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ABSTRACT

Antimicrobial resistant infections are a serious public health threat worldwide. Whole genome sequencing approaches to rapidly
identify pathogens and predict antibiotic resistance phenotypes are becoming more feasible and may offer a way to reduce
clinical test turnaround times compared to conventional culture-based methods, and in turn, improve patient outcomes. In this
study, we use whole genome sequence data from 1668 clinical isolates of Klebsiella pneumoniae to develop a XGBoost-based
machine learning model that accurately predicts minimum inhibitory concentrations (MICs) for 20 antibiotics. The overall
accuracy of the model, within ±1 two-fold dilution factor, is 92%. Individual accuracies are ≥90% for 15/20 antibiotics. We
show that the MICs predicted by the model correlate with known antimicrobial resistance genes. Importantly, the genome-wide
approach described in this study offers a way to predict MICs for isolates without knowledge of the underlying gene content.
This study shows that machine learning can be used to build a complete in silico MIC prediction panel for K. pneumoniae and
provides a framework for building MIC prediction models for other pathogenic bacteria.

Introduction
Klebsiella pneumoniae infections are a major cause of morbidity and mortality worldwide. Over the past several years, the
emergence of antimicrobial resistant (AMR) K. pneumoniae strains has been increasing at an alarming rate, with reports of
pan-resistant strains appearing in the literature and lay press1–3. Reports of hospital-based outbreaks are particularly concerning,
and recent evidence suggests that AMR K. pneumoniae clones are circulating in the community3–5. As antimicrobial resistance
increases, fewer effective antibiotics are available for physicians to treat these life-threatening infections. In response, the World
Health Organization recently listed carbapenem and third generation cephalosporin resistant Enterobacteriaceae (including K.
pneumoniae) among the most critical organisms for antimicrobial drug development6.

When a patient is diagnosed with an infection, it is critically important to prescribe appropriate antimicrobial therapy
as quickly as possible. Rapid pathogen identification and appropriate antimicrobial therapy administration significantly
decreases mortality, improves patient outcomes, reduces health care costs, and decreases the use of ineffective or inappropriate
antibiotics7–9. For bloodstream infections, mortality increases every hour that appropriate therapy is delayed9. The conventional
clinical microbiology laboratory evaluation of a suspected infection requires inoculation of the specimen on primary culture
media and incubation until there is sufficient growth to perform taxonomic identification and minimal inhibitory concentration
(MIC) determination. In many cases, subcultures are needed to purify mixed cultures containing more than one organism or
generate sufficient colonial material for testing. Depending on the growth rate of the organism and the MIC testing procedures
used, the multiple culture steps can add one or more days to the laboratory workup10, 11.

Compared to conventional culture-based methods, rapid molecular assays may significantly reduce turnaround times by
eliminating one or more subculture steps. The most common sequence-based methods for predicting the AMR phenotypes of
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an organism identify the presence of genes implicated in resistance using PCR, microarrays or whole genome sequencing12–14.
Well-designed gene-based detection methods are capable of providing an accurate prediction of susceptibility or resistance for
the genes tested, but and there are several limitations to this approach. First, it relies on well-curated databases of AMR genes,
which can be difficult to maintain15–18. For example, the commonly used databases of AMR genes are currently excellent
at cataloging well-studied AMR genes like β -lactamases19, but often lack data for diverse efflux mechanisms18. Second,
similarity-based matching strategies to determine AMR gene content may incorrectly assign AMR functions to paralogous
non-AMR genes. Gene based approaches may also fail to identify critical mutations in intergenic regions, including regulatory
and promoter sequences, leading to a false-negative susceptibility prediction. Also, PCR based methods use primers for
amplification, which may not anneal if mutations are present in the complementary region, again rendering an incorrect result.
Finally, since these methods are based on preexisting knowledge of AMR conferring genomic regions, they are not able to
predict resistance if the molecular mechanism is unknown or multifactorial.

The public sharing of whole genome sequence data with clinical AMR metadata has enabled the use of machine learning
(ML) methods that predict AMR phenotypes without relying on a database of preexisting AMR genes or mutations. Two recent
studies have used this approach to obtain accurate predictions of susceptibility or resistance in organisms with no a priori
information about the gene content of the organisms20, 21. To do this, they used short nucleotide k-mers as features and the
laboratory derived AMR phenotypes as labels. Other studies have successfully used AMR genes, SNPs, and whole genome
sequence data (or a combination thereof) to build ML classifiers with good accuracies22–27. Recent examples of gene-based and
whole genome-based classification approaches for Klebsiella were reported by Stoesser et al.27, Long et al.3, and Pesesky et
al.24.

To date, most AMR prediction methods have focused on classifying "susceptible" and "resistant" phenotypes. While simple
and oftentimes sufficient, this approach can be error prone because it relies on the clinical interpretations of break point values.
Also, intermediate phenotypes do not fit within this classification scheme. A small number of studies have attempted to predict
MICs based on gene content28–30. One notable recent publication used an ML algorithm trained on the SNPs from several key
AMR genes to successfully predict MICs for Neisseria gonorrhoeae29.

In this study, we present an ML approach for predicting MICs for K. pneumoniae. Our strategy requires no a priori
knowledge of the underlying gene content. The current model offers MIC prediction for 20 antibiotics. To our knowledge, this
is the largest MIC prediction study for a human pathogen to date. We discuss the strengths and limitations of our approach and
the necessary steps required to implement in silico MIC prediction using whole genome sequence data for K. pneumoniae in
the clinical laboratory.

Results
Approach
For several years, the microbiology laboratory at Houston Methodist Hospital System has been banking clinical isolates of K.
pneumoniae. We recently sequenced the genome of AMR K. pneumoniae strains recovered from patients between 2011 and
20153. Our goal is to use whole genome sequencing to detect the emergence of highly virulent clones, monitor the spread
of AMR, and guide patient care decisions31, 32. We routinely perform whole genome sequencing in our clinical laboratory.
Importantly, as the cost and speed of whole genome sequencing continues to decrease, it increasingly becomes a viable option
for routine microbial diagnostics.

Using the whole genome sequence data for our K. pneumoniae clinical isolates, we sought to build an ML model that
accurately predicts the MIC for 20 antibiotics. We chose a strategy that uses the entire genome as input, rather than individual
genes, since this approach requires no a priori knowledge of the underlying gene content, and could potentially use data from
uncharacterized AMR genes, intergenic or polymorphic coding regions, or non-AMR genes that may indirectly effect the MIC.
To accomplish this, we computed the counts of all overlapping 10-mer oligonucleotide k-mers and combined them with the
clinical laboratory generated MIC data for each antibiotic to form one large matrix containing both the k-mers and antibiotics
as features. After exploring the problem as both a multiclass classification problem and a regression problem and evaluating
common ML algorithms, we chose an extreme gradient boosting regression model through the XGBoost library33. We then
iteratively evaluated the available parameters of the algorithm to maximize the accuracy of the model (Figure 1, Materials and
Methods).

Model Accuracy
A 10-fold cross validation was used to access the overall stability and accuracy of the model. The raw accuracy of the model,
defined as the ability to predict the exact MIC for a given genome and antibiotic (Supplemental Table S1), and accuracy within
±1 two-fold dilution factor (or 1-tier) of the actual MIC was measured (Table 1). Bounding the accuracy to within one two-fold
dilution factor of the laboratory determined MIC is consistent with current FDA standards for diagnostic tools and conventional
clinical microbiology practices34, 35. We also evaluated the model based on the very major error (VME) rate, defined as a
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Figure 1. Results of the 2k factorial design on the XGBoost model. (a) Three dimensional plot showing the relationship
between maximum depth, column subsampling and row subsampling parameters. The size of the spheres represent the within
1-tier accuracy score for the given model. Larger spheres indicate higher accuracy. Dashed lines are added to aid in
visualization. The image shows that maximum tree depth plays the largest role in the XGBoost model with column and row
subsampling having smaller roles. (b) Heat map showing the relationship between learning rate and maximum tree depth. In
the color scheme, white is most accurate and dark blue and green are least accurate. The image shows that lower depth and
learning rates produce more accurate models.

resistant isolate having a MIC that is predicted to be susceptible, and the major error rate (ME), defined as a susceptible isolate
having a MIC that is predicted to be resistant. MIC thresholds for susceptibility and resistance for clinical data and model
predictions are based on current CLSI breakpoints36.

The average raw accuracy of the entire model, testing on all available MICs for 20 antibiotics was 69% with a 95%
confidence interval of [68%; 69%]. The within 1-tier accuracy was much higher, at 92% with a 95% confidence interval of
[92%; 92%] (Table 1, Supplemental Table S1). The large difference between the raw accuracy and the within 1-tier accuracy is
probably the result of a variety of factors including the inherent error in the laboratory MIC testing procedure37, variations
in growth and testing conditions, MICs with > and < values (which may actually represent a range of values), and a possible
lack of discriminating genetic features between adjacent MIC dilutions. The raw accuracies and within 1-tier accuracies for
the individual antibiotics track similarly, with the raw accuracies being lower and the within 1-tier accuracies being markedly
higher. Overall, 15 of the 20 antibiotics have within 1-tier accuracies ≥90%. Three antibiotics have within 1-tier accuracies =
89%, while piperacillin/tazobactam and cefepime had lower within 1-tier accuracies of 78% and 61%, respectively (Table 1).

The accuracy of the model varies across the MICs for each antibiotic, in part, due to nonuniform representation of genomes
for every possible value; however, the included genomes are representative of K. pneumoniae strains causing human infections.
Figure 2 depicts the number of genomes and the within 1-tier accuracy for each MIC and antibiotic. Overall, MICs represented
by many genomes tend to have high accuracies and MICs represented by fewer genomes tend to have lower accuracies. For
example, the model has higher accuracies for β -lactam resistant MICs than susceptible MICs because there are fewer genomes
for susceptible strains in our data set. In some cases, the model appears to be able to successfully interpolate over bins with
a small number of samples. For example tobramycin MIC = 4µg/ml, which is in between bins with deep sampling and
high accuracy had 23 samples and an accuracy equal to 90%. Accuracies and confidence intervals for all bins are shown in
Supplemental Table S2. The actual and predicted MICs for each genome are displayed in Supplemental Table S3.

The average VME rate for the entire model was 3.1% with a 95% confidence interval of [2.8%;3.4%](Table 2). The average
ME rate was 3.7% with a confidence interval of [3.3%;4.1%] (Table 2). The VME ranged from 0 for ampicillin and ceftriaxone
to 30% for amikacin. Poorer prediction of amikacin MICs is likely due to the lower representation of amikacin resistant
genomes in the dataset. Eleven of the antibiotics have VME rates with confidence intervals between 1.5 and 7.5% for the lower
and upper bounds respectively. Likewise, 12 of the antibiotics have ME rates ≤ 3%. These results align with FDA diagnostic
device standards34, suggesting that our model may be suitable for clinical use. However, it must be noted that susceptible and
resistant MICs are not balanced in the data set, so the lowest VME rates tend to track with antibiotics that have the largest
number of resistant genomes. We plan to test additional K. pneumoniae strains with these AMR phenotypes to fill this gap.
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Figure 2. The accuracy of the XGBoost model for individual MICs. The X-axis of the heatmap shows the actual MIC (µg/ml)
for a bin and the Y-axis lists the antibiotics. The within ±1-tier accuracy of a particular antibiotic-MIC bin is denoted by color,
with red and orange being least accurate and bright yellow and green being most accurate. The number within each cell
represents the number of samples (genomes with the MIC) within the bin.

Correlation with AMR Genes
The XGBoost algorithm generates a regression model that is based on an ensemble of decision trees. In our model, these
decision trees split the data based on k-mers that distinguish the different antibiotics and MICs. Interpreting the features that are
being selected by the model and subsequently understanding their relationship to a given antibiotic and resistance mechanism
can be challenging for several reasons. Primarily, understanding the feature importance is an open graph theory problem.
Furthermore, if an important k-mer maps to an uncharacterized gene or genomic region, it becomes difficult to determine if it is
a hallmark of resistance or susceptibility. Finally, unambiguously associating a k-mer to a given antibiotic may inappropriately
confer resistance to several related antibiotics, and we know that this dataset contains multiple resistance gene types such as the
Bla-KPC and TEM β -lactamases3.

In general, the AMR that is detected in K. pneumoniae strains isolated from patients is usually conferred by the acquisition
of antibiotic resistance genes rather than an accumulation of SNPs3, 38. We reasoned that in many cases, the MICs for an
antibiotic should correlate with the occurrence of genes known to confer resistance to that antibiotic. By comparing the
correlation of MICs and functional roles with the correlation that is based on the predicted MICs from the model, we gain an
understanding of the relationship between MICs and AMR genes. We can also observe how closely the model is replicating
these relationships. To do this, we computed the Pearson correlation coefficient (PCC) between the MICs for each genome and
the presence or absence of each unique functional role in each genome (Table 3).

In the case of 12 antibiotics, we observe high PCCs between the MICs and the functional roles for well-known AMR genes.
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For example, the β -lactam antibiotics correlate with the CTX, KPC and TEM type β -lactamase genes and the aminoglycoside
antibiotics correlate with aminoglycoside acetyltransferase genes. For 8 of the 20 antibiotics, the association between the
functional role and AMR is not obvious. In some of these cases, the functional roles appear to be related to horizontal gene
transfer, and this may have resulted in their high PCCs. In other cases, the genes may not be sufficiently characterized by the
raw 10-mer counts. When the analysis is repeated using MICs that are predicted by the model, the PCCs track very closely with
those generated from the actual MICs, indicating that the model is not only learning that these genes exist (the model is only
fed 10-mer counts, not whole genes), but it is also placing importance on these genes. Similarly, there is considerable overlap
between the top ten most highly correlated functional roles based on the actual and predicted MICs (Table 3, last column).

In previous work, we built 16 AdaBoost-based classifiers for predicting susceptibility and resistance and installed them
in the RAST annotation system3. Thirteen of the antibiotics that were used to build these classifiers are represented in our
MIC prediction model. The top genomic regions predicted by the K. pneumoniae AdaBoost classifiers correspond to the most
most highly correlated functional roles from the MIC prediction model in for four of the thirteen antibiotics. These include
gentamicin, imipenem, meropenem and tetracycline. The top AdaBoost feature can be found found among the top five most
highly correlated functional roles in three more cases including aztreonam, cefoxitin, and trimethoprim/sulfamethoxazole. Since
the AdaBoost classifiers match SNPs in gyrase and topoisomerase genes conferring resistance to ciprofloxacin and levofloxacin,
assessing the correlation to the presence of functional roles will not work for these two antibiotics. It is not immediately clear
why the top features for the other four antibiotics (amikacin, cefepime, piperacillin/tazobactam and tobramicin) are not highly
correlated, but no characterized AMR roles appear in the top 10 most highly correlated features.

Building a Model Based on AMR Genes
Although we chose to build a model that was based on data from the entire genome, previous studies have built MIC prediction
models using the known AMR genes 28–30. We wanted to know whether a model based on whole genome data, or a model
based on only AMR genes would be more accurate. On one hand, the extra k-mers used by the whole genome model could be a
source of noise, but on the other hand, they may represent useful data that could making the model more accurate. To make this
comparison, we built a model that used only the AMR genes as the source of k-mers, keeping all other parameters identical.
Both the PATRIC annotation service 18, 39 and the CARD database15 were used as sources of potential AMR genes. The overall
accuracies for the whole genome and AMR gene-based models are both 92%. Likewise, the individual accuracies for each
antibiotic are also nearly identical, differing by no more than 2% for any antibiotic (Table S4, Figure S1). This indicates that
the extra k-mers used by the whole genome are not a source of noise for the XGBoost model. Since the AMR genes model is
much smaller than the whole-genome model (20GB vs. 148GB), it is more efficient to compute, and it is therefore tempting to
conclude that a model built from AMR genes is sufficient for performing MIC prediction for K. pneumoniae. However, due to
the smaller number of susceptible and intermediate samples in this data set, more genome sequencing is necessary to determine
if a model built from AMR genes is sufficient for accurately predicting these lower MIC values.

When we repeat this analysis building an identical model for the leftover non-AMR genes, we also observe an overall
accuracy of 92%, and accuracies for individual antibiotics that track closely with the models built from full contigs and AMR
genes (Table S4, Figure S1). This indicates that there is enough residual data in the non-AMR genes to accurately predict
MIC values as well. This could be due to the presence of uncharacterized AMR genes in the data set, the existence of relevant
information such as non-AMR genes co-occurring with AMR genes, or variants in non-AMR genes that have an impact on
MICs. In the case of all three models, it is unlikely that the accuracy is due to the model mapping to a phylogenetic pattern
between strains, since nearly clonal strains of the same MLST type can have a variety of different MIC values per antibiotic
(Table S5).

Discussion
Using the clinical laboratory determined MICs and whole genome sequence data for 1668 K. pneumoniae strain recovered from
infected patients, we built an XGBoost regression model that can predict the MICs for 20 antibiotics with an average within
±1-two fold dilution factor accuracy of 92%. Individually, 15 of the 20 antibiotics have within 1-tier accuracies >90%. These
results demonstrate that accurate genome-based MIC prediction is possible for K. pneumoniae isolates. Herein, we provide the
necessary groundwork for building a complete in silico panel.

To date, our whole genome sequencing efforts have focused on the most highly antibiotic resistant pathogens, including
extended spectrum β -lactamase-(ESBL) producing K. pneumoniae3, so the model currently lacks sufficient inclusion of
organisms with MICs in the lower range. We also currently lack sufficient data to predict MICs for some less-commonly tested
antibiotics, including amoxicillin/clavulanate, ertapenem, fosfomycin, moxifloxacin ticarcillin/clavulanate and tigecycline.
Ideally, selecting a balanced number of organisms at each possible MIC could improve the overall accuracy of the model. Our
future efforts will seek to close these gaps. Inclusion of additional strains will also improve the ME and VME rates. The K.
pneumoniae strains used in our model were collected as part of a large, comprehensive, population-based study in Houston.

5/23

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 25, 2017. ; https://doi.org/10.1101/193797doi: bioRxiv preprint 

https://doi.org/10.1101/193797
http://creativecommons.org/licenses/by-nc-nd/4.0/


Although our sampling capacity is extensive and we treat a diverse population of patients from Houston and around the world,
the model may be further improved by including samples from other geographic locations.

In previous work, we built binary classifiers that can predict susceptibility or resistance for a given species and antibiotic18, 20.
Although somewhat simplistic in approach, the method provides a straightforward way to extract the genomic features relating
to resistance. In this study, in order to achieve high accuracies for predicting each MIC, we combined the antibiotics and k-mers
into a large matrix and used XGBoost as the ML method. While the approach is clearly advantageous because it provides a
more refined phenotype prediction, feature extraction from this kind of model remains quite challenging. Although we have
shown strong correlations between the actual MICs and predicted MICs with known AMR genes, we will continue to explore
ways to extract the key gene data that contributes to each MIC. Importantly, these studies may provide new insight to the
molecular mechanisms conferring intermediate phenotypes.

Using data from the entire genome is advantageous for building the MIC prediction model because it requires no underlying
information about the gene content of the organisms. However, the current data set lacks sufficient sampling of genomes with
susceptible and intermediate phenotypes to determine if models built from whole genome data or only the AMR genes will
ultimately differ in accuracy. Since genomic features that are not annotated as being directly involved in conferring AMR are
likely to influence on lower MIC values, a whole-genome approach might be beneficial for discriminating low MIC values as
we acquire more data. Surprisingly, we found that there is sufficient data to perform accurate MIC prediction using only the
non-AMR genes. This may have value for building models that can predict AMR phenotypes from incomplete sequence data,
as may be the case with a metagenomic samples. It may also provide a means by which to explore the more subtle effects that
non-AMR genes may be having on AMR phenotypes.

In this study, we found that deeper trees, with a depths of 3–4, were optimal for the XGBoost model. A logical next step
will be to train a deeper model, like a neural network, on this data set to determine if the accuracy can be further improved.
A deep learning approach may also provide more efficient memory usage and reduced computational times. However, this
strategy would not improve the extraction and interpretation of AMR-related genomic features, since feature extraction from
deep learning methods is more challenging compared to ensemble methods such as XGBoost.

The genomes used in this study were sequenced using Illumina sequencing technology. In order to generate genome
sequence data cost effectively, we collected samples and performed highly multiplexed runs in batches. However, this is not a
clinically time efficient strategy. Newer devices such as the PacBio Sequel and Oxford MinION could potentially be used for
point of care sequencing, and thus, may become a model for whole genome sequence-based diagnostic strategies40. However, at
present, the cost of sequencing individual pathogens using these technologies is higher, and their error rates may be too high for
effective MIC prediction with our ML method41. In order to couple the MIC prediction model outlined in this study with these
sequencing platforms, we may need to either incorporate an error correction model for processing MinION or PacBio reads,
or regenerate the model using genomes sequenced with these technologies. Further analyses to sequence based off of blood
enrichment cultures, or from the actual wound source, rather than the pure culture, would also provide more rapid results, but
require algorithms for identifying pathogens and eliminating host DNA and other contaminants. Regardless, sequence-based
MIC prediction appears to be feasible as a diagnostic strategy.

Methods
Strain collection
Klebsiella pneumoniae isolates were cultured from patient specimens in the Houston Methodist Hospital System between
September of 2011 and March of 2017. Strains were tested for minimum inhibitory concentrations to 20 antibiotics using the
BD-Phoenix system (BD Diagnostics, Sparks, MD, USA). All of the strains collected before 2015 were originally part of two
studies by Long and colleagues designed to track extended spectrum β -lactamase- (ESBL) producing strains 3, 42. A total of
1497 strains from the Long et al. study with BD-Phoenix MIC data were used in this analysis (Table S3). An additional 171
isolates, 93 ESBL-producing and 78 non-ESBL-producing (Phoenix ESBL test; BD), were also panel tested, whole genome
sequenced, and used in this study. In total, we analyzed 1668 Klebsiella pneumoniae genomes.

DNA extraction and whole-genome sequencing
Genomic DNA was extracted using the manufacturer’s Gram-negative protocol for the DNeasy Blood and Tissue kit (Qiagen)
and quantified using a Qubit 3.0 instrument (Invitrogen). Whole-genome sequencing libraries were prepared using NexteraXT
reagents (Illumina) and sequenced on a MiSeq or NextSeq 500 instrument (Illumina).

Data preparation
When the MICs produced from the BD-Phoenix tests exceeded the testing thresholds, they were cleaned to remove the >, <, ≥,
and ≤ symbols. If the MIC was > x, the MIC label was changed to 2x, if it was < x, the MIC was changed to x

2 , and if the MIC
was ≥ x or ≤ x, the symbol was removed and the MIC remained unchanged. The Log2 value of these cleaned MICs were used
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for all ML tasks. For dual antibiotics with two MICs, such as trimethoprim/sulfamethoxazole, the first value was used in all
cases, since the second value is either constant or dependent on the first.

Experimental design
Genomes were assembled with SPAdes43 using the PATRIC assembly service39. Contigs with ≤ 500bp and ≤ 5-fold coverage
were removed. The contigs were divided into overlapping 10-mer oligonucleotide k-mers, sorted in lexicographical order and
counted using the software package KMC244. K-mer counts and antibiotic names were used as input features into the model.
Antibiotic names were one-hot encoded. In this study, we chose to use 10-mers as features, rather than a longer k-mer length,
in order to reduce the size of the matrix. This enabled us to load the matrix into memory and perform cross validation on a
machine with 1.5TB RAM. The dataset was then split into equal training, validation and testing sets. Each subset was created
so that it contained the same number of MICs for a given antibiotic. The final distribution antibiotics used in the model is
uniform, but the number of samples for a given MIC per antibiotic was not uniformly distributed.

The prediction of MICs can be cast as a regression problem or a multi-class classification problem with each MIC
representing an individual class. We explored several popular ML algorithms including AdaBoost (Adaptive Boosting)45,
bagging46, random forest47, extremely randomized trees48, and support vector machines49 from the scikit-learn python
package50, as well as XGBoost (Extreme Gradient Boosting)33. Using default parameter choices, we attempted to cast the
problem as both a classification and regression problem depending on the capabilities of the algorithm. Algorithms were
compared based on accuracy and computational resources required. An XGBoost regression model was ultimately chosen for
this study because it produced the highest default accuracies and had reasonable computation costs for the current data set.

To assess the sensitivity of the model with regard to the training data, we performed a ten-fold cross validation by taking
all samples and randomly splitting them into 10 mutually exclusive sets. Each set was split such that all sets had an equal (or
nearly equal) number of antibiotic-MIC combinations. Ten models were then generated using 8 of the sets for training, one for
validation, and one for testing. In total, 10 models were created. The accuracy within ±1 two-fold dilution factor was computed
along with the 95% confidence intervals for each model. This aligns with clinical practice and FDA device guidelines34.

Hyperparameter tuning
Important hyperparameters from XGBoost were then selected and tuned using a 2k factorial design51 and a grid search,
respectively. The model was tested for stability using a 10-fold cross validation. The 2k factorial design was used to tune 3
XGBoost parameters: maximum tree depth, column subsampling and row subsampling. The maximum tree depth parameter
limits the maximum height of a decision tree while creating the ensemble. A value that is too high tends to overfit data whereas
a value that is too low tends to underfit data33. A low value of 1 and a high value of 6 (6 is the default) were used to evaluate
the impact of tree depth on the accuracy of the model. The column subsampling parameter limits the number of features that
are chosen for training each tree in the ensemble. For example, if 0.5 is chosen, 50% of the features (k-mers) will be randomly
chosen to train the first tree, then a different 50% for the second, and so on. A low value of 0.25 and a high value of 1 (1 is the
default and maximum value allowed for XGBoost) were chosen. The row subsampling parameter limits the number of samples
that are chosen for training for each tree in the ensemble. For example, if 0.5 is chosen, 50% of the samples (MIC tests) will be
randomly chosen to train the first tree, then a different 50% for the second, etc. A low value of 0.25 and a high value of 1 (1 is
the default and maximum value allowed for XGBoost) were chosen for evaluation.

The accuracy of the XGBoost model was evaluated in two ways. First, the accuracy of each individual MIC prediction over
the test set was assessed within ±1 two-fold dilution factor. Secondly the coefficient of determination, or R2, was also used as a
metric during the hyperparameter tuning.

A 2k factorial design assumes that as a parameter is increased or decreased, the metric that is being tested will either
increase or decrease. Additionally, it only gives an idea of the parameters that are important and not the optimal value for a
given parameter. Since the accuracy is not known to always increase or decrease as the maximum tree depth value goes up33,
this parameter needed to be tested systematically. A grid search52 was designed based on the results of the 2k factorial design to
deal with both issues. Since learning rate is known to have a relationship with maximum tree depth, we systematically varied
the maximum tree depth and the learning rate, in tandem, in a grid search experiment with respect to accuracy33.

The results of the 2k factorial design showed that when tuning the model, a higher maximum tree depth was preferable.
Different values of row and column subsampling did not cause variance in the accuracy of the model, though a larger value was
deemed to produce a more accurate model. Both factors had already been maximized at 1 during the 2k factorial. Figure 1a
shows this in better detail.

The applied grid search showed that a lower value for the learning rate always returned a better solution. However, as the
learning rate decreased, the training time increased. The gain in accuracy was deemed too small for the price (time) with a
learning rate of 2−4. During testing we also found that a maximum depth between 3 and 4 was optimal for the Klebsiella data
used to train the algorithm. Figure 1b shows this in better detail.
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Genome Annotation and AMR gene analyses
All genomes were annotated using the PATRIC annotation service in August of 201739. MLST (Multi Locus Sequencing
Typing) was performed by the PATRIC annotation service and was based on Diancourt et al. 53. To compare the model described
above with one that was based only on AMR genes, we gathered the set of genes with AMR functional roles (annotations)
defined by PATRIC18 as well as all genes encoding proteins matching the CARD database15 with BLASTP identity scores
>= 80%54. The AMR gene-based model was computed the same as the final whole genome-based model described above.
Non-AMR genes are defined as those that do not match the AMR set.

Correlation analyses were performed by first gathering the set of uniquely occurring functional roles from every K.
pneumoniae genome. For each genome, the presence (+1) or absence (-1) of a functional role was compared to the MIC for an
antibiotic. The Pearson correlation coefficient was computed for every functional role and antibiotic combination.

Data Availability
The model and software for predicting MICs in for K. pneumoniae genomes can be found at the PATRIC github page:
https://github.com/PATRIC3/mic_prediction. All genomes were submitted to the SRA under bioprojects (PRJNA376414,
PRJNA386693 and PRJNA396774). SRA run accession numbers for individual genomes can be found in Table S3.
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Tables

Table 1. Accuracies for the entire XGBoost model and for the individual
antibiotics.

Antibiotic Samples Accuracya 95% C.I.b
All 32705 0.92 0.92, 0.92
Amikacin 1667 0.97 0.96, 0.98
Ampicillin 1666 1.00 0.99, 1.00
Ampicillin/Sulbactam 1664 0.99 0.99, 1.00
Aztreonam 1644 0.89 0.89, 0.90
Cefazolin 1667 0.96 0.95, 0.96
Cefepime 1571 0.61 0.58, 0.64
Cefoxitin 1645 0.90 0.89, 0.91
Ceftazidime 1667 0.92 0.91, 0.93
Ceftriaxone 1667 0.89 0.87, 0.90
Cefuroxime sodium 1575 0.99 0.99, 1.00
Ciprofloxacin 1664 0.98 0.97, 0.98
Gentamicin 1667 0.95 0.93, 0.96
Imipenem 1666 0.94 0.93, 0.95
Levofloxacin 1666 0.97 0.96, 0.97
Meropenem 1660 0.93 0.91, 0.95
Nitrofurantoin 895 0.96 0.95, 0.97
Piperacillin/Tazobactam 1662 0.78 0.77, 0.79
Tetracycline 1667 0.89 0.87, 0.90
Tobramycin 1666 0.95 0.94, 0.96
Trimethoprim/Sulfamethoxazole 1667 0.95 0.94, 0.96
a Average accuracy within ±1 two-fold dilution factor, based on a 10-fold cross validation.
b 95% confidence interval.
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Table 2. Error rates for the entire XGBoost model for the individual antibiotics.

Antibiotic Resistant Susceptible VMEa VME 95% C. I.b MEc ME 95% C. I.b
All 21404 9410 0.031 0.028,0.034 0.037 0.033,0.041
Amikacin 103 1320 0.298 0.239,0.358 0.000 0.000,0.000
Ampicillin 1635 4 0.000 0.000,0.000 0.000 0.000,0.000
Ampicillin/Sulbactam 1455 90 0.003 0.000,0.007 0.032 −0.021,0.085
Aztreonam 1407 216 0.001 −0.001,0.002 0.398 0.333,0.462
Cefazolin 1570 97 0.060 0.047,0.072 0.018 −0.009,0.046
Cefepime 963 418 0.007 0.002,0.012 0.137 0.077,0.197
Cefoxitin 828 667 0.077 0.060,0.095 0.009 −0.001,0.019
Ceftazidime 1488 136 0.005 0.001,0.008 0.123 0.069,0.177
Ceftriaxone 1528 80 0.000 0.000,0.000 0.188 0.101,0.274
Cefuroxime sodium 1469 91 0.002 0.000,0.004 0.010 −0.013,0.033
Ciprofloxacin 1424 201 0.005 0.000,0.010 0.025 0.000,0.050
Gentamicin 683 926 0.072 0.061,0.082 0.009 0.001,0.017
Imipenem 478 1160 0.040 0.012,0.067 0.032 0.021,0.043
Levofloxacin 1287 349 0.016 0.006,0.025 0.020 0.006,0.034
Meropenem 481 1134 0.048 0.034,0.062 0.027 0.017,0.038
Nitrofurantoin 719 55 0.018 0.009,0.027 0.227 0.098,0.356
Piperacillin/Tazobactam 1048 432 0.025 0.011,0.038 0.012 0.000,0.023
Tetracycline 778 739 0.114 0.095,0.134 0.008 0.001,0.015
Tobramycin 723 589 0.040 0.023,0.057 0.012 0.002,0.022
Trimethoprim/Sulfamethoxazole 1251 416 0.119 0.098,0.140 0.108 0.082,0.134
a VME, Average very major error rate defined as the percentage of resistant samples predicted as being susceptible.
b 95% confidence interval for the average VME and ME rates, respectively.
c ME, Average major error rate defined as the percentage of susceptible samples predicted as being resistant.
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Table 3. The functional role that is most highly correlated with the MICs for each antibiotic.

Antibiotic PATRIC Functional Role

PCC
Actual
MICa

PCC
Predicted

MICb
Top 10

Coveragec

Meropenem Class A beta-lactamase (EC 3.5.2.6) => KPC family, carbapenem-hydrolyzing 0.923 0.814 0.7
Trimethoprim Sulfamethoxazole Dihydropteroate synthase type-2 (EC 2.5.1.15) @ Sulfonamide resistance protein 0.919 0.758 0.9
Imipenem Class A beta-lactamase (EC 3.5.2.6) => KPC family, carbapenem-hydrolyzing 0.891 0.905 0.8
Cefepime Class A beta-lactamase (EC 3.5.2.6) => CTX-M family, extended-spectrum 0.848 0.648 0.9
Tobramycin Aminoglycoside N(6’)-acetyltransferase (EC 2.3.1.82) => AAC(6’)-Ib/AAC(6’)-II 0.837 0.853 0.8
Tetracycline Tetracycline resistance regulatory protein TetR 0.829 0.717 0.8
Ceftriaxone Class A beta-lactamase (EC 3.5.2.6) => CTX-M family, extended-spectrum 0.823 0.700 0.7
Gentamicin Aminoglycoside N(3)-acetyltransferase (EC 2.3.1.81) => AAC(3)-II,III,IV,VI,VIII,IX,X 0.818 0.862 0.6
Ampicillin Sulbactam Class A beta-lactamase (EC 3.5.2.6) => TEM family 0.780 0.787 0.8
Ciprofloxacin Integron integrase IntI1 0.715 0.713 0.8
Aztreonam Integron integrase IntI1 0.678 0.614 0.7
Cefazolin Class A beta-lactamase (EC 3.5.2.6) => CTX-M family, extended-spectrum 0.676 0.667 0.9
Cefuroxime sodium Aminoglycoside N(3)-acetyltransferase (EC 2.3.1.81) => AAC(3)-II,III,IV,VI,VIII,IX,X 0.668 0.616 0.3
Ceftazidime Integron integrase IntI1 0.657 0.623 0.6
Levofloxacin probable bacteriophage protein STY1063 0.588 0.584 0.7
Piperacillin Tazobactam plasmid stabilization system 0.583 0.501 0.1
Amikacin IncI1 plasmid conjugative transfer prepilin PilS 0.577 0.478 0.2
Cefoxitin Class A beta-lactamase (EC 3.5.2.6) => KPC family, carbapenem-hydrolyzing 0.550 0.571 0.6
Nitrofurantoin Integron integrase IntI1 0.433 0.507 0.6
Ampicillin Class A beta-lactamase (EC 3.5.2.6) => TEM family 0.357 0.327 0.0
a Pearson correlation coefficient between the occurrences of the given functional role and the actual MICs.
b Pearson correlation coefficient between the occurrences of the given functional role and the predicted MICs.
c The fraction of the top 10 functional roles (by PCC) for the predicted MICs that occur in the top 10 for the actual MICs.
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Table S1. A comparison of raw accuracies and accuracies within ±1 two-fold dilution step of the
actual MIC for the XGBoost model

Antibiotic Samples
Raw

Accuracya

Raw
Accuracya

95% C.I.b

Within 1
two-fold
Accuracyc

Within 1
two-foldb

95% C.I.b

All 32705 0.69 0.68,0.69 0.92 0.92,0.92
Amikacin 1667 0.69 0.67,0.71 0.97 0.96,0.98
Ampicillin 1666 0.95 0.94,0.96 1.00 0.99,1.00
Ampicillin/Sulbactam 1664 0.88 0.86,0.90 0.99 0.99,1.00
Aztreonam 1644 0.62 0.6,0.65 0.89 0.89,0.90
Cefazolin 1667 0.85 0.84,0.86 0.96 0.95,0.96
Cefepime 1571 0.19 0.16,0.22 0.61 0.58,0.64
Cefoxitin 1645 0.40 0.37,0.43 0.90 0.89,0.91
Ceftazidime 1667 0.73 0.71,0.76 0.92 0.91,0.93
Ceftriaxone 1667 0.73 0.71,0.75 0.89 0.87,0.90
Cefuroxime sodium 1575 0.94 0.93,0.95 0.99 0.99,1.00
Ciprofloxacin 1664 0.87 0.85,0.89 0.98 0.97,0.98
Gentamicin 1667 0.65 0.62,0.68 0.95 0.93,0.96
Imipenem 1666 0.70 0.68,0.71 0.94 0.93,0.95
Levofloxacin 1666 0.82 0.80,0.83 0.97 0.96,0.97
Meropenem 1660 0.69 0.66,0.71 0.93 0.91,0.95
Nitrofurantoin 895 0.78 0.75,0.82 0.96 0.95,0.97
Piperacillin/Tazobactam 1662 0.46 0.43,0.49 0.78 0.77,0.79
Tetracycline 1667 0.50 0.48,0.53 0.89 0.87,0.90
Tobramycin 1666 0.61 0.57,0.64 0.95 0.94,0.96
Trimethoprim/Sulfamethoxazole 1667 0.74 0.72,0.76 0.95 0.94,0.96
a Average raw accuracy; raw accuracy is defined as predicting the actual MIC.
b 95% confidence interval.
c Average within ±1 two-fold dilution accuracy.
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Table S2. The within 1-tier accuracies for all antibiotic-MIC
combinations.

Antibiotic MIC Samples Accuracya 95% C.I.b
All 0.02 1 0.00 nan,nan
All 0.03 1 0.00 nan,nan
All 0.09 1 0.00 nan,nan
All 0.13 282 0.92 0.86,0.97
All 0.25 120 0.91 0.85,0.97
All 0.38 1 0.00 nan,nan
All 0.5 784 0.72 0.69,0.75
All 1.0 3118 0.84 0.83,0.85
All 2.0 1775 0.80 0.78,0.81
All 4.0 4459 0.93 0.92,0.94
All 6.0 2 0.00 0.00,0.00
All 8.0 3737 0.95 0.95,0.96
All 11.0 2 1.00 1.00,1.00
All 12.0 2 0.50 −5.85,6.85
All 14.0 2 0.50 −5.85,6.85
All 16.0 3896 0.92 0.91,0.92
All 17.0 4 1.00 1.00,1.00
All 18.0 11 0.65 0.31,0.99
All 19.0 12 1.00 1.00,1.00
All 20.0 15 1.00 1.00,1.00
All 21.0 4 1.00 1.00,1.00
All 23.0 1 1.00 nan,nan
All 32.0 10802 0.96 0.96,0.96
All 50.0 5 0.20 −0.36,0.76
All 64.0 1834 0.94 0.93,0.96
All 128.0 1833 0.91 0.89,0.93
All 512.0 1 0.00 nan,nan
Amikacin 4.0 155 0.94 0.89,0.99
Amikacin 8.0 1058 0.99 0.99,1.00
Amikacin 16.0 107 1.00 1.00,1.00
Amikacin 32.0 244 0.98 0.96,1.00
Amikacin 64.0 103 0.70 0.64,0.76
Ampicillin 2.0 1 0.00 nan,nan
Ampicillin 4.0 1 0.00 nan,nan
Ampicillin 8.0 2 1.00 1.00,1.00
Ampicillin 16.0 27 1.00 1.00,1.00
Ampicillin 32.0 1635 1.00 1.00,1.00
Ampicillin/Sulbactam 2.0 3 0.33 −1.10,1.77
Ampicillin/Sulbactam 4.0 10 0.90 0.67,1.13
Ampicillin/Sulbactam 8.0 77 0.96 0.90,1.02
Ampicillin/Sulbactam 16.0 119 1.00 1.00,1.00
Ampicillin/Sulbactam 32.0 1455 1.00 0.99,1.00
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Antibiotic MIC Samples Accuracya 95% C.I.b
Aztreonam 1.0 81 0.79 0.69,0.88
Aztreonam 2.0 99 0.12 0.04,0.20
Aztreonam 4.0 36 0.08 −0.01,0.18
Aztreonam 8.0 21 0.67 0.43,0.91
Aztreonam 16.0 92 1.00 1.00,1.00
Aztreonam 32.0 1315 0.98 0.97,0.98
Cefazolin 1.0 42 0.24 0.10,0.39
Cefazolin 2.0 26 0.73 0.49,0.97
Cefazolin 4.0 11 0.25 −0.05,0.55
Cefazolin 8.0 7 0.86 0.51,1.21
Cefazolin 16.0 11 0.65 0.31,0.99
Cefazolin 32.0 1478 1.00 1.00,1.00
Cefazolin 64.0 92 0.80 0.67,0.94
Cefepime 0.5 84 0.84 0.76,0.92
Cefepime 1.0 307 0.08 0.05,0.11
Cefepime 2.0 27 0.50 0.22,0.78
Cefepime 4.0 119 0.84 0.78,0.90
Cefepime 8.0 71 0.97 0.93,1.01
Cefepime 16.0 173 0.94 0.89,0.99
Cefepime 32.0 790 0.65 0.61,0.70
Cefoxitin 4.0 423 0.80 0.77,0.83
Cefoxitin 8.0 244 0.97 0.95,1.00
Cefoxitin 16.0 150 0.97 0.94,0.99
Cefoxitin 32.0 828 0.92 0.91,0.94
Ceftazidime 0.5 86 0.40 0.28,0.51
Ceftazidime 1.0 28 0.03 −0.04,0.11
Ceftazidime 2.0 10 0.30 −0.05,0.65
Ceftazidime 4.0 12 0.65 0.31,0.99
Ceftazidime 8.0 43 0.84 0.73,0.95
Ceftazidime 16.0 103 0.97 0.94,1.00
Ceftazidime 32.0 1385 0.97 0.96,0.98
Ceftriaxone 0.5 80 0.17 0.08,0.27
Ceftriaxone 2.0 59 0.12 0.04,0.20
Ceftriaxone 4.0 9 0.56 0.15,0.96
Ceftriaxone 8.0 5 0.40 −0.28,1.08
Ceftriaxone 16.0 29 0.82 0.63,1.00
Ceftriaxone 32.0 53 0.85 0.75,0.96
Ceftriaxone 64.0 1432 0.96 0.96,0.97
Cefuroxime sodium 4.0 75 0.91 0.86,0.95
Cefuroxime sodium 8.0 16 0.95 0.84,1.06
Cefuroxime sodium 16.0 15 0.95 0.84,1.06
Cefuroxime sodium 32.0 1469 1.00 1.00,1.00
Ciprofloxacin 0.5 158 0.80 0.73,0.86
Ciprofloxacin 1.0 43 0.97 0.92,1.03
Ciprofloxacin 2.0 39 1.00 1.00,1.00
Ciprofloxacin 4.0 1424 1.00 0.99,1.00
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Antibiotic MIC Samples Accuracya 95% C.I.b
Gentamicin 0.5 13 0.65 0.36,0.94
Gentamicin 1.0 94 0.90 0.85,0.94
Gentamicin 2.0 645 0.97 0.95,0.98
Gentamicin 4.0 174 0.99 0.97,1.01
Gentamicin 8.0 58 0.91 0.85,0.98
Gentamicin 16.0 683 0.93 0.92,0.94
Imipenem 0.25 111 0.90 0.83,0.97
Imipenem 0.5 38 0.94 0.85,1.03
Imipenem 1.0 1011 0.96 0.95,0.98
Imipenem 2.0 28 0.60 0.38,0.82
Imipenem 4.0 37 0.84 0.69,1.00
Imipenem 6.0 1 0.00 nan,nan
Imipenem 8.0 107 0.94 0.87,1.02
Imipenem 16.0 333 0.92 0.88,0.95
Levofloxacin 1.0 331 0.90 0.87,0.93
Levofloxacin 2.0 18 0.80 0.55,1.05
Levofloxacin 4.0 30 1.00 1.00,1.00
Levofloxacin 8.0 1287 0.98 0.97,0.99
Meropenem 0.02 1 0.00 nan,nan
Meropenem 0.03 1 0.00 nan,nan
Meropenem 0.09 1 0.00 nan,nan
Meropenem 0.13 147 0.92 0.86,0.98
Meropenem 0.25 1 1.00 nan,nan
Meropenem 0.38 1 0.00 nan,nan
Meropenem 1.0 982 0.97 0.96,0.98
Meropenem 2.0 45 0.60 0.50,0.71
Meropenem 4.0 64 0.78 0.65,0.90
Meropenem 6.0 1 0.00 nan,nan
Meropenem 8.0 50 0.92 0.85,0.99
Meropenem 12.0 2 0.50 −5.85,6.85
Meropenem 16.0 364 0.90 0.85,0.95
Nitrofurantoin 16.0 17 0.25 −0.00,0.50
Nitrofurantoin 32.0 38 0.79 0.65,0.94
Nitrofurantoin 64.0 121 1.00 1.00,1.00
Nitrofurantoin 128.0 719 0.98 0.97,0.99
Piperacillin/Tazobactam 2.0 25 0.45 0.37,0.53
Piperacillin/Tazobactam 4.0 130 0.45 0.41,0.50
Piperacillin/Tazobactam 8.0 117 0.28 0.18,0.39
Piperacillin/Tazobactam 16.0 160 0.68 0.59,0.77
Piperacillin/Tazobactam 32.0 106 0.97 0.94,1.00
Piperacillin/Tazobactam 64.0 76 0.96 0.90,1.02
Piperacillin/Tazobactam 128.0 1048 0.87 0.84,0.89
Tetracycline 1.0 51 0.82 0.78,0.87
Tetracycline 2.0 214 0.61 0.54,0.69
Tetracycline 4.0 474 0.99 0.98,1.00
Tetracycline 8.0 150 0.99 0.98,1.01
Tetracycline 16.0 778 0.89 0.87,0.90
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Antibiotic MIC Samples Accuracya 95% C.I.b
Tobramycin 0.5 4 0.00 0.00,0.00
Tobramycin 1.0 91 0.91 0.86,0.96
Tobramycin 2.0 471 0.93 0.90,0.96
Tobramycin 4.0 23 0.90 0.75,1.05
Tobramycin 8.0 354 0.99 0.97,1.00
Tobramycin 16.0 723 0.96 0.94,0.98
Trimethoprim/Sulfamethoxazole 0.5 316 0.85 0.80,0.91
Trimethoprim/Sulfamethoxazole 1.0 54 0.83 0.69,0.97
Trimethoprim/Sulfamethoxazole 2.0 46 0.98 0.93,1.03
Trimethoprim/Sulfamethoxazole 4.0 1251 0.98 0.97,0.99
a Average within ±1 two-fold dilution accuracy.
b 95% confidence interval.
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Table S4. The within ±1-tier accuracy of the XGBoost model built from whole genome contigs, AMR genes only, and non-AMR genes
respectively.

Antibiotic Samples
Contigs

Accuracy 95% C.I.
AMR Genes

Accuracy 95% C.I.
Non-AMR Genes

Accuracy 95% C.I.

All 32705 0.92 0.92,0.92 0.92 0.91,0.92 0.92 0.92,0.92
Amikacin 1667 0.97 0.96,0.98 0.96 0.95,0.97 0.97 0.97,0.98
Ampicillin 1666 1.00 0.99,1.00 1.00 0.99,1.00 1.00 0.99,1.00
Ampicillin/Sulbactam 1664 0.99 0.99,1.00 0.99 0.99,1.00 0.99 0.99,1.00
Aztreonam 1644 0.89 0.89,0.90 0.89 0.88,0.90 0.89 0.89,0.90
Cefazolin 1667 0.96 0.95,0.96 0.95 0.95,0.96 0.96 0.96,0.97
Cefepime 1571 0.61 0.58,0.64 0.61 0.58,0.63 0.60 0.58,0.63
Cefoxitin 1645 0.90 0.89,0.91 0.89 0.87,0.90 0.90 0.89,0.92
Ceftazidime 1667 0.92 0.91,0.93 0.91 0.91,0.92 0.91 0.90,0.92
Ceftriaxone 1667 0.89 0.87,0.90 0.90 0.89,0.91 0.89 0.88,0.91
Cefuroxime sodium 1575 0.99 0.99,1.00 0.99 0.99,1.00 0.99 0.99,1.00
Ciprofloxacin 1664 0.98 0.97,0.98 0.98 0.97,0.98 0.97 0.97,0.98
Gentamicin 1667 0.95 0.93,0.96 0.96 0.95,0.96 0.95 0.94,0.96
Imipenem 1666 0.94 0.93,0.95 0.92 0.91,0.93 0.94 0.93,0.95
Levofloxacin 1666 0.97 0.96,0.97 0.97 0.96,0.98 0.96 0.95,0.97
Meropenem 1660 0.93 0.91,0.95 0.91 0.89,0.92 0.93 0.92,0.94
Nitrofurantoin 895 0.96 0.95,0.97 0.96 0.95,0.96 0.96 0.96,0.97
Piperacillin/Tazobactam 1662 0.78 0.77,0.79 0.77 0.75,0.80 0.77 0.76,0.79
Tetracycline 1667 0.89 0.87,0.90 0.90 0.89,0.92 0.89 0.88,0.90
Tobramycin 1666 0.95 0.94,0.96 0.95 0.94,0.96 0.93 0.92,0.95
Trimethoprim/Sulfamethoxazole 1667 0.95 0.94,0.96 0.94 0.93,0.95 0.95 0.93,0.96
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Table S5. The number of different MIC values observed within the top five K. pneumoniae MLST types in the dataset.

MLST type

Antibiotic
307

(560 genomes)
258

(404 genomes)
16

(86 genomes)
15

(56 genomes)
280

(27 genomes)
Amikacin 5 6 3 4 2
Ampicillin 1 1 1 1 1
Ampicillin/Sulbactam 2 3 3 2 1
Aztreonam 5 5 5 4 2
Cefazolin 2 3 2 4 1
Cefepime 6 8 6 6 3
Cefoxitin 4 4 4 4 4
Ceftazidime 5 3 4 5 3
Ceftriaxone 3 6 3 3 1
Cefuroxime sodium 1 2 2 2 1
Ciprofloxacin 1 1 1 1 2
Gentamicin 6 6 5 4 1
Imipenem 8 6 3 6 1
Levofloxacin 3 2 2 2 3
Meropenem 7 10 4 3 1
Nitrofurantoin 4 1 3 4 3
Piperacillin/Tazobactam 7 7 7 7 5
Tetracycline 5 6 4 5 1
Tobramycin 7 5 4 4 2
Trimethoprim/Sulfamethoxazole 5 5 3 4 1
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Figure S1. Heat maps comparing the accuracies of the XGBoost model for individual MICs generated from (A) AMR genes, (B) Non-AMR genes, and (C) full contigs.
The X-axis of the heatmap shows shows the actual MIC (µg/ml) for a bin and the Y-axis lists the antibiotics. The within ±1-tier accuracy of a particular antibiotic-MIC
bin is denoted by color, with red abd orange being least accurate and bright yellow and green being most accurate. The number within each cell represents the number of
samples (genomes with the MIC) within the bin. The data depict genomes for which there is at least one AMR gene called by PATRIC or CARD.
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