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ABSRACT 

Large and non-recombining genomes are prone to accumulating deleterious mutations faster than natural 

selection can purge (Muller’s ratchet). A possible consequence would then be the extinction of small 

populations. Relative to most single-cell organisms, cancer cells, with large and non-recombining genomes, 

could be particularly susceptible to such “mutational meltdown”. Curiously, deleterious mutations in cancer 

cells are rarely noticed despite the strong signals in cancer genome sequences. Here, by monitoring single-cell 

clones from HeLa cell lines, we characterize deleterious mutations that retard cell proliferation. The main 

mutational events are copy number variations (CNVs), which happen at an extraordinarily high rate of 0.29 

events per cell division. The average fitness reduction, estimated to be 18% per mutation, is also very high. 

HeLa cell populations therefore have very substantial genetic load and, at this level, natural population would 

likely experience mutational meltdown. We suspect that HeLa cell populations may avoid extinction only after 

the population size becomes large. Because CNVs are common in most cell lines and cancer tissues, the 

observations hint at cancer cells’ vulnerability, which could be exploited by therapeutic strategies. 
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INTRODUCTION 

Cancer initiation requires tumor cells to obtain several key traits, such as sustained proliferative signaling, 

resistance to cell death, and accelerated cell growth leading to a competitive advantage over slow-growing 

neighboring cells (1, 2). Accelerated proliferation of cancer cells inevitably increases their underlying rate of 

mutations (2, 3), copy number variations (CNVs) that affect a larger fraction of cancer genomes (4-7). It has 

been shown that positive selected CNVs (drivers) have critical roles in activating oncogenes and in inactivating 

tumor suppressors (6, 8-14). While many other mutations, including CNVs, may be fitness-neutral and are 

termed passenger mutations (15, 16), there in fact exist a larger class of mutations that reduce cancer cell 

proliferation and slow cell growth (17, 18). This class of deleterious mutations has been referred to as “negative 

drivers” (18). 

Deleterious mutations cannot be efficiently purged by natural selection in populations with no 

recombination. The phenomenon is referred to as Muller’s ratchet, a moving mechanism that is used to indicate 

the irreversible accumulation of deleterious mutations (19, 20). Since recombination, which can enhance the 

efficacy of selection against deleterious mutations (20, 21), is absent in the clonally-reproducing cancer cells, 

accumulation of deleterious mutations can collectively exert a noticeable effect on fitness (22). Deleterious 

mutations may have a variety of effects on tumorigenesis by shaping cancer growth and intra-tumor variation. 

If the incidence of deleterious mutations is low or negligible, cancer progression can be easily described by 

relatively simple mathematical models and genetic variation within tumors can be treated as a function of 

population size. At another extreme, if deleterious mutations are prevalent, the majority of cancer cells would 

be defect with limited proliferative ability and only a small fraction of cells in a tumor would be capable of 

constantly dividing. Accordingly, the proportion and the effect size distributions of deleterious mutations must 

not be overlooked and may be key parameters to model tumorigenesis.  

Guided by previous experience in population genetics, most studies in cancer focus on slightly deleterious 

mutations as they should be able to evade purifying selection and accumulate, thus influencing long-term 

tumor progression (23). Because highly deleterious mutations should be rapidly weeded out by purifying 

selection, it is generally assumed that these mutations have little to do with long-term cancer progression. 

Thus, the most common mutations, either fixed or at high frequency, that are frequently cited in cancer 
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genomic studies are usually advantageous for individual cell fitness. Such practical limitations ensure that 

deleterious mutations are mostly undetected in empirical studies. Indeed, even the relatively comprehensive 

TCGA pan-cancer data set yielded only a small number of deleterious mutations, highlighting gaps in our 

knowledge about this important class of variants (18). 

Direct measurements of individual deleterious mutation effects in vivo are challenging. However, an 

assessment of their collective action is possible, given a system that generates such variants at an appreciable 

rate. HeLa cells present such as system as their genomes are highly variable. In addition, this cell line has 

attractive features for our purposes since it has been extensively cultured and exhibits a short doubling time 

and aggressive growth. We examined variation in growth rate among individual HeLa cells by monitoring 

clones from a common ancestral HeLa cell population. We then estimated deleterious mutation rate and the 

average fitness decrease per mutation by performing computer simulations of cell growth. Our observations 

suggest that the differences in growth rate among cell clones are heritable, and CNV is the major cause of 

proliferative fitness reduction in HeLa cells. HeLa cells constantly produce high numbers of deleterious 

mutations during growth. We discuss the implications of our findings for modeling tumorigenesis. 

 

RESULTS 

Genetic variation in growth rate in a HeLa cell population  

To ensure genomic homogeneity of the initial population, we first established a HeLa cell line (E6) derived 

from an ancestral cell line (JF) (Fig. S1). When E6 population size reached approximately 5 × 104 cells (15~16 

divisions), five single-cell clones were generated from E6 and established in culture. When the clone cultures 

reached 106 ~ 107 cells, we measured their growth rates using the MTT assay. The B8 and G3 clones showed 

clearly higher growth rates than E3, E7 and G2, suggesting that cells within E6 were heterogeneous (Fig. 1A). 

Since these clones were all descendants of E6 which originated from a single cell and experienced only 15 - 

16 divisions, our results indicate that heterogeneity in growth rate can be generated in a very short period of 

time in cancer cells.   

To test whether variation in growth rate among clones is heritable, we isolated 39 cells from B8 (fast 

growing clone) and 40 cells from E3 (slow growing clone), and monitored their growth from a single cell for 

seven days. Approximately 30% of B8 and 50% of E3 cells died out within seven days (Fig. S2), due to either 
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damage caused during cell isolation or genetic defects. Furthermore, most cell lines with growth rates < 0.6 

died within 2 months. Thus, only 50% of B8 and 27% of E3 cells survived for more than two months.  

While the growth rates of cells from a single origin varied greatly, the progeny of the fast-growing clone 

(B8) grew faster on average than those of the slow growing clone (E3)( Fig. 1B). Mean cell number among 

the B8 progeny was 62.0, while it was 17.3 among E3-derived cell lines. We further drew approximately 100 

cells from one fast- (progeny D) and one slow- (progeny C) (Fig. S2) growing derivative of B8 and monitored 

growth of each cell clone for seven days. As expected, cells from the fast-growing progeny had a higher mean 

growth rate than that from the slow-growing descendant (p = 2 x 10-11, KS test; Fig. 1C).  

If mutations that slow cell proliferation frequently arise in cancerous cell populations, we would expect 

a decrease in proliferation rates and an increase in among-cell growth speed variance as the population is 

maintained. To test this, we monitored growth of single cells that were randomly drawn from cell populations 

at different time points. We first set up six single-cell clones from B8 (Table S1). After cell numbers reached 

100 - 500 (8-10 cell divisions), 20 - 30 % of the cells from each population were randomly drawn and separated 

into single cells. The growth of these isolates was monitored for eight days. This step was repeated when the 

size of the six populations exceeded 5,000 cells. In all six cases, the average growth rate of cells drawn at the 

first time point was higher than those from the second time point (Fig. S3). In addition, in four out of six cases, 

variation in growth rate was higher at the second than at the first time point (t-test).    

To test whether the slow-growing cells would be outcompeted by their fast-growing counterparts, we 

performed a competition assay. The fast- and slow-dividing cells were co-cultured in different ratios and their 

proportions in populations were monitored weekly using the Discosoma sp. red fluorescence protein (DsRed) 

and enhanced green fluorescence protein (eGFP) over time using flow cytometry. We ran the experiment for 

eight weeks. Regardless of the initial proportions, the fast-dividing cells always outgrew the slow-dividing 

cells in our co-culture assays over time (Fig. 1D and E), suggesting that fast cells indeed possessed higher 

fitness than the slow ones.  

Fig. 1 demonstrates that a cancer cell population can generate heterogeneity in growth rate within several 

cell replications, even starting from a single cell. Moreover, the majority of these changes is heritable and 

reduces the fitness of cancer cells (defined as proliferation rate), suggesting that fitness reduction we observe 

is largely genetically determined. 
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Cell growth rate is associated with CNV number 

To study the genetic basis of growth rate heterogeneity among our cancer cell lines, we assessed genomic 

variation in E6 and five of its descendant clones by constructing a digital copy-number profile based on next 

generation sequencing reads. We focused on copy number variation because single-nucleotide mutation rates 

are too slow to produce significant sequence variation during our short-duration culturing experiments. Most 

clone genomes are triploid (Fig. S4), and only a small number harbors more than four or fewer than two 

haploid genomes, consistent with a previous study (24).  

The three slow-growing clones showed a clear increase in CNV copy number compared to the E6 parental 

line (Fig. 2, Table S2), while the two fast-growing clones were more similar to E6, suggesting that that most 

CNVs are deleterious. As E6 experienced only 15 - 16 divisions before its five descendant clones were 

generated, above results also indicate that CNVs can be generated in a very short period of time. To test this 

hypothesis, 11 clones derived from B8 with different growth rates between day 1 to 8 were picked for further 

analyses (Fig. 3A). The growth rate of each clone was measured again by RTCA iCELLigence when the 

population reached approximately 106 cells (after 20 - 30 cell divisions). The results were highly correlated 

(R2 = 0.713, p-value < 0.01; Fig. 3B) with the previous eight day measurements, demonstrating that variation 

in growth rates among clones was consistent and not due to stochastic fluctuation at different stages. 

We picked about 20 cells from each of the 11 clones and counted their chromosome numbers. The 

karyotypes ranged from 38 to 113 chromosomes, with most (72%) cells harboring between 55 and 70 

chromosomes (Fig. 3C). Therefore, despite single-cell origin, the progeny quickly generated aneuploidy 

within only 20-30 cell divisions, again illustrating frequent cytogenetic change in cancer cells. 

Although chromosome numbers varied among clones, their distribution by combing all clones 

reconstituted the chromosome distribution of their ancestor B8. The average number of chromosomes in the 

fast-growing group (62.5) was similar (p = 0.56, t test) to the B8 clone (61.1), whereas the slow growing group 

(66.5) showed significantly greater chromosome numbers than the fast growing (p < 0.01) and the ancestral (p 

= 0.04) clones (Fig. 3D). Consequently, Fig. 2 and 3 suggest that cancer cells exhibit a very high rate of CNV 

generation and most of these CNVs are deleterious, reducing the cells’ proliferative ability. 
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Rate of deleterious mutations 

To further study how fast the difference in proliferation rate can be generated, we picked 12 cells from B8, 

allowed them to divide once, and isolated each daughter cell in a well of a 96-well plate. We then monitored 

the growth of each of the 12 pairs of cells for four days (Fig. 4A). Four cell pairs lost at least one of the 

daughters in the first four days, probably due to injury during preparation. Of the remaining eight pairs, two 

(h and i, Fig. 4A) exhibited different proliferation rates between the daughter cell lineages. The result suggests 

that there is approximately one deleterious mutation in every four cell divisions in this cancer cell line. 

Such a high deleterious mutation rate implies that many cells at day four would carry deleterious 

mutations which reduce cell proliferation. To test this, each descendant of clone f was harvested and re-

suspended into a 96-well plate. We monitored growth of these progeny for another four days. As expected, 

the majority of the surviving clones exhibited slower growth than their ancestor f (Fig. 4B).  

 

Modeling population growth attenuation 

Rough estimates from our experiments so far suggest extremely high mutation rates in cancer cell lines. To 

understand mutation accumulation rates in tumors, we need quantitative estimates of deleterious mutation 

rates and effect distributions. Therefore, we constructed and applied a simple model of cell growth and the 

mutation accumulation process (see Materials and Methods). Let Nt be the population size at day t, where N0 

= 1, and Rt be the population growth rate at day t. For each generation, a proportion of cells (μ) generates new 

mutations which decrease their growth rate. The mean deleterious effect of a mutation is d. We have   

𝑁𝑡 = 𝑅0
𝑡 (1 − μd)

𝑡(𝑡−1)
2 ,                       (1) 

where R0 is the net growth rate at day 0.  

To estimate parameters of this model (R0, μ, and d) we randomly drew 18 single cells from B8 and 

monitored their growth for 7-8 days (Table S3). We divided these newly-derived cell lines into fast- (cell 

number > 100) and slow-growing (cell number < 100) groups. We then conducted computer simulations to 

evaluate the parameters that best fit the observed data (see Materials and Methods).  

Using fast-growing cell data, we estimate posterior mean of R0 = 2.37 ([2.22, 2.52]), μ = 0.29 ([0.26, 

0.30]), and d = 0.18 ([0.17, 0.20]). Estimates from slow-growing cells (R0 = 2.00 ([0.25, 0.33]), μ = 0.29 ([0.16, 
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0.20]), and d = 0.18 ([2.22, 2.52])) are similar, except that the initial growth rate is slower, as expected. The 

deleterious mutation rate (μ) of 0.29 (0.26, 0.33) suggests that there is approximately one deleterious mutation 

for every 3 - 4 cell divisions, which is very close to our rough non-parametric estimates from daughter-cell 

divisions (see Fig. 4A). Since μ is scaled per cell division, the product of μ and d reflects fitness change per 

generation. Our estimates indicate that the HeLa cells experience a 5% (4%, 6%) reduction in fitness for every 

generation (25, 26) (Table S3). Using point estimates of μ (0.29) and d (0.18), we fitted our model to the 

growth rates observed in a range of experimental data (Fig. S2) and estimated initial growth rates (R0). Only 

cell lines that showed monotonic increase in cell numbers were considered. The estimation of R0 , ranging 

from 1.64 to 2.54 in 43 sets of experimental data (Table S4), suggested that the ancestral cell of slowest 

growing lineage had accumulated about 2.2 (log (1.64 / 2.54) / (1 – 0.18)) more deleterious mutations than the 

ancestor of fastest growing lineage. 

Interestingly, while R0 shows substantial variation among cell lines, estimates of μ and d are similar, 

possibly indicative of an intrinsic property of rapid cancer cell division. To further test this, we estimated the 

R0, μ and d in tumor cell lines from different cancer types by the same method (Table 1). Although the R0 are 

considerably variable, μ and d are generally consistent among cell lines, implying that a fitness reduction (μ × 

d) in a variety of cancer cells is close to our initial estimate of 5% per generation.  

 

Discussion 

We performed multiple single-cell progeny assays using HeLa cell lines and extensively genotyped the 

clonal populations, focusing on copy number variants (CNVs). We fitted a growth model to these data to 

estimate distributions of mutation effects on fitness as measured by proliferative capacity. We show that CNV 

deleterious mutations appear at the rate that falls in the range of 0.26 - 0.33 per genome per generation.  Our 

results demonstrate that accumulated passengers are deleterious to cancer cells because they reduce cell 

proliferation. We estimate that the deleterious effect of 0.18 ([0.175, 0.187], 95% confidence interval) is twice 

higher than previous results (17, 27). While at first this may seem to be unreasonably high, the mutations we 

identified would not be seen in cancer cell populations within tumors as the vast majority of these variants are 

too deleterious to appear in the earlier data sets.  
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Nevertheless, the observation that a significant portion of cancerous cells are born with a low enough 

proliferative capacity that they are rapidly lost during tumor growth suggests that there is a trade-off between 

cancer progression and genome instability. While cancer cells may benefit from generating genetic variation 

paving the way for tumor progression, accumulation of deleterious mutations would eventually be intolerable 

and lead to cell population meltdown. The tumor population must thus strike a delicate balance to maintain 

heterogeneity and at the same time curb relentlessly increasing passenger mutations. Exploiting this fact may 

help develop a new therapeutic regime for cancer (17, 23). This can be done by either increasing the overall 

mutation rate (μ) or the deleterious effect of passengers (d). For example, a 10% increase in μ may result in a 

more than 50% population reduction in 20 days (Fig. S5). Practically, mutation rate can be increased by 

targeting the DNA repair system (28) or by regulating DNA replication stress (29).  

However, for these strategies to be effective, an additional layer of cancer biology needs to be considered. 

It has been shown by mathematical modeling that a high incidence of defective cells and cell death may not 

be disadvantageous for tumor growth, but in fact facilitate tumor progression (30). That is because a high rate 

of proliferation-reducing or cell death-inducing spontaneous mutation can lead to cancer dynamics that enable 

sufficient stem-like cell divisions to enrich the pool of cells with high proliferation rate and drive population 

expansion.  

Therapies that directly target cell proliferation should be considered. Since in order to maintain high 

proliferation rates, rapidly proliferating cells need to increase their translational capacity and are dependent 

on high rates of ribosome biogenesis (31, 32). Thus, inhibition of ribosome biogenesis could be a selective 

approach to cancer therapy (33, 34). More importantly, this effect is enhanced in cells with higher proliferation 

rates, but less so in cells with lower proliferation rates. 

 

Materials and Methods 

Cell culture and Single cell isolation.  

Cancer Cell lines, including HeLa cell lines, Human prostate cancer cell line PC3, Human Rhabdomyosarcoma 

cell line A204 and Huma malignant melanoma cell line A375, were obtained from the Culture Collection of 

the Chinese Academy of Sciences, Shanghai, China. Cells were cultured in DMEM Medium for HeLa cell, 

PC3 and A375, in medium of McCoy’s 5A for A204 (Life Technologies) and supplemented with 10% fetal 
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bovine serum (FBS) (Gibico, Life Technologies), 100 U/ml of penicillin, and 100 μg/ml of streptomycin at 

37ºC with 5% CO2. Cells were trypsinized using 0.05% trypsin at room temperature for 3 min. Cell counting 

was performed with a hemocytometer. The cell suspensions were diluted with medium to the final 

concentration of 1 cell per 100 µl. Single cells were seeded into each well of a 96-well cell culture plate and 

maintained at 37ºC with 5% CO2. After incubating for 12 hours, during which the cells attached to the wells, 

the single cell isolation was visually confirmed by microscopy. The number of cells in each well was counted 

every day. When the cell colony became sufficiently large, cells were transferred to 24-well plates, and 

subsequently transferred to 6-well plates and 10-cm culture dishes. 

 

Karyotype analysis.  

The cultured cells in a stage of active division were treated with colchicine (200 ng/ mL) for 1 hour at 37°C, 

then harvested and resuspended in 0.07M KC1 for 30min, and slowly added 10 drops of Carnoy's fixative (3:1, 

methanol:acetic acid). The suspended cell was dropped onto a slide, dried the slide rapidly, and stained with 

4% DAPI for 5 min. At least twenty cells were spread out in metaphase for karyotyping. Evaluation of 

interphase nuclei was performed by OLYMPUS BX51 fluorescence microscope. Photographs were taken by 

a CCD camera with 40 or 100 times objective. Image-Pro Plus software was used for digital image acquisition 

in the TIFF format, pseudocoloring and merging.  

 

MTT Assay.  

MTT assay was used to measure cell proliferation. Cells were suspended and seeded at the concentration of 

~700 cells/100μl/well in 96 well plate. A volume of 20 μl dissolved MTT was pipetted into each well. After 

being incubated for 4 hours at 37°C in a humidified CO2 incubator, the media was removed and 200 μl sterile 

DMSO was added to each well. The absorbance values were then read at 570 nm with a microplate 

spectrophotometer. The number of living cells was estimated based on absorbance values. 

 

Real-time cell analysis assay (RTCA).  

Cells in 10% FBS media were seeded at a density of 5000 per well into a 16-well E-plate (ACEA) and 

incubated for 72 hours at 37 °C in a humidified CO2 incubator. The impedance for each well was monitored 
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by the RTCA iCELLgence™ system (ACEA Biosciences Inc) every 70 minutes. Relative impedance signal 

level (represented as “cell index” in manufacturer’s software) that indicated the number of cells was analyzed 

using the RTCA Software 1.2 program (Roche Diagnostics). The cell growth curves were automatically 

recorded on the iCELLigence system in real time. The cell index was followed for 3 days.  

 

Measurement of growth rate.  

The single cell clones that we generated for the growth rate calculation were in the log phase, the period of 

exponential increase in the cell number. During this phase, 

𝑑𝑁(𝑡)
𝑑𝑡

⁄ = kN(t), 

where N(t) is the total number or the concentration of cells at time t, and k is a constant coefficient. To obtain 

a linear function, the cell numbers were converted to logarithms to the base of Euler’s number e. The least-

squares method (LSM) was used to fit the linear regression in which the slope (k) of the regression line would 

be the growth rate. 

 

Whole genome sequencing and analysis of copy number variation.  

Genomic DNA was extracted from 106 HeLa cells using QiagenAllpre DNA/RNA Mini Kit (Qiagen). The 

genomic DNA (3 μg) was fragmented by Adaptive Focused Acoustics on a Covaris E120 (Covaris Inc). The 

range of product size was from 250bp to 350bp. The fragmented DNA was purified by Qiaquick PCR 

purification column and quantified on 2100 Bioanalyzer by using the Agilent DNA 1000 kit (Agilent 

Technologies, Palo Alto, CA, USA). The whole genome libraries were constructed by IlluminaTruseq DNA 

sample preparation kit according to the manufacturer’s instructions. Whole genome sequencing was performed 

using the Illumina Hiseq 2000 in the Beijing Institute of Genomics (BIG, Beijing, China). Reads were mapped 

to the human reference genome (hg18) using BWA software (Version 0.4.9) with default parameters (35). The 

aligned reads were used as input of the Control-FREEC software (Control-FREEC v10.3; http://bioinfo-

out.curie.fr/projects/freec/) for characterizing the large-scale chromosomal and segmental duplication and 

deletion events (> 107 bp) in all those samples (Fig S4). FREEC was run with the following parameters: 
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window size, 100kb; step size, 50 kb; contaminationAdjustment = TRUE; noisyData = TRUE; BAF 

calculation inactivated. The segmental copy number gain and lose of each descendant clone was profiled 

against the E6 genome by preforming the FREEC with the same parameters mentioned above. The relative 

ratios and breakpoints of copy number gain and lose against the E6 were calculated and identified for the 5 

descendant clones (Fig 2A, Table S2).  

 

eGFP and DsRed transfection.  

Cells with the stable expression of eGFP and DsRed were constructed by transfecting with lentivirus vectors, 

plenti6.3-MCS-IRES-eGFP and plenti6.3-MCS-IRES-DsRed (Life Technologies), which contained a 

blasticidin resistance gene and an enhanced green fluorescent protein (eGFP) or a discosoma sp. red 

fluorescent protein (DsRed) sequence. The expression of eGFP and DsRed were used for labeling and 

distinguishing the two cells in the competition assay. The vectors were packaged into the lentivirus particles 

with infectious activity (Invitrogen). Before transfection, 2 × 105 cells per well were incubated with DMEM 

in a 6-well plate. After incubating for 24 hours, the medium was replaced by the transfection medium that 

contained the lentivirus particles and polybrene with the concentration of 8 µg/ml. The multiplicity of infection 

(MOI) value was 3. After transfecting for 24 hours, the cells were washed three times with PBS, and cultured 

in the DMEM medium with blasticidin of 10 µg/ml for at least 4 weeks in order to select cells that stably 

express eGFP and DsRed. 

 

Isolation of fast dividing and slow dividing cells.  

The CellTrace™ Violet Cell Proliferation Kit, for flow cytometry (Thermo Fisher, C34557) was used for 

isolating the fast growing and slow growing cells. Cells were labeled by the cell-dye following the CellTrace™ 

Violet Cell Proliferation Kit workflow after cell cycle synchronization arrested at G1/S phase (double 

thymidine block). The labeled cells were continuously cultured for 7 days. At the 7th day after labeling, the 

cells were detached by trypsin-EDTA solution and suspended on culture medium. The BD Influx flow 

cytometer (BD) was used to isolate the fast growing and slow growing cells. The top 10% cells with strong 

fluorescence signals were sorted as the slow growing cells and bottom 10% cells with weak fluorescence 
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signal were sorted as the fast growing cells. Analysis was completed using the BD Influx flow cytometer with 

405 nm excitation and a 450/40 nm bandpass emission filter. 

 

Competition assay for slow growing cell and fast growing cells.  

Fast-dividing cells with stable eGFP expression (or DsRed expression) and the slow-dividing cells with DsRed 

expression (or eGFP expression) were mixed and co-cultured at different initiation ratios (1:1, 2:8 and 8:2). 

The proportions of the two cell populations in the mixture were monitored by fluorescent intensity of DsRed 

and eGFP every 3 days by using flow cytometry. 

 

Modeling population dynamic of cell expansion.  

We construct and apply a simple model of cell growth and mutation accumulation process. We define 𝑁𝑡 as 

population size at the day t, where 𝑁0 = 1, and 𝑅𝑡 as the growth rate of population at day t. In this case, 

𝑅𝑡 > 1  represents population increase and 𝑅𝑡 < 1  means population decrease. For each division, a 

proportion of cells (𝜇) generate new mutations which decrease growth rate of the cells. The deleterious effect 

of a mutation is d. 𝑁𝑡 is denoted by 

 

𝑁𝑡 = 𝑅𝑡−1𝑁𝑡−1 .      (S1) 

 

𝑅𝑡 and 𝑅𝑡−1 are given by a recursive function 

 

𝑅𝑡 = (1 − μ)𝑅𝑡−1 + μ𝑅𝑡−1(1 − d) = 𝑅𝑡−1(1 − μd),       (S2) 

 

Iterating (S2) t times, 𝑅𝑡 can be expressed as 

 

𝑅𝑡 = 𝑅𝑡−1(1 − μd) = ⋯ = 𝑅0(1 − μd)𝑡,       (S3) 

 

where R0 is the growth rate at day 0. Substitute (S3) into (S1) yields: 
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 𝑁𝑡 = 𝑁𝑡−1𝑅0(1 − μd)𝑡−1 

      = 𝑁0 ∏ 𝑅0(1 − μd)𝑖−1

𝑡

i=1

 

             = 𝑁0𝑅0
𝑡 (1 − μd)

𝑡(𝑡−1)

2 .      (S4) 

 

Since the experiments start from single cell isolation (𝑁0 = 1), 𝑁𝑡 can be derived as 

 

𝑁𝑡 = 𝑅0
𝑡 (1 − μd)

𝑡(𝑡−1)

2 , t =1, …, 7.       (S5) 

 

Estimate 𝑹𝟎 and fitness reduction 𝛍𝐝.  

In (S5) 𝑁𝑡 (t = 1, …, 7) can be obtained from observed data, so 𝑅0 and 𝜇𝑑 can be expressed by 𝑁𝑡 (t = 

1, …, 7). We then divide 𝑁𝑡−1 by 𝑁𝑡 and divide 𝑁𝑡 by 𝑁𝑡+1: 

{

𝑁𝑡

𝑁𝑡−1
= 𝑅0(1 − μd)𝑡−1

 𝑁𝑡+1

𝑁𝑡
= 𝑅0(1 − μd)𝑡

.       (S6) 

Combine two formulas in (S6) and eliminate 𝑅0, the fitness reduction μd can be calculated as 

μd = 1 −
𝑁𝑡+1𝑁𝑡−1

𝑁𝑡
2  .       (S7) 

 

Using linear regression model with the cell number from 8 days, the fitness duction μd can be approximated 

as 

 

μd = 1 −
∑

𝑁𝑡+1𝑁𝑡−1

𝑁𝑡
2

7
𝑖=1

7
⁄  .      (S8) 
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To calculate 𝑅0, we substitute (S7) into (S6). Then 𝑅0 can be expressed as 

𝑅0 =
𝑁𝑡+1

𝑁𝑡(1−μd)𝑡
 .     (S9) 

 

Cell growth simulation.  

We extended the previously described genetic load to simulate the cell growth with accumulation of 

deleterious mutations. The simulation begins with a single cell. Each day, cells attempt to divide and produce 

additional cells. The initial growth rate, R0 (𝑅0 ∈ (1.0, 3.5]), follows a Poisson distribution. For each cell 

replication at day t, the number of growth rate (Rt) which is randomly generated followed by mean growth rate 

Rt. Rt > 1 represents cell proliferation, while Rt = 0 means cell death. During replication, a proportion of cells 

(μ) generates deleterious mutations. The mutation accumulation in cells leads to the decrease in growth rate. 

The average deleterious effect of a mutation is d. Therefore, the growth rate of a cell population is reducing 

as a function of time. The computational model is qualitatively similar to our mathematical model, but 

considers much more complicated conditions, i.e., the fluctuations of the parameters (Rt, μ and d) caused by 

their distributions. 

When fixed 𝑅0, 𝜇 and d are given, we can monitor the cell number every day using the simulation 

model. In summary, we cultured 106 cell lines in the simulation with different combinations of 𝑅0, μ and d. 

Compared the 106 results with observed data with HeLa cell lines, we used the Approximate Bayesian 

Computation (ABC) method to select optimal groups. The mean number of the selected groups represent the 

estimated 𝑅0, μ and d. 

 

Inference of R0, 𝝁 and 𝒅 by Approximate Bayesian Computation (ABC).  

Due to the complexity of the parameter space, we used Approximate Bayesian Computation (ABC) method 

by comparing the simulated 106 cell lines with observed data with HeLa to estimate 𝑅0, 𝜇 and d. ABC 

algorithms are a group of methods for performing Bayesian inference without the need for explicit evaluation 

of the model likelihood function. The algorithms can be used with implicit computer models that generate 

sample data sets rather than likelihoods (36, 37). By using ABC we can compute the posterior probability 

distribution of a multivariate parameter 𝛩 (𝛩 = {𝑅0, 𝜇, 𝑑}). A parameter value 𝛩𝑖 is sampled from its prior 
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distribution 𝑓(𝛩) to simulate a dataset 𝑆(𝛩𝑖), for i = 1, …, 106. A set of summary statistics, the value that 

calculated from the data to represent the maximum amount of information in the simplest possible form, 𝑆(𝛩𝑖) 

is computed from the simulation. By using a distance function 𝜌, we calculated the distance between 𝑆(𝛩𝑖) 

and observed data 𝑆𝑜𝑏𝑠. If the distance between 𝑆(𝛩𝑖) and 𝑆𝑜𝑏𝑠 is less than a given threshold, the parameter 

value 𝛩𝑖  is accepted. In order to set the threshold that which simulations are accepted, we provide the 

tolerance rate 𝜀, which is defined as the percentage of accepted simulation (38, 39). 

 

The ABC inference scheme is: 

1. Sample a candidate parameter 𝛩𝑖 = {𝑅0, 𝜇, 𝑑} from the prior distribution 𝑓(𝛩); 

2. Simulate the growth process of the cell line 𝛩𝑖 and calculate the summary statistics 𝑆𝑖; 

3. Compare the simulated dataset 𝑆(𝛩𝑖), with the observed data 𝑆𝑜𝑏𝑠 , using a distance function 𝜌 and 

tolerance rate 𝜀, if 𝜌(𝑆(𝛩𝑖), 𝑆𝑜𝑏𝑠) < 𝜀, accept 𝛩𝑖; 

4. Go to 1. 

 

Here the summary statistics 𝑆(𝛩𝑖)= {simulated cell number of 7 days}. The observed summary statistics 𝑆𝑜𝑏𝑠 

={observed 7 days' cell number from experiment}. The prior distribution 𝑓(𝛩)  in our model was 

𝑅0 ~ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 [1.0, 3.5] ,  𝜇~𝑈𝑛𝑖𝑓𝑜𝑟𝑚 [0.05, 0.55]  and  𝑑~𝑈𝑛𝑖𝑓𝑜𝑟𝑚[0.01, 0.40] . The distance 

function 𝜌 we set was the Euclidean distance and the tolerance rate 𝜀 we set was 0.1%. As a whole 1,000 

groups of 𝛩𝑖 were accepted.  

By using different clones from B8 as 𝑆𝑜𝑏𝑠 , we finally calculated the parametric ranges of rapid 

proliferated cells were 𝑅0𝑓 ∈ [2.22, 2.52] ,  𝜇𝑓 ∈ [0.26, 0.30]  and  𝑑𝑓 ∈ [0.17, 0.20] . Meanwhile, the 

parametric ranges of defected cells were 𝑅0𝑑 ∈ [1.67, 2.22], 𝜇𝑑 ∈ [0.28, 0.31] and 𝑑𝑑 ∈ [0.17, 0.20]. 
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Fig 1. Growth rate, survival rate and fitness of fast- and slow-growing cells. (A) Growth graphs of 5 

descendant clones (B8, G3, E3, E7, G2) and the ancestral clone (E6). The mean MTT assay read-out (the 

values of absorbance, y-axis) taken from day 1 to day 8 were plotted for each clone (8-12 replicates). Blue red 

and green lines represent growth graphs of fast, slow and ancestral clones, respectively. Error bars represent 

standard errors. (B) Proportion of progeny with different growth rates. The growth rates of 40 B8 (red) and 39 

E3 (blue) single cell progeny were monitored and calculated for seven days. (C) Growth rate of one slow- (C; 

red) and one fast- (D; blue) growing descendant B8 and its single-cell clones. Average growth rate of the cell 

clones (blue dots) from D is significantly higher than that of the clones (red dots) from C (p = 2 x 10-11, KS 

test). (D and E) Competition assay between slow- and fast-growing cells. The proportion (y-axis) of fast- (blue) 

and slow-growing (red) cells in a mixed population was measured from week 1 to week 8 (x-axis) by flow 

cytometry.  
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Fig 2. Copy number variation (CNVs) in five clones derived from E6. (A) The CNV regions in fast- (B8 

and G3) and slow-growing (E3, E7 and G2) clones are highlighted with grey rectangles. The y-axis is the ratio 

of copy number in a descendant clone and copy number in the ancestor, E6. (B) Summary of CNV gain and 

loss among five descendant clones (see also Table S2). 
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Fig 3. Growth rate and chromosome number variation among single-cell clones generated from B8. 

(A)Cell numbers of single cell clones from day 1 to day 8. The clones labeled in blue grow faster than the 

clones in red. (B) Correlation between growth rate I and II of single cell clones. The growth rate I (x-axis) was 

measured in the first eight days and the rate II (y-axis) measured by RTCA iCELLigence method when the 

cell populations reached ~106 cells. Each dot represents a single cell clone; only eight out of 11 clones were 

measured at the second time point. (C) Distributions of chromosome numbers in cells from ancestal and 

descendant clones. Chromosome numbers (x-axis) of 20-30 cells randomly drawn from each clone were 

counted. The black, blue, and red histograms represent cells from the ancestral, fast, and slow progeny clones. 

(D) Chromosome number in cells from the ancestral (B8) and the progeny clones. The black, blue, and red 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted October 5, 2017. ; https://doi.org/10.1101/193482doi: bioRxiv preprint 

https://doi.org/10.1101/193482


 24 

dots represent cells from the ancestral, fast (P_fast), and slow (P_slow) progeny clones. *: p < 0.05, ** p < 

0.01.   
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Fig. 4. Proliferation rate differences between pairs of daughter cells. (A) Growth graph of two daughter 

cells (solid and dashed line) derived from a single cell. The number (y-axis) of cells in 12 pairs (a to l) of 

daughter cells was counted every day in four days. (B) Growth graph of progeny cells from clone f. The 

progeny cells were isolated from clone f and monitored for four days. Solid line: clone f; Dashed line: 

progenies of clone f.  
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Table 1. Fitness reduction per cell division in different cancer cell lines 

Cell line Cancer type 
Number of 

clones1 
R0

2 μ3 d4 

Fitness 

reduction 

(μ × d) 

Hela Cervical cancer 18 1.66 - 2.48 0.25 - 0.33 0.17 - 0.20 0.04 - 0.06 

PC3 Prostate cancer 10 1.68 - 2.11 0.26 - 0.31 0.16 - 0.20 0.04 - 0.06 

A204 Rhabdosarcoma 7 1.81 - 2.07 0.28 - 0.33 0.17 - 0.22 0.05 - 0.07 

A375 Melanoma 18 2.14 - 2.64 0.26 - 0.34 0.16 - 0.23 0.05 - 0.08 

To estimate parameters in equation (1), single cells were randomly chosen from different cancer cell lines 

and their growth from day 0 to day 7 was monitored. Fitness reduction was evaluated based on the 

parameters estimated by applying computer simulations, which are described in Results and Methods. 

1 The number of single cell clones generated from different cancer cell lines 

2 Growth rate of cell population at day 0  

3 Deleterious mutation rate 

4 Mean deleterious effect of a mutation   
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Supporting information 

 

Fig S1. Cell culture and experimental scheme. A single cell (E6) was randomly drew from a Hela cell line 

(JF) and defined as the ancestral clone. Five clones (B8, G3, E3, E7, G2) were random chosen from E6 when 

the population size of E6 reached up to > 50,000 cells. The clones B8 and E3 kept cultured for further 

experiments which are shown in the schematic diagram and described in the Methods and Results.  
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Fig S2. Growth curves of cell clones from B8 and E3. Each curve represents a single cell clone from day 1 

to day 7.  
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Fig S3. The growth rates of six clones (F10 to B3, labeled on the x-axis) from B8 at the time point I and 

II. When cell numbers of these six single cell clones reached to 100-500 (after approximately 8-10 cell 

divisions; Table S1), 20~30% of cells from each clone were randomly drawn and separated into single cells. 

The growth of these cells was monitored for 8 days (time point I, solid boxplots). When cell numbers reached 

to more than 5000 cells (time point II, blank boxplots), a number of single cell clones (Table S1) were 

generated, and the cell growth for those clones was monitored again. *: p < 0.05; **: p < 0.01, Wilcoxon test.   
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Fig S4. Whole-genome copy number variations in six single cell clones. E6 was originated from a single 

cell derived from a Hela cell line, JF. G3, B8, G2, E3, E7 were the single cell clones from E6. The copy 

numbers are shown on the y-axis.  
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Fig S5. The proportion of cell number reduction with 10% of mutation rate increase. In this figure, the 

fixed R0 (2.40) and d (0.18) are given. The cell number (𝑁𝑡) after 20 days of growing (t = 20) with different 

mutation rate μ and 1.1μ (𝜇 ∈ [0.1,0.4]) were calculated, separately. The y-axes is the reduction ratio of cell 

numbers derived from 1.1 μ and μ.  
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Table S1. Number of clones that were generated from 6 clones at time point I and II 

Clones from B8 Time point Cell number Clone number 

F10 
I 182 61 

II 5000 81 

F6 
I 133 27 

II 54000 18 

E3 
I 271 74 

II 27100 33 

F9 
I 430 62 

II 16500 23 

B4 
I 100 33 

II 10000 33 

B5 
I 100 18 

II 10000 12 
1 Single cell isolations and growth rate measurements were performed for the 6 cell clones (B4 ~ F10) at the 

two time points. See Fig. S3 and Results for the details of the growth rate measurement.   

2 The number of cells in the six clones at the time point I and II 

3 The number of clones that were randomly isolated and generated from the 6 clones at the time point I and II  
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Table S2. Copy number gain and loss of five descendant clones compared to their ancestor clone (E6). 

Descendant 

clones from E6 
Chromosome Start End Length 

Copy number 

gain/ loss 

B8 

2 140900000 196750000 55850000 gain 

5 0 45250000 45250000 loss 

9 200000 27500000 27300000 loss 

14 26850000 49250000 22400000 gain 

17 0 18000000 18000000 gain 

18 0 70850000 70850000 gain 

X 80050001 99050000 18999999 gain 
      

G3 
5 0 47000000 47000000 loss 

18 1700000 78077248 76377248 gain 
      

E3 

2 0 86750000 86750000 loss 

4 0 16700000 16700000 loss 

5 0 46400000 46400000 loss 

10 0 52900000 52900000 loss 

10 53100000 123850000 70750000 loss 

15 90450000 102531392 12081392 gain 

16 34200000 50750000 16550000 gain 

17 22150000 57850000 35700000 loss 

17 57950000 81195210 23245210 loss 

18 0 30900000 30900000 loss 

X 0 33950000 33950000 loss 
      

G2 

1 30550000 119600000 89050000 loss 

4 0 178750000 178750000 loss 

5 0 46400000 46400000 loss 

6 0 25350000 25350000 gain 

8 0 13050000 13050000 loss 

10 0 17200000 17200000 loss 

11 60450000 71550000 11100000 loss 

11 112000000 135006516 23006516 loss 

18 51900000 62450000 10550000 gain 
      

E7 

4 0 16700000 16700000 loss 

8 2500000 19150000 16650000 loss 

10 0 39000000 39000000 loss 

11 103100000 135006516 31906516 loss 

14 0 50300000 50300000 loss 

14 52550000 107349540 54799540 loss 

18 0 12900000 12900000 gain 

18 30850000 45250000 14400000 loss 

18 48800000 78077248 29277248 loss 

20 15000000 63025520 48025520 loss 

X 0 24000000 24000000 loss 
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Table S3. The number of cells in single cell clones1 from B8 and parameter estimation2.  

  
Clone 

Day   Parameter estimation 

  1 2 3 4 5 6 7  R0  μ d  μ × d 

Fast 

growing 

cells 

#1 2 4 8 15 30 45 101  2.22 0.26 0.17 0.04 

#2 2 4 8 20 52 99 182  2.48 0.29 0.18 0.05 

#3 2 5 10 23 51 84 150  2.41 0.30 0.19 0.06 

#4 2 4 8 20 38 57 107  2.29 0.30 0.18 0.05 

#5 2 4 14 32 61 112 190  2.52 0.29 0.20 0.06 

#6 2 4 12 20 41 100 187  2.44 0.26 0.17 0.04 

#7 2 4 8 20 33 55 104  2.26 0.30 0.17 0.05 
  

            

Slow 

growing 

cells 

#8 2 4 7 18 23 35 66  2.13 0.31 0.18 0.06 

#9 2 4 7 17 27 46 88  2.19 0.27 0.17 0.05 

#10 2 4 7 13 19 27 46  1.99 0.27 0.17 0.05 

#11 2 4 6 10 17 30 61  2.04 0.25 0.16 0.04 

#12 2 4 8 15 27 48 82  2.17 0.27 0.19 0.05 

#13 2 4 4 5 6 9 11  1.66 0.32 0.18 0.06 

#14 1 4 6 9 15 25 34  1.96 0.29 0.20 0.06 

#15 2 3 5 7 11 13 20  1.76 0.28 0.20 0.06 

#16 2 2 4 8 13 19 23  1.89 0.31 0.20 0.06 

#17 2 4 8 11 18 26 32  1.97 0.33 0.18 0.06 

#18 2 4 8 15 30 51 88   2.21 0.27 0.18 0.05 
1 Single cells were randomly drawn from B8, followed by cell culture for seven days. The cell numbers in the single cell clones were counted 

every day. According to their cell numbers on the 7th day, newly derived cell clones are grouped into fast (cell number > 100) and slow (cell 

number < 100) growing clones.  
2 The Approximate Bayesian Computation (ABC) method was performed to estimate R0, u and d for each clone. 
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Table S4. R0 estimation with constant μ and d. 

  

Clone 

Observed data   

R0 

  Expected data 
Chi-square test 

(P-value)  Day   Day 

  1 2 3 4 5 6 7     1 2 3 4 5 6 7 

B8 

A4 2 7 7 16 34 39 70  2.13  2.1 4.3 8.2 14.9 25.6 41.8 64.5 0.672  

B4-1 2 4 8 9 10 10 11  1.64  1.6 2.5 3.8 5.2 6.9 8.7 10.4 0.468 

B4-2 2 4 8 14 27 44 80  2.19  2.2 4.5 8.9 16.7 29.5 59.4 78.4 0.385 

B6-1 4 6 12 20 33 48 78  2.18  2.2 4.5 8.8 16.4 28.8 48.0 75.9 0.773 

B6-2  4 4 11 18 20 69  2.16  2.2 4.4 8.6 15.8 27.5 45.4 71.2 5.208e-08*** 

B9 2 4 8 16 28 50 98  2.26  2.3 4.8 9.8 18.9 34.5 59.6 97.7 0.611 

B10 2 4 7 12 25 27 49  1.99  2.0 3.8 6.7 11.4 18.3 27.8 40.0 0.741 

C10-1 2 4 8 16 29 42 72  2.17  2.2 4.5 8.7 16.0 28.1 46.7 73.5 0.994 

C10-2 1 2 2 3 5 9 12  1.67  1.7 2.6 4.0 5.6 7.6 9.7 11.8 0.387 

D3-1 2 4 6 10 18 36 87  2.21  2.2 4.6 9.2 17.3 30.8 52.1 83.5 6.214e-04*** 

D3 -2 2 3 6 12 24 36 72  2.18  2.2 4.5 8.8 16.4 28.8 48.0 75.9 0.182 

D4 2 4 8 14 18 34 82  2.20  2.2 4.6 9.1 17.0 30.1 50.7 80.9 0.008** 

D5 2 4 8 15 20 35 49  2.04  2.0 3.9 7.2 12.6 20.7 32.3 47.7 0.994 

D10 - 4 8 12 26 55 125  2.33  2.3 5.1 10.8 21.4 40.2 71.6 120.9 6.323e-04*** 

D11 2 4 8 17 38 54 140  2.37  2.4 5.3 11.3 22.9 43.7 79.3 136.2 0.011* 

E3 - 4 7 12 24 69 82  2.23  2.2 4.7 9.4 17.9 32.3 55.0 89.0 0.071 

E4 2 6 15 30 50 73 139  2.36  2.4 5.3 11.2 22.5 42.8 77.3 132.3 0.594 

E5 1 4 3 8 17 23 39  1.97  2.0 3.7 6.5 10.9 17.4 26.2 37.4 0.352 

E7 2 4 7 9 12 18 -  1.82  1.8 3.1 5.1 8.0 11.7 16.3 21.5 0.961 

F2 2 4 7 15 26 51 79  2.19  2.2 4.5 8.9 16.7 29.5 59.4 78.4 0.852 

F3 2 4 8 16 33 64 117  2.31  2.3 5.1 10.5 20.6 38.5 68.0 113.9 0.717 

F7 2 3 6 11 17 26 48  2.01  2.0 3.8 6.9 11.8 19.2 29.5 43.0 0.946 

F7 2 2 3 7 11 21 24  1.89  1.9 3.4 5.7 9.3 14.1 20.4 27.9 0.458 

E8 2 3 6 10 14 14 17  1.76  1.8 2.9 4.6 7.0 9.9 13.3 17.0 0.865 

F10 - 5 9 22 43 67 180  2.45  2.5 5.7 12.5 26.1 51.6 96.8 171.9 3.548e-03** 

G2 2 7 15 28 53 97 230  2.54  2.5 6.1 14.0 30.2 61.8 120.2 221.3 0.252 

G12 - 4 5 5 8 9 16  1.68  1.7 2.7 4.0 5.8 7.8 10.1 12.3 0.883 

H3 1 3 6 8 12 20 34  1.92  1.9 4.5 6.0 9.9 15.3 22.4 31.2 0.752 

H6 2 4 8 12 19 22 40  1.94  1.9 3.6 6.2 10.3 16.1 23.9 33.5 0.884 

                   
 

E3 

C3 1 2 3 8 16 19 32  1.93  1.9 3.5 6.1 10.1 15.7 23.1 32.4 0.361 

C4-1 2 4 9 18 30 46 62  2.12  2.1 4.3 8.1 14.6 25.1 40.6 62.4 0.901 

C4-2 1 6 8 16 27 34 -  2.11  2.1 4.2 8.0 14.4 24.5 39.5 60.4 0.695 

C6 2 2 4 8 9 17 23  1.83  1.8 3.2 5.2 8.1 12.0 16.8 22.3 0.908 

D3 2 4 8 15 22 41 63  2.11  2.1 4.2 8.0 14.4 24.5 39.5 60.4 0.998 

D7-1 2 2 4 7 18 22 49  2.04  2.0 3.9 7.2 12.6 20.7 32.3 47.7 0.028* 

D7-2 - 4 8 14 26 47 58  2.10  2.1 4.2 7.9 14.1 23.9 38.4 58.4 0.882 

D8 2 4 8 13  20 42  1.96  2.0 3.6 6.4 10.7 16.9 25.4 36.0 0.687 

E9 2 4 4 8 14 18 18  1.78  1.8 3.0 4.8 7.3 1.1 14.2 18.4 0.039* 

E10 2 4 7 7 9 15 17  1.74  1.7 2.9 4.5 6.6 9.3 12.4 15.7 0.935 

F4 1 2 2 4 7 19 37  1.97  2.0 3.7 6.5 10.9 17.4 26.2 37.4 1.364e-07*** 

F7 - 4 6 8 10 16 21  1.77  1.8 3.0 4.7 7.1 10.1 13.8 17.7 0.918 

F9 2 4 8 16 27 35 55  2.06  2.1 4.0 7.4 13.1 21.7 34.2 51.1 0.928 

G3 2 4 7 16 32 48 86  2.21  2.2 4.6 9.2 17.3 30.8 52.1 83.5 0.967 

Note: Using ABC method with the fixed μ (0.29) and d (0.18), R0 was estimated from the cell clones derived from B8 and E3. The expected data were calculated from equation (1) using the estimated R0. Chi-square test 

was used to test whether the expected data are fitted with the observed data. *, P-value < 0.05; **, P-value < 0.01; ***, P-value < 0.001. 
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