; Dou et al., 2017), and our work provides a holistic view by quantifying the275

total viral transcriptional load as a function of the level of each mRNA. We find that cells lacking276

expression of any of the four genes that encode the viral RNP express much less total viral mRNA,277

consistent with prior bulk studies (Vreede et al., 2004; Eisfeld et al., 2015). Interestingly, the reason278

some cells fail to express some viral genes remains unclear. The prototypical influenza virion279

packages one copy of each of the eight gene segments (Noda et al., 2006; Hutchinson et al., 2010),280

but some virions surely package fewer (Brooke et al., 2014). However, it is also possible that much281

of the viral gene absence is due to stochastic loss of viral RNPs after infection but prior to the282

initiation of viral transcription in the nucleus.283

The absence of viral genes only partially explains the cell-to-cell variation in amount of viral284

mRNA, which still varies from <1% to >50% among cells expressing all the viral genes. It is likely285

that other viral genetic factors explain some of this remaining heterogeneity. The 3’-end sequencing286

strategy used in our experiments detects the presence of a viral gene, but does not identify287

whether that gene contains a mutation that might hinder viral replication. However, viral mutations288

are also unlikely to explain all the observed heterogeneity, since current consensus estimates of289

influenza virus’s mutation rate suggest that the typical virion in a stock such as the one used in our290

experiment should contain less than one mutation per genome (Parvin et al., 1986; Suárez et al.,291

1992; Suárez-López and Ortín, 1994; Nobusawa and Sato, 2006; Bloom, 2014; Pauly et al., 2017).292

The rest of the heterogeneity must be due to some combination of cellular factors and inherent293

stochasticity. Some features of the cellular transcriptome co-vary with the amount of influenza294

mRNA. In particular, the viral load in individual cells is associated with the expression of genes295

involved in response to cellular stresses, including oxidative stress. It will be interesting to determine296

if these cellular transcriptional signatures are simply a consequence of the stress imposed by viral297

replication, or if their stronger activation in some cells is a causative factor that promotes viral298

transcription. However, it also would not be surprising if a substantial amount of the cell-to-cell299

heterogeneity cannot be ascribed to pre-existing features of either the viral genome or cellular state.300

Apparently stochastic heterogeneity is a common feature of many processes at a single-cell level (Cai301

et al., 2006; Raj et al., 2006; Buganim et al., 2012; Shalek et al., 2013; Avraham et al., 2015) –302

especially when those processes are initiated by very small numbers of initial molecules (Elowitz303

et al., 2002), as is the case for low-MOI viral infection.304

Our data do suggest that the factors driving the heterogeneity in viral transcriptional load exert305

relatively concordant effects on all viral genes in a given cell. Specifically, despite the extreme306

heterogeneity in total viral mRNA per cell, the relative levels of the viral mRNAs are reasonably307

consistent across cells, and generally reflective of classical bulk measurements (Hatada et al., 1989).308

Therefore, despite the stochasticity inherent in initiating transcription and replication of each gene309

from a single copy carried by the incoming virion, as long as a gene is not completely lost then the310

virus possesses mechanisms to control its relative expression (Shapiro et al., 1987; Hatada et al.,311

1989; Perez et al., 2010; Heldt et al., 2012; Chua et al., 2013).312
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One factor that surprisingly does not appreciably contribute to the heterogeneity in our ex-313

periments is activation of innate-immune interferon pathways. Only one of the hundreds of314

virus-infected cells expresses any detectable interferon, despite the fact that a number of cells fail315

to express the influenza-virus interferon antagonist NS1. It is known that interferon activation is316

stochastic at the level of single cells in response to both synthetic ligands (Shalek et al., 2013, 2014;317

Bhushal et al., 2017; Hagai et al., 2017) and actual infection (Rand et al., 2012; Perez-Cidoncha318

et al., 2014; Avraham et al., 2015; Killip et al., 2017). But interferon expression is a prominent319

transcriptional signature of high-MOI influenza virus infection of bulk cells, including in the epithelial320

cell line and at the time-points used in our experiments (Geiss et al., 2002; Sutejo et al., 2012). So321

it is notable how rarely single cells express interferon. Interferon expression would surely be more322

common at later times or with a viral stock passaged at higher MOI, since paracrine interferon323

signaling (Crotta et al., 2013) and accumulation of defective viral particles enhance innate-immune324

detection (Tapia et al., 2013; Lopez, 2014). However, the early events of physiological influenza325

infection involve just a few virions (Varble et al., 2014;McCrone et al., 2017), and so it is interesting326

to speculate whether rare events such as interferon activation during the first few cycles of viral327

replication could contribute to heterogeneity in the eventual outcome of infection.328

Overall, our work shows the power and importance of charactering cellular infection at the level329

of single cells (Avraham et al., 2015). The dynamics of viral infection in any given cell is shaped330

by the genetic composition of the incoming virion, the host-cell state, the bi-modality of innate-331

immune activation, and the inherent stochasticity of molecular processes initiated by a single copy332

of each viral gene. We have shown how the confluence of these factors leads to extreme cell-to-cell333

heterogeneity in the transcriptional outcome of influenza virus infection. Further deconstruction of334

the contributions of each factor will enable a deeper understanding of how the bulk features of335

infection emerge from the processes occurring within individual virus-infected cells.336

Methods and Materials337

Cell lines and viruses338

The following cell lines were used in this study: the human lung epithelial carcinoma line A549339

(ATCC CCL-185), the MDCK-SIAT1 variant of the Madin Darby canine kidney cell line overexpressing340

human SIAT1 (Sigma-Aldrich 05071502), and the human embryonic kidney cell line 293T (ATCC341

CRL-3216). All cells were maintained in D10 media (DMEM supplemented with 10% heat-inactivated342

fetal bovine serum, 2 mM L-glutamine, 100 U of penicillin/ml, and 100 µg of streptomycin/ml) at 37343
◦C at 5 % CO2.344

Wildtype A/WSN/1933 (H1N1) influenza virus was generated by reverse genetics using the345

plasmids pHW181-PB2, pHW182-PB1, pHW183-PA, pHW184-HA, pHW185-NP, pHW186-NA, pHW187-346

M, and pHW188-NS (Hoffmann et al., 2000). The sequences of the viral RNAs encoded in these347

plasmids are in Figure 1-source data 1. Reverse-genetics plasmids encoding the synonymously348

barcoded WSN virus were created by using site-directed mutagenesis to introduce two synonymous349

mutations near the 3’ end of the mRNA for each viral gene. The sequences of the synonymously350

barcoded viral RNAs are in Figure 1-source data 1.351

To generate viruses from these plasmids, we transfected an equimolar mix of all eight plasmids352

into cocultures of 293T and MDCK-SIAT1 cells seeded at a ratio of 8:1. At 24 hours post-transfection,353

we changed media from D10 to influenza growth media (Opti-MEM supplemented with 0.01% heat-354

inactivated FBS, 0.3% BSA, 100 U of penicillin/ml, 100 µg of streptomycin/ml, and 100 µg of calcium355

chloride/ml). At 48 hours post-transfection we harvested the virus-containing supernatant, pelletted356

cellular material by centrifugation at 300 x g’s for 4 minutes, and stored aliquots of the clarified357

viral supernatant at -80 ◦C. We then titered thawed aliquots of viral by TCID50 on MDCK-SIAT1 cells,358

computing titers via the formula of Reed and Muench (1938). To generate our “high-purity” stocks of359

viruses for the single-cell sequencing experiments, we then infected MDCK-SIAT1 cells at an MOI of360

0.01, and let the virus replicate for 36 hours prior to harvesting aliquots that were again clarified by361
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low-speed centrifugation, aliquoted, stored at -80 ◦C, and titered by TCID50. The high-MOI passage362

(high-defective particle) stock used in Figure 2 was generated by instead passaging in MDCK-SIAT1363

cells twice at an MOI of 1 for 48 hours.364

For the experiments in Figure 7-Figure supplement 1, we created a virus that carried an HA gene365

segment in which GFP replaced most of the HA coding sequence, following a scheme first described366

byMarsh et al. (2007). Briefly, we created a plasmid encoding a viral RNA with GFP in place of the367

HA coding sequence in the context of the pHH21 (Neumann et al., 1999) reverse-genetics plasmid,368

removing potential start codons upstream of the GFP (see Figure 7-source data 2 for the sequence369

of the viral RNA). We then generated GFP-carrying virus by reverse-genetics in cells constitutively370

expressing HA (Doud and Bloom, 2016). To obtain sufficient titers, this HA-eGFP virus was expanded371

for 44 rather than 36 hours after initiating infection at an MOI of 0.01.372

qPCR373

For the qPCR in Figure 2 and Figure 5-Figure supplement 1, A549 cells were seeded at 3×105374

cells per well in a 6-well tissue culture plate in D10 the day prior to infection. On the day of375

infection, a single well was trypsinized and the cells were counted in order to determine the376

appropriate amount of virus to use to achieve the intended MOI. Immediately before infection,377

D10 was replaced with influenza growth media. For cells incubated with cyclohexamide, the378

compound was added to a final concentration of 50 µg/ml at the time of infection – previously379

confirmed to be sufficient to halt viral protein production (Killip et al., 2014). RNA was purified380

using the QIAGEN RNeasy plus mini kit following manufacturer’s instructions. cDNA was syn-381

thesized using an oligoDT primer and the SuperScriptTM III first-strand synthesis supermix from382

ThermoFisher using the manufacturer’s protocol. Transcript abundance was measured using383

SYBRTM green PCR master mix, using a combined anneal/extension step of 60 ◦C for one minute384

with the following primers: HA: 5’-GGCCCAACCACACATTCAAC-3’, 5’-GCTCATCACTGCTAGACGGG-385

3’, IFNB1: 5’-AAACTCATGAGCAGTCTGCA-3’, 5’-AGGAGATCTTCAGTTTCGGAGG-3’, L32: 5’-386

AGCTCCCAAAAATAGACGCAC-3’, 5’-TTCATAGCAGTAGGCACAAAGG-3’. Biological triplicates were per-387

formed for all samples.388

For the measurements of viral genomic HA content in Figure 2A, vRNA was harvested from 80389

µl of viral supernatant by the addition of 600 µl of RLT plus before proceeding with the standard390

QIAGEN RNeasy Plus Mini kit protocol. The cDNA was generated using SuperScriptTM III first-strand391

synthesis supermix using the manufacturer’s protocol, and using the universal vRNA primers of392

Hoffmann et al. (2001) with the modifications described in Xue et al. (2017). The qPCR was then393

performed as for mRNA measurements. A standard curve was generated from three independent394

dilutions of the HA-encoding reverse genetics plasmid. All vRNA values represent three independent395

RNA extractions with two replicate qPCR measurements.396

Flow cytometry titering and analyses397

To determine viral titers in terms of HA-expressing units and for the flow cytometry in Figure 7-398

Figure supplement 1, A549 cells were seeded in a 6-well plate and infected as described above for399

the qPCR analyses. Cells were harvested by trypsinization, resuspended in phosphate-buffered400

saline supplemented with 2% heat-inactivated FBS, and stained with 10 µg/ml of H17-L19, a mouse401

monoclonal antibody confirmed to bind to WSN HA in a prior study (Doud et al., 2017). After402

washing in PBS plus 2% FBS, the cells were stained with a goat anti-mouse IgG antibody conjugated403

to APC. Cells were then washed, fixed in 1% formaldehyde, and washed further before a final404

resuspension and analysis. We then determined the fraction of cells that were HA positive and405

calculated the HA-expressing units.406

For Figure 7-Figure supplement 1, after gating to exclude multiplets in FlowJo, data were ex-407

tracted using the R package flowCore (Le Meur et al., 2007) and analyzed using a custom Python408

script. Guassian kernel density estimates were obtained using the scipy stats package method,409

guassian_kde, using automatic bandwidth determination (van der Walt et al., 2017).410
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Infections for single-cell mRNA sequencing411

Single-cell sequencing libraries were generated using the 10x Chromium Single Cell 3’ plat-412

form (Zheng et al., 2017) using the V1 reagents.413

All time points except for the 8-hour replicate were prepared on the same day. For the infections,414

A549 cells were seeded in a 6-well plate, with two wells per time point. A single well of cells was415

trypsinized and counted prior to initiation of the experiment for the purposes of calculating MOI.416

Wild-type and synonymously barcoded virus were mixed to an estimated ratio of 1:1 based on prior,417

exploratory, single-cell analyses (data not shown). At the initiation of our experiment, the wells418

for all time points were changed from D10 to influenza growth media. Cells were then infected419

with 0.3 HA-expressing units of virus per cell (a determined by flow cytometry). The infections420

were performed in order of time point: first the 10-hour time point, then the 8-hour, and then the421

6-hour time point. At one hour after infection, the media for each time point was changed to fresh422

influenza growth media. Note that the HA-expressing units were calculated without this additional423

washing step, and so likely represent an overestimate of our final infectious dose (consistent424

with the fact that fewer than 30% of cells appear infected in the single-cell sequencing data). All425

cells were then harvested for single-cell analysis concurrently – ensuring all had spent equivalent426

time in changed media . For our replicate 8-hour time point, cells were infected as above except427

that the cells were infected at 0.1 HA-expressing units of virus per cell but no wash step was428

performed, and the sample was prepared on a different day. After harvest, cells were counted using429

disposable hemocytometers and diluted to equivalent concentrations with an intended capture430

of 3000 cells/sample following the manufacturer’s provided by 10x Genomics for the Chromium431

Single Cell platform. All subsequent steps through library preparation followed the manufacturer’s432

protocol. Samples were sequenced on an Illumina HiSeq. The deep sequencing data are available433

on the Sequence Read Archive under accession [Upload in progress.]434

Computational analysis of single-cell mRNA sequencing data435

Jupyter notebooks that perform all of the computational analyses are available in Supplemen-436

tary file 1.437

Briefly, the raw deep sequencing data were processed using the 10X Genomics software package438

CellRanger (version 2.0.0). The reads were aligned to a concatenation of the human and influenza439

virus transcriptomes. The human transcriptome was generated by filtering genome assembly440

GRCh38 for protein coding genes defined in the GTF file GRCh38.87. The influenza virus transcrip-441

tome was generated from the reverse-complement of the wildtype WSN viral RNA sequences as442

encoded in the reverse-genetics plasmids (Figure 1-source data 1). CellRanger calls cells based on443

the number of observed cell barcodes, and creates a cell-gene matrix. We used custom Python444

code to annotate the cells in this matrix by the number of viral reads that could be assigned to445

the wildtype and synonymously barcoded virus. Only about half of the viral reads overlapped446

the barcoded regions of the genes (Figure 1A) and could therefore be assigned to a viral barcode447

(Figure 4-Figures supplement 1). So for calculations of the number of reads in a cell derived from448

each viral barcode for each viral gene, the total number of detected molecules of that gene are449

multiplied by the fraction of those molecules with assignable barcodes that are assigned to that450

barcode. This annotated cell-gene matrix is in Supplementary file 2. A Jupyter notebook that451

performs these analyses is in Supplementary file 1.452

The annotated cell-gene matrix was analyzed in R, primarily using the Monocle package (version453

2.4.0) (Qiu et al., 2017; Trapnell et al., 2014). A Jupyter notebook that performs these analyses is in454

Supplementary file 1. For each sample, cell barcodes that had >2.5-fold fewer or more UMI counts455

mapping to cellular transcripts than the sample mean were excluded from downstream analyses456

(see red vertical lines in Figure 3B).457

In order to determine an appropriate cutoff for how many reads a cell needed to contain in458

order to be classified as infected, we calculated the mean viral barcode purity across all cells that459

contained at least a given fraction of viral mRNA and had multiple viral reads that could be assigned460
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a barcode (Figure 4B,C). We then determined the threshold fraction of viral mRNA at which the mean461

purity no longer increased as a function of the amount of viral mRNA. This threshold represents462

the point at which we have effectively eliminated cells that have low barcode purity simply due to463

lysis-acquired reads sampled randomly from both viral barcodes. The 10-hour sample has the most464

viral mRNA, and so is expected to have the most lysis-associated influenza reads. We therefore465

determined the threshold using just this sample, and then applied this threshold to all samples. The466

threshold is shown in Figure 4C. This procedure is expected to be conservative, and may miss some467

truly infected cells with very low amounts of viral mRNA. For subsequent analyses, we retained468

all infected cells and a subsample of uninfected cells (the greater of 50 or the number of infected469

cells for that sample). The rationale for subsampling the uninfected cell is that the vast majority470

of cells are uninfected, and we did not want these cells to completely dominate the downstream471

analyses. Cells were classified as co-infected if both viral variants had an RNA level that exceeded472

the threshold, and if the minor variant contributed at least 5% of the viral mRNA.473

For the semi-supervised t-SNE clustering, we used Monocle’s cell hierarchy function to bin cells474

into those with no viral mRNA, <2% viral mRNA, between 2% and 20% viral mRNA, and >20%.475

Candidate marker genes for t-SNE dimensionality reduction were then determined using the476

Monocle function markerDiffTable, excluding the effects of sample variation and the number of477

genes identified in a given cell, using a q-value cutoff of 0.01. The specificity of these markers was478

determined using the function calculateMarkerSpecificity – the top 40 markers were retained, and479

used to place populations in a two-dimensional plane based on tSNE dimensionality reduction.480

For the analyses of cellular genes that differed in expression as a function of the amount of viral481

mRNA, we only considered cells that expressed all 8 viral mRNAs to avoid effects driven simply by482

viral gene absence. We also only considered cellular genes in the differential gene analysis, since483

viral gene expression will tautologically co-vary with the amount of viral mRNA. Additionally, because484

influenza virus has the capacity to degrade or prevent the synthesis of host mRNAs (Bercovich-485

Kinori et al., 2016) and contributes significantly to the total number UMIs in some cells, we calculate486

size factors (a scalar value representing efficiency of UMI capture) based on cellular transcripts alone.487

Finally, we assigned all cells a ceiling fraction of mRNA from virus of 25% so that a few extremely488

high-expressing cells did not dominate. Cellular genes with expression that co-varied with the489

fraction of viral mRNAs in a cell were then determined using the Monocle differentialGeneTest, after490

removing variance explained by sample to sample variation. Figure 9 shows all genes that were491

significantly associated with the fraction of mRNA from virus at a false discovery rate of 0.1.492
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Supplementary file 1. Computer code for the analyses. This ZIP file contains a Jupyter notebook that runs
CellRanger to align and annotate the reads, and a Jupyter notebook that uses Monocle to analyze the cell-gene
matrix. The ZIP file also includes associated custom scripts.

Supplementary file 2. The annotated cell-gene matrix in Matrix Market Format.
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Figure 2–Figure supplement 1. Full flow cytometry date for Figure 2B. A549 cells were infected
at an MOI of 0.1 as calculated by TCID50 on MDCK-SIAT1 cells. (A) Uninfected gating control.
(B) Cells infected with the wild-type virus stock used in our experiments. (C) Cells infected with
synonymously barcoded virus stock used in our experiments. (D) Cells infected with a stock of
wild-type virus propagated at a high MOI, and therefore enriched in defective particles.
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Figure 4–Figure supplement 1. The number of viral barcodes called for each sample and gene
segment. Viral transcripts are classified as syn if they mapped to a synonymously barcoded influenza
transcript, wt if they mapped to a wild-type influenza transcript, invalid if multiple reads for the
same UMI differed on the status of the viral barcode, and as uncalled if none of the reads for that
UMI overlapped the region of the viral transcript containing the viral barcode. For calculations of
the number of reads in a cell derived from each viral barcode for each viral gene, the total number
of detected molecules of that gene are multiplied by the fraction of those molecules with assignable
barcodes that are assigned to that barcode.
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Figure 4–Figure supplement 2. The total fraction of all viral mRNA among infected cells that is
attributable to a given fraction of these cells. For instance, the plot for the 8-hour sample shows
that roughly 50% of all viral mRNA is derived from 10% of the infected cells.
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Figure 5–Figure supplement 1. A549 cells were infected at an MOI of 0.2 as calculated on MDCK-
SIAT1 cells in either the presence or absence of the protein-translation inhibitor cyclohexamide,
and viral mRNA was quantified at 8 hours post-infection by qPCR. The cyclohexamide prevents
translation of new PB2, PB1, PA, and NP protein, and so prevents the formation of the new RNPs
needed for secondary transcription. The bars show the relative amount of HA and PB2 mRNA in
the absence versus the presence of cyclohexamide. Error ± S.D. n=3.
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Figure 5–Figure supplement 2. The fraction of mRNA in each infected cell derived as a function of
the normalized expression of each viral gene, shown for the 10-hour and 8-hour samples individually
(the other samples had too few infected cells for this analysis to be useful). Points are colored as in
Figure 5A.
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Figure 5–Figure supplement 3. The absence of viral RNP genes but not non-RNP genes remains
significantly associated with reduced viral burden when we examine only the 10-hr sample, which
is the single time point with the most data points. The difference for NP is no longer statistically
significant due to low counts of infected cells lacking NP, but the trend remains. We do not show
statistical analyses for other samples, as the number of infected cells is too low.
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Figure 7–Figure supplement 1. (A) Cells were co-infected with a mix of wild-type virus and virus in
which the HA gene was replaced by GFP flanked by the terminal regions of the HA gene segment. At
10 hours post-infection, cells were analyzed by flow cytometry for HA and eGFP expression. (B) The
expression of HA and GFP are correlated in co-infected cells. Shown are the quantile-normalized HA
and eGFP signals for double-positive cells. Cells are colored by density, using a Gaussian kernel
density estimate. (C),(D),(E) Gating controls, single infection with eGFP virus, single infection with
wild-type virus, and uninfected cells, respectively.
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Category Genes

Detoxification AKR1C3, AKR1B10, GPX2, ALDH3A1, 
ALDH1A1, NQO1, CBR1, PRDX1

TXN, PPIA

NDUFB4, MT-CO1, MT-CO3

ATF3, GADD45B

UBB, NME1

Protein folding

Electron transport chain

Regulators

ROS-responsive
relevance complex/unknown

Figure 9–Figure supplement 1. Table delineating genes in Figure 9 that are associated with the
response to oxidative stress (Duong et al., 2017; Jung et al., 2017; Lee and Ryu, 2017; Peuchant
et al., 2017; MacLeod et al., 2016; Jiang et al., 2016; Gorrini et al., 2013; Miura et al., 2013; Kim
et al., 2009; Banning et al., 2005;Murray et al., 2003; Doyle et al., 1999).
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