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Abstract Genome-wide association (GWA) analysis is a powerful tool to identify22

individual loci underlying the complex traits. However, application of GWAS in natural23

population comes with challenges, especially power loss due to population stratification.24

Here, we introduce a bivariate analysis approach to a public GWAS dataset of Arabidopsis25

thaliana. Using this powerful approach, a common allele, strongly confounded with26

population structure, is discovered to be associated with late flowering and slow27
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maturation of the plant. The discovered genetic effect on flowering time is further28

replicated in independent datasets. Using Mendelian randomization analysis based on29

summary associated statistics from our GWAS and expression QTL (eQTL) scans, we30

predicted and replicated a candidate gene AT1G11560 that potentially causes this31

association. Further analysis with flowering-time-related genes indicates that this locus is32

also co-selected with many flowering-time-related genes. Our study demonstrates the33

efficiency of multi-phenotype analysis to uncover hidden genetic loci masked by34

population structure. The discovered pleiotropic genotype-phenotype map provides new35

insights into understanding the genetic correlation of complex traits.36

37

Introduction38

Evolution has resulted in the speciation and adaptation of various organisms. Although39

natural selection applies to all kinds of species, the resulted natural population structures40

have dramatic difference. Especially, due to their lack of mobility, plants, comparing to41

humans andmost animals, have establishedmuch stronger population structure adaptive42

to specific climate conditions (Ch. 11 in Crawley, 2009). This makes it difficult, for instance43

in modern genomic studies, to distinguish genotypic effects on plants’ phenotypes from44

geographical stratification (Atwell et al., 2010).45

Fast-developing genotyping techniques have made genome-wide association study46

(GWAS) one of the most useful approaches for discovering genomic loci that regulate47

phenotypes in various organisms (Hirschhorn and Daly, 2005; Atwell et al., 2010; Huang48

et al., 2010). In human GWAS, we learnt that most of the discovered loci associated with49

complex traits or disease have very small effects (Yang et al., 2010). The detected single50

nucleotide polymorphisms (SNPs) need to have sufficiently high minor allele frequencies51

(MAFs) for the statistical tests to gain enough power, while high-MAF variants tend to have52

small effects on the studied phenotypes as these variants were under weak selection53

pressure. Alleles that have high penetrance on a phenotype are normally under strong54

selection, resulting in low MAFs of the corresponding SNPs. Thus, a major challenge in55

human GWAS appears to be the trade-off between statistical power and the effect size56

of the variant to detect (Korte and Farlow, 2013; Yang et al., 2014; Wellenreuther and57

Hansson, 2016).58

Although similar trade-off also applies to GWAS in plant populations, e.g. in the natural59

population of Arabidopsis thaliana, in terms of discovery power, the major challenge is dif-60

ferent. As each individual plant accession is sampled from a specific geographical location61

in the world, accessions with different genotypes normally have much greater phenotypic62
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differences compared to those in humans. It appears that the genome can explain a63

large proportion of variation in the plant phenotype, however, the population structure in64

nature makes such a genomic effect heavily confounded with the environmental effect65

due to geographical stratification. Therefore, there can be a number of alleles, who have66

large genetic effects on a certain phenotype, but masked by the population structure.67

As a community based effort, over 1000 natural A. thaliana accessions have been col-68

lected fromworldwide geographical locations (1001 Genomes Consortium, 2016; Kawakatsu69

et al., 2016). Most of those plants have been sequenced for genome, transcriptome, and70

even methylome, and these datasets have been made publicly available for worldwide71

researchers. Many accessions in this collection have been phenotyped for developmen-72

tal, metabolic, inomics, stress resistance traits (Atwell et al., 2010), and more and more73

phenotypes are gradually releasing. Previous analysis in those datasets have revealed74

substantial connections between genotypic and phenotypic variations in this species. The75

application of association mapping have provided insights to the genetic basis of complex76

traits (Atwell et al., 2010; Shen et al., 2012; Wang et al., 2017), adaptation (Shen et al.,77

2014) and evolutionary process. Nevertheless, many essential genotype-phenotype links78

are still difficult to establish based on the current GWAS data, due to the substantial pop-79

ulation stratification highly correlated with the sampling origins of the plants. Therefore,80

novel powerful analyses are required to further uncover hidden genetic regulation.81

Based on publicly available A. thaliana datasets (Atwell et al., 2010; Schmitz et al., 2013;82

1001 Genomes Consortium, 2016; Kawakatsu et al., 2016), here, we aim to use a bivariate83

analysis method that combines the discovery power of two correlated phenotypes (Shen84

et al., 2017), in order to map novel pleiotropic loci that simultaneously regulate both traits.85

We interpret the statistical significance with a double-trait genotype-phenotype map. We86

try to replicate and in silico functionally investigate the candidate genes that may drive87

such associations.88

RESULTS89

Bivariate genomic scan identifies a hidden locus simultaneously as-90

sociated with flowering and maturation periods91

We re-analyzed a public dataset of a natural A. thaliana collection, where 43 developmental92

phenotypes and 23 flowering-time-related phenotypes were previously published (Atwell93

et al., 2010). The number of accessions with measured phenotypes varies from 93 to94

193 with a median of 147 (Supplementary Table 1). We first excluded all variants with95

minor allele frequencies (MAF) less than 0.1 and performed single-trait GWA analysis for96

all these traits based on a linear mixed model, so that the confounded genetic effects due97
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to population stratification is adjusted. We then applied our recently developed multi-trait98

GWASmethod (Shen et al., 2017) to all pairwise combination of the phenotypes (Materials99

& Methods). One novel locus, in one of the pairwise test, reached the most stringent 5%100

Bonferroni-corrected genome-wide significance threshold for the 2,145 pairs of traits and101

173,220 variants, i.e. p < 1.35 × 10−10 (Table 1, Fig. 1a). This signal also reaches single-trait102

genome-wide significance in other six pairs of traits highly correlated with the top pair103

(Supplementary Fig. 1), without Bonferroni-correction for the number of tested trait pairs104

(Table 1, Supplementary Fig. 3-8).105

For the most significant trait combination, 2W (days to flowering time under long day106

with vernalized for 2 weeks) and MT GH (maturation period), the linkage disequilibrium107

(LD) block of this locus (LD r > 0.7) covers about a 260 kb interval on chromosome 1, with108

a top variant at 3,906,923 bp (double-trait p = 9.9 × 10−12, Fig. 1b, Table 1). The detected109

locus shows joint effects on flowering and maturation, where the effect on flowering110

time (2W) is notably large (15.3 days), and that on maturation period (MT GH) is 2.5 days111

(Table 1). These correspond to narrow-sense heritability values of 24% and 10% of the112

two phenotypes, respectively.113

[TABLE 1 ABOUT HERE]114

[FIGURE 1 ABOUT HERE]115

Double-trait analysis is sufficiently powerful to overcome the con-116

founding population structure117

The detected joint-effect locus was missed in the corresponding single-trait GWA analysis118

of 2W (effect = 15.3, p = 2.26 × 10−5 after correcting for population stratification) and that119

of MT GH (effect = 2.5, p = 3.70 × 10−5). Notably, this locus was not even detectable at120

the genome-wide significance level in a much larger population of more than 1,000 A.121

thaliana accessions (Kawakatsu et al., 2016; 1001 Genomes Consortium, 2016) due to its122

severe confounding with the natural population structure. The statistical significance123

can only be identified when considering the joint distribution of the bivariate statistic.124

According to the genome-wide Z-scores (student t-statistics), these two phenotypes are125

negatively correlated, as the plant’s lifespan is relatively stable (estimated and observed126

phenotypic correlation = -0.55 and -0.68, respectively). However, the observed effects on127

the two traits are both substantially positive, showing sufficient deviation from the joint128

distribution that led to bivariate statistical significance (Fig. 2).129

[FIGURE 2 ABOUT HERE]130

The strong confounding with the population structure can also be visualized by the131

allele frequency distribution of the top associated SNP across different A. thaliana sub-132
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populations based on the genome re-sequencing data from the A. thaliana 1001-genomes133

project (1001 Genomes Consortium, 2016, Fig. 3). The sub-populations were divided by134

admixture analysis using ADMIXTURE (1001 Genomes Consortium, 2016; Alexander et al.,135

2009). The plus allele increasing flowering time was predominantly found in Sweden136

and almost fixed in the Northern Sweden population (Fig. 3b; allele frequency = 0.97 in137

Northern Sweden and 0.51 in Southern Sweden). Overall, the phenotype, e.g. flowering138

time at 10 ◦C, highly correlates with the frequency of the plus allele (Fig. 3). The genotype139

at this locus follows a latitude decline, where the northern accessions are enriched with140

the plus allele and the southern accessions are enriched with the minus allele (Fig. 3). This141

spatially imbalanced enrichment shows strong confounding with the population structure,142

which is why standard single-trait GWAS loses power substantially.143

[FIGURE 3 ABOUT HERE]144

Replication of the detected genetic effect on flowering time145

Although we are lack of an independent dataset of A. thaliana maturation duration146

to replicate the bivariate statistical test, datasets containing additional independent A.147

thaliana flowering time measurements are available. We downloaded a flowering time148

GWAS dataset measured in 1,135 natural accessions from the 1001-genomes project149

collection (1001 Genomes Consortium, 2016) and performed a single-trait association150

analysis of our discovered top SNP with linear mixed model correction for the population151

structure. The genetic effect was significantly replicated for flowering time at 10 ◦C (effect152

= 1.7 days, p = 0.037) and flowering time at 16 ◦C (effect = 3.6 days, p = 0.003). The effects153

on flowering time in the replication sample appear to be smaller than in the discovery154

population, possibly due to Winner’s curse in the discovery phase.155

We also screened literature for conventional quantitative trait loci (QTL) studies in156

intercrosses using natural A. thaliana accessions. Our detected signal is underneath a157

reported QTL peak for flowering time from an intercross between a Swedish and an158

Italian accession (Dittmar et al., 2014, Supplementary Fig. 2). This, together with the159

replication above, justifies the detected association. Although the discovered genetic160

effect onmaturation period is not directly replicated, the effect does exists when the effect161

on flowering is justified, as the pleiotropic signal must be driven by both phenotypes.162

Prediction and replication of candidate genes using summary-level163

Mendelian randomization164

As a community-based effort, all the natural A. thaliana accessions from the 1001-genomes165

project were measured for their transcriptome (Kawakatsu et al., 2016; 1001 Genomes166

Consortium, 2016). Such a public gene expression dataset allows us to predict candidate167
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genes underlying the association signal. We extracted the expression levels of 19 genes168

within a ± 20kb window around the top associated SNP using RNA-seq gene expression169

measurements from 140 accessions (Schmitz et al., 2013). Among these, the distributions170

of 14 gene expression phenotypes significantly deviate from normality (Kolmogorov-171

Smirnov test statistic > 0.8), and these genes were filtered out due to potential unreliable172

measurements (Zan et al., 2016). The remaining 5 genes were passed onto eQTL mapping173

at the discovered locus (Materials & Methods).174

Based on the locus-specific eQTL mapping summary statistics, we applied the recently175

developed Summary-level Mendelian randomization (SMR) method (Zhu et al., 2016)176

to predict potential candidate genes among these five genes. The analysis integrates177

summary association statistics from GWAS and eQTL scan to predict functional candidate178

genes using multiple-instrument Mendelian randomization (Burgess et al., 2015), where179

the complementary HEterogeneity In Dependent Instruments (HEIDI) test checks that180

the gene expression and flowering time share the same underlying causal variant. One181

significant candidate AT1G11560was detected after Bonferroni correction for five tests (Fig.182

4, Table 2). This candidate gene prediction result was also replicated using an independent183

eQTL mapping dataset (Kawakatsu et al., 2016).184

[TABLE 2 ABOUT HERE]185

[FIGURE 4 ABOUT HERE]186

Indication of co-selection with genes in flowering-related pathways187

As flowering time is a well-known polygenic trait, we expect multiple loci to be involved188

and possibly co-selected as a result of parallel evolution. Therefore, we explored the189

evidence of co-selection by associating the expression values of 288 known genes in190

flowering-time-related pathways and 1 gene in the maturation related pathway with191

our top SNP using transcriptome data from 648 A. thaliana accessions (1001 Genomes192

Consortium, 2016, Materials & Methods). In total, six genes (NF-YA8, AT5G53360, SPL15,193

AGL42, FLC, AGL20) were associated with our top SNP (false discovery rate < 0.05), where,194

conservatively, four genes (AT5G53360, AGL42, FLC, AGL20) were replicated after Bonferroni195

correction for six tests using data from an independent collection of 140 A. thaliana196

(Schmitz et al., 2013, Table 3). This indicates that co-selected genes in multiple pathways197

determine the flowering time variation in nature, and our detected locus contributes to a198

part of that.199

[TABLE 3 ABOUT HERE]200
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DISCUSSION201

A serious issue of GWAS in natural population is the confounding between true underlying202

genetic effects and the population structure, which can lead to spurious associations203

between genotypes and phenotypes if population stratification is not properly adjusted204

(Korte and Farlow, 2013; Yang et al., 2014; Wellenreuther and Hansson, 2016). Incorpo-205

ration of the random polygenic effect using linear mixed models can effectively control206

the population structure, but such correction often compromises the true signals. Here,207

we applied a bivariate analysis to a classic dataset and successfully separated a locus208

from strong population structure. The detected allele is associated with late flowering and209

slow maturation of A. thaliana, which was corrected away by the linear mixed model in210

standard single-trait analysis. The replication of the genetic effect on flowering time in an211

old intercross linkage analysis and another independent dataset improves the confidence212

of this association. The discovered association is a typical example that jointly modeling213

phenotypes that share genetic basis can boost discovery power and reveal pleiotropic214

genotype-phenotype map at the same time.215

Together with our recent application of multivariate analysis in human isolated pop-216

ulations (Shen et al., 2017), the results further indicate that multi-phenotype analysis is217

an effective approach to detect hidden loci that are lack of discovery power in single-218

phenotype analysis thus is worth testing in broader applications. Multivariate analysis219

appears to have the greatest power when the locus-specific genetic correlation does not220

agree with the natural phenotypic correlation. For instance, like the discovery here, for221

two traits that are negatively correlated, loci that generate positive genetic correlation222

between the traits tend to have good chance to be detected in a joint analysis.223

In GWAS, phenotypes are usually chosen based on morphological, physiological or224

economical features. Those features are usually feasible and simple to quantify; however,225

they might not be directly representative for the underlying genetic or biological factor226

that we try to detect. Fortunately, a certain degree of biological pathway sharing among227

complex traits is common, i.e. pleiotropy (Visscher and Yang, 2016). Nowadays, it is very228

common that multiple phenotypes are measured for same individuals in many GWAS229

datasets, especially in omics study where thousands of phenotypes aremeasured. Instead230

of focusing on one phenotype at a time, it is of essential value to jointly model multiple231

phenotypes, attempting to detect pleiotropic loci that affect multiple traits with biological232

relevance.233

In this study, all the pairs of traits that are associated with the detected locus contain234

at least one flowering-time trait, and nearly all of them have maturation duration involved.235

Detection of the novel locus in a bivariate analysis indicates shared genetic basis for236

the two types of developmental traits, which measure the lengths of two important237
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period during the plant’s life time. By integrating the expression level information and238

GWAS result using SMR/HEIDI test, we were able to predict candidate genes in this region.239

However, further work beyond the scope of this paper is still required to establish the240

molecular biological basis underlying the replicate association.241

Many genetic variants affecting flowering time have been mapped and many genes242

promoting flowering times have been well characterized using standard lab accession,243

Col-0 (Brachi et al., 2010). Unlike simple traits, where only one or a few alleles are244

driving the trait’s variation, there are many more variants throughout the genome that245

contribute to the variation of flowering time. The associations between our top SNP and246

the expression of many flowering-time-related genes serve as evidence of co-selection or247

parallel adaptation.248

In conclusion, our study demonstrates the efficiency of joint modeling multiple-249

phenotypes which overcomes severe power loss due to population stratification in associ-250

ation studies. We discover and replicate a pleiotropic allele that regulate flowering and251

maturation periods simultaneously, providing novel insights in understanding the plant’s252

development over life time. By integrating gene expression information with the GWAS253

results, we predict a functional candidate underneath the associated genomic region.254

Analysis of gene expression with other flowering-time-related genes show evidence of255

co-selection of the predicted candidate with many genes in flowering-time pathways.256

We encourage wider applications of such a multivariate framework in future analyses of257

genomic data.258
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Figure legends271

Figure 1: Bivariate genome-wide association analysis of two developmental trait.272

2W: Days to flowering time (FT) under long day (LD) with vernalized for 2 wks at 5◦C,273

8hrs daylight, MT GH: Maturation period. (a) Manhattan plots comparison of bivariate274

and univariate analysis results, where the novel variants only discoverable when com-275

bining two phenotypes are shown in green. The horizontal dashed line represents a 5%276

Bonferroni-corrected genome-wide significant threshold for the number of variants and277

also the number of tested trait pairs, respectively. (b) Zooming in the novel locus detected278

using bivariate analysis. r: linkage disequilibrium measured as correlation coefficient279

between the top variant and each variant in the region. .280

Figure 2: Hexbin scatter plot comparing all Z-scores of the two traits across the281

genome, showing the bivariate statistical significance of the detected locus. The282

top variants of the locus is marked on the edge of the empirical bivariate normal distribu-283

tion with a red circle. The black line with a slope of -1 is provided as a visual guide.284

Figure 3: a) Flowering time variation (10◦C) among different sub-populations of Ara-285

bidopsis thaliana. These populations are divided by admixture analysis (1001 Genomes286

Consortium, 2016); b) Frequency of the top associated SNP at chromosome 1, 3,906,923287

bp in different sub-populations. The association between the structure of the phenotype288

and that of the allele frequency shows the population confounding at this locus.289

Figure 4: Prioritized candidate genes at the detected locus for flowering time using290

SMR analysis. a) Manhattan plot of association between flowering time at 10◦C and SNPs291

around 40kb of top associated SNP in bivariate analysis. The diamonds highlight top eQTL292

for individual genes; b) Manhattan plot of association between expression of AT1G11560293

and SNPs around 40kb of top associated SNP in bivariate analysis. Genes tested in SMR294

analysis are highlighted using arrows; c) Similar linkage-disequilibrium structure at the295

locus for the corresponding populations of GWA and eQTL analyses.296
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Tables297

Table 1: Discovery and replication analyses results for the novel pleiotropic locus.298

Reported association statistics are for the top variant at the locus for each pair of traits.299

1LD: Days to flowering time under Long Day. 20W: Days to flowering time under long day300

without vernalization. 32W: Days to flowering time under long day with vernalized for 2301

weeks at 5◦C, 8hrs daylight. 44W: Days to flowering time under long day with vernalized302

for 4 weeks at 5◦C, 8 hrs daylight. 50W GH FT: Days to flowering time (greenhouse). 6FT303

GH: Days to flowering (greenhouse). 7MT GH: Maturation period (greenhouse), 20◦C,304

16 hrs daylight. 8RP GH: Reproduction period (greenhouse), 20◦C, 16 hrs daylight. 9RA:305

Reference allele. 10EA: Effect allele. 11MAF: Minor allele frequency. 12Correlation refers to306

observed phenotypic correlation. 13FT: Flowering time.307

Double-trait Analysis
Trait 1 Trait 2 Chr Position RA9 EA10 MAF11 P Correlation12

LD1 MT GH7 1 3904658 T A 0.20 6.3×10−9 -0.39

0W2 MT GH7 1 3896072 G T 0.20 8.4×10−9 -0.58

2W3 MT GH7 1 3906923 T C 0.22 9.9×10−12 -0.68

2W3 RP GH8 1 3978064 A C 0.27 1.3×10−8 -0.17

4W4 MT GH7 1 3906923 T C 0.22 3.1×10−9 -0.64

0W GH FT5 MT GH7 1 3906923 T C 0.22 1.8×10−8 -0.36

FT GH6 MT GH7 1 3896072 G T 0.20 1.5×10−8 -0.60

308

Single-trait Analysis Replication
Trait 1 Trait 2 FT13 10◦C FT13 16◦C

Effect P ℎ2 Effect P ℎ2 Effect P Effect P

33.5 5.6×10−6 0.22 2.42 6.0×10−4 0.07 2.26 1.0×10−2 4.45 4.9×10−4

17.3 1.6×10−4 0.17 2.59 2.1×10−4 0.09 1.95 2.3×10−2 3.96 1.5×10−3

15.3 2.3×10−5 0.24 2.47 3.7×10−5 0.10 1.72 3.7×10−2 3.56 3.0×10−3

19.7 6.8×10−7 0.26 2.65 1.6×10−3 0.06 1.57 5.6×10−2 2.57 3.4×10−2

11.6 1.7×10−3 0.16 2.47 3.7×10−5 0.10 1.72 3.7×10−2 3.56 3.0×10−3

25.8 3.8×10−5 0.21 2.47 3.7×10−5 0.10 1.72 3.7×10−2 3.56 3.0×10−3

14.9 1.8×10−3 0.11 2.59 2.1×10−4 0.09 1.95 2.3×10−2 3.96 1.5×10−3

309

310

311

312

313

314

315

10 of 29

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 25, 2017. ; https://doi.org/10.1101/193417doi: bioRxiv preprint 

https://doi.org/10.1101/193417
http://creativecommons.org/licenses/by-nc-nd/4.0/


Manuscript Submitted

Table 2: Summary of the SMR/HEIDI analysis results. 1Top SNP: The top SNP in ex-316

pression QTL analysis. 2MAF: Minor allele frequency of the top associated SNP. 3PSMR:317

p-value from SMR using a collection of 140 A. thaliana accessions. 4PHEIDI: p-value from318

HEIDI test using a collection of 140 A. thaliana. 5PSMR: p-value from SMR using a second319

collection of 648 accessions. 6PHEIDI: p-value from HEIDI test using a second collection of320

648 accessions.321

Gene Top SNP1 MAF2 P 3
SMR

P 4
HEIDI

P 5
SMR

P 6
HEIDI

AT1G11560 Chr1:3881093 0.34 6.8×10−3 4.8×10−1 3.2×10−2 2.6×10−1

AT1G11655 Chr1:3874970 0.39 4.1×10−2 9.7×10−2 5.9×10−1 NA

AT1G11690 Chr1:4299126 0.04 3.7×10−1 NA 9.4×10−1 NA

AT1G11590 Chr1:3716355 0.11 5.0×10−1 NA 2.2×10−2 1.5×10−1

AT1G11482 Chr1:3830013 0.63 8.2×10−1 NA 1.5×10−1 NA

322

323

324

Table 3: Genes in flowering-time pathways whose expression are associated with325

the detected locus. 1p-value from a expression dataset generated from 648 accessions326

in the A. thaliana 1001-genomes project (Kawakatsu et al., 2016). 2FDR value computed327

from p-value1. 3Replication p-value from another subset of 140 accessions (Schmitz et al.,328

2013).329

Locus ID Gene Name p-value1 q-value2 Replication p-value3

AT1G17590 NF-YA8 1.6×10−7 2.3×10−5 1.7×10−2

AT5G53360 AT5G53360 5.8×10−7 5.7×10−5 3.2×10−4

AT3G57920 SPL15 7.9×10−4 7.8×10−3 1.7×10−2

AT5G62165 AGL42 1.2×10−3 1.1×10−2 6.3×10−3

AT5G10140 FLC 1.5×10−3 1.3×10−2 5.7×10−4

AT2G45660 AGL20 1.8×10−3 1.4×10−2 1.2×10−3

330

331
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MATERIALS & METHODS336

Genome-wide 250k SNP array genotype data and phenotype data for337

199 natural Arabidopsis thaliana accessions338

We downloaded a public dataset on collection of 199 natural Arabidopsis thaliana inbred339

lines contains 107 phenotypes and corresponding genotypes (Atwell et al., 2010).Those340

files are publicly available at https://github.com/Gregor-Mendel-Institute/atpolydb/blob/341

master/miscellaneous_data/phenotype_published_raw.tsv, and https://github.com/Gregor-Mendel-Institute/342

atpolydb/blob/master/250k_snp_data/call_method_75.tar.gz. 214,051 SNPs were avail-343

able. After filtering out the variants with minor allele frequency less than 0.10, 173,220344

SNPs remained.345

Whole genome re-sequencing and RNA-seq data for a population of346

1,135 natural A. thaliana accessions347

1,135 natural Arabidopsis thaliana accessions have been collected and sequenced for the348

whole genome and transcriptome (1001 Genomes Consortium, 2016; Kawakatsu et al.,349

2016). We downloaded this sequencing dataset and removed the accessions with no350

measured phenotype and SNPs with minor allele frequency below 0.05 and a call-rate351

below 0.95. The final dataset includes 1001 individuals with 2,222,379 SNPs andmeasured352

flowing time at 10◦C. To scan for candidate genes, we also downloaded the transcriptome353

dataset of a subset of this collection (n = 728) (Kawakatsu et al., 2016). The final eQTL354

scan dataset contains RNA-seq derived RPKM-values for 24,150 genes in 648 accessions355

whose phenotypic and genotypic data are both available.356

Whole genome re-sequencing derived SNP genotype and RNA-sequencing357

derived transcriptome data for a population of 144 natural A. thaliana358

accessions359

In an earlier study, Schmitz et al. (Schmitz et al., 2013) RNA-sequenced a collection360

of 144 natural A. thaliana accessions. We downloaded this data together with their361

corresponding whole-genome SNP genotypes available as a part of the 1001 Genomes362

project (1001 Genomes Consortium, 2016; Kawakatsu et al., 2016) to replicate our SMR363

findings. Following the quality control procedure in (Zan et al., 2016), we removed two364

accessions from the data (Alst_1 and Ws_2) due to missing genotype data and two365

accessions (Ann_1 and Got_7) due to their low transcript call rate (16,861 and 18,693366

genes with transcripts as compared to the range of 22,574 to 26,967 for the other the367

accessions). The final dataset used for eQTL mapping included 1,347,036 SNPs with368

MAF above 0.05 and call-rate above 0.95 for 140 accessions, and corresponding RNA-seq369
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derived FPKM-values for 33,554 genes.370

Single-trait analysis for flowering time trait371

For all available traits in this dataset, we first performed a mixed model based single372

trait genome wide association analysis to generate single trait summaries statistics.373

Those summaries statistics were used as input for double trait analysis described in the374

following section. To replicate our signal, we also performed a single trait genome wide375

association analysis using a collection generated in 1001-genomes project (1001 Genomes376

Consortium, 2016). To correct for the population structure in these A. thaliana accessions,377

single-trait genome wide scan was performed based on linear mixed models, using the378

polygenic and mmscore procedure in GenABEL (Aulchenko et al., 2007).379

Double-trait genome-wide association analysis380

We performed double-trait genome scans using our recently developed multivariate381

analysis method implemented in the MultiABEL package (Shen et al., 2017). The method382

takes the whole-genome summary statistics to infer shrinkage phenotypic correlation383

coefficients and conducts MANOVA analysis. The shrinkage phenotypic correlation co-384

efficient of two traits can be unbiasedly estimated by the correlation of genome-wide385

Z-scores, which is proportional to the phenotypic correlation on the liability scale, with a386

shrinkage factor of the square root of sample overlapping proportion. Bivariate p-values387

are reported. In this way, the bivariate MANOVA analysis is carried out on the liability388

scale, on partially overlapping sample.389

eQTL and SMR analysis390

We screened for candidate genes by analyzing the expression data in a subset of the391

1001-genomes collection containing 140 accessions. Expression values for 19 genes392

around 20kb up/downstream of the top associated SNP were extracted from (Schmitz393

et al., 2013). 14 genes did not pass Kolmogorov-Smirnov test (ks test statistics < 0.8) were394

filtered out due to potential unreliable measurement mentioned in (Zan et al., 2016).395

The remaining five genes were subsequently passed onto eQTL mapping using qtscore396

procedure in GenABEL (Aulchenko et al., 2007). Output were reformatted according to397

the description in (Zhu et al., 2016). Together with the flowering time single-trait scan398

results (1001 Genomes Consortium, 2016), these were further passed onto SMR analysis399

scanning for association between individual gene expression and flowering time. The SMR400

analysis were repeated for 5 top candidates, in an independent gene expression dataset401

containing 648 accessions (Kawakatsu et al., 2016) following the same procedure.402
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Supplementary Table 1: Phenotypes included in the bivariate analyses.463

Details about phenotyping can be referred to Atwell et al. (2010).464

Phenotype Description Number of Accessions

LD Days to flowering time (FT) under Long Day (LD) 167

LDV Days to flowering time (FT) under Long Day (LD) (5 wks vernalization) 168

SD Days to flowering time (FT) under Short Day (SD) 162

SDV Days to flowering time (FT) under Short Day (SD) (5 wks vernalization) 159

0W Days to FT under LD without vernalization 137

2W Days to FT under LD with 2wks vernalization 152

4W Days to FT under LD with 4wks vernalization 119

8W Days to FT under LD with 8wks vernalization 155

FLC FLC gene expression 167

FRI FRI gene expression 164

FT10 Flowering time (FT), 10◦C 194

FT16 Flowering time (FT), 16◦C 193

FT22 Flowering time (FT), 22◦C 193

LN10 leaf number at flowering time (LN), 10◦C 177

LN16 leaf number at flowering time (LN), 16◦C 176

LN22 leaf number at flowering time (LN), 22◦C 176

8W GH FT Days to FT with 8 wks vernalization 162

8W GH LN LN at FT with 8 wks vernalization 163

0W GH FT Days to FT without vernalization 153

0W GH LN LN at FT without vernalization 135

FT Field Days to flowering of plants grown in the field 180

FT Diameter Field Plant diameter at flowering (field) 180

FT GH Days to flowering (greenhouse) 166

LES Presence or absence of lesioning 95

YEL Presence or absence of yellowing 95

LY Presence or absence of either lesioning or yellowing 95

FW Fresh weight of plants 95

DW Dry weight of plants 95

Chlorosis 10 Visual chlorosis presence, 10◦C 177

Chlorosis 16 Visual chlorosis presence, 16◦C 176

Chlorosis 22 Visual chlorosis presence, 22◦C 176

465
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Anthocyanin 10 Visual anthocyanin presence, 10◦C 177

Anthocyanin 16 Visual anthocyanin presence, 16◦C 176

Anthocyanin 22 Visual anthocyanin presence, 22◦C 177

Seed Dormancy Seed dormancy level 83

Germ 10 Days to germination, 10◦C 177

Germ 16 Days to germination, 16◦C 176

Germ 22 Days to germination, 22◦C 177

Seedling Growth Seedling growth rate 100

Vern Growth Vegetative growth rate during vernalization 110

After Vern Growth Vegetative growth rate after vernalization 110

Secondary Dormancy Decrease in germination rate after prolonged exposure to cold temperature 93

Germ in dark Germination in the dark 93

DSDS50 Duration of seed dry storage required for 50% of the seeds to germinate 109

Seed bank 133-91 Non-monotonous dynamic of dormancy release 110

Storage 7 days Primary dormancy, 7 days dry storage 110

Storage 28 days Primary dormancy, 28 days dry storage 110

Storage 56 days Primary dormancy, 56 days dry storage 110

Hypocotyl length Hypocotyl length 89

Width 10 Plant diameter, 10◦C 176

Width 16 Plant diameter, 16◦C 175

Width 22 Plant diameter, 22◦C 175

Leaf serr 10 Level of leaf serration, 10◦C 174

Leaf serr 16 Level of leaf serration, 16◦C 176

Leaf serr 22 Level of leaf serration, 22◦C 176

Leaf roll 10 Leaf roll presence, 10◦C 177

Leaf roll 16 Leaf roll presence, 16◦C 176

Leaf roll 22 Leaf roll presence, 22◦C 176

Rosette Erect 22 Presence of rosette errectness, 22◦C 176

Silique 16 Silique length, 16◦C 95

Silique 22 Silique length, 22◦C 95

FT Duration GH Flowering period duration 147

LC Duration GH Life cycle period 147

LFS GH Last flower senescence 148

MT GH Maturation period 147

RP GH Reproduction period 147

466

467
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Supplementary Figure 1: Phenotypic correlations among flowering time468

related traits, maturation period and reproduction period phenotypes.469

The flowering time related traits are: 4W: Days to flowering time (FT) under long day (LD)470

with vernalized for 4 wks at 5◦C, 8hrs daylight; 2W: Days to flowering time (FT) under471

long day (LD) with vernalized for 2 wks at 5◦C, 8hrs daylight; FT GH: Days to flowering472

(greenhouse); LD: Days to flowering time (FT) under Long Day (LD); 0W: Days to flowering473

time (FT) under Long Day (LD) without vernalization; 0W GH FT: Days to flowering time474

(FT).475
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Supplementary Figure 2: Overlapping between QTL mapping and double-476

trait GWAS result.477

The curve shows stepwise LOD profiles in chromosome 1 that are generated from a QTL478

mapping study using a cross between Italy and Sweden population analyzed by Dittmar479

et al. (2014) (reproduced by depicting the curvature of Figure 3a therein). The Manhattan480

plot shows chromosome 1 signal in our bivariate analysis.481

23 of 29

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 25, 2017. ; https://doi.org/10.1101/193417doi: bioRxiv preprint 

https://doi.org/10.1101/193417
http://creativecommons.org/licenses/by-nc-nd/4.0/


Manuscript Submitted

Supplementary Figure 3: Bivariate genome-wide association analysis of482

two developmental trait, LD: Days to flowering time (FT) under Long Day483

(LD), MT GH: Maturation period.484

(a) Manhattan plots comparison of bivariate and univariate analysis results, where the485

novel variants only discoverable when combining two phenotypes are shown in green.486

The horizontal dashed line represents a 5% Bonferroni-corrected genome-wide significant487

threshold. (b) Zooming in the novel locus detected using bivariate analysis. r: linkage488

disequilibrium measured as correlation coefficient between the top variant and each489

variant in the region.490
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Supplementary Figure 4: Bivariate genome-wide association analysis of491

two developmental trait, 0W: Days to flowering time (FT) under Long Day492

(LD) without vernalization, MT GH: Maturation period.493

(a) Manhattan plots comparison of bivariate and univariate analysis results, where the494

novel variants only discoverable when combining two phenotypes are shown in green.495

The horizontal dashed line represents a 5% Bonferroni-corrected genome-wide significant496

threshold. (b) Zooming in the novel locus detected using bivariate analysis. r: linkage497

disequilibrium measured as correlation coefficient between the top variant and each498

variant in the region.499
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Supplementary Figure 5: Bivariate genome-wide association analysis of500

two developmental trait, 2W: Days to flowering time (FT) under long day501

(LD) with vernalized for 2 wks at 5◦C, 8 hrs daylight, RP GH: Reproduction502

period.503

(a) Manhattan plots comparison of bivariate and univariate analysis results, where the504

novel variants only discoverable when combining two phenotypes are shown in green.505

The horizontal dashed line represents a 5% Bonferroni-corrected genome-wide significant506

threshold. (b) Zooming in the novel locus detected using bivariate analysis. r: linkage507

disequilibrium measured as correlation coefficient between the top variant and each508

variant in the region.509
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Supplementary Figure 6: Bivariate genome-wide association analysis of510

two developmental trait, 4W: Days to flowering time (FT) under long day511

(LD) with vernalized for 4 wks at 5◦C, 8hrs daylight, MT GH: Maturation512

period.513

(a) Manhattan plots comparison of bivariate and univariate analysis results, where the514

novel variants only discoverable when combining two phenotypes are shown in green.515

The horizontal dashed line represents a 5% Bonferroni-corrected genome-wide significant516

threshold. (b) Zooming in the novel locus detected using bivariate analysis. r: linkage517

disequilibrium measured as correlation coefficient between the top variant and each518

variant in the region.519
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Supplementary Figure 7: Bivariate genome-wide association analysis of520

two developmental trait, 0W GH FT: Days to flowering time (FT), MT GH:521

Maturation period.522

(a) Manhattan plots comparison of bivariate and univariate analysis results, where the523

novel variants only discoverable when combining two phenotypes are shown in green.524

The horizontal dashed line represents a 5% Bonferroni-corrected genome-wide significant525

threshold. (b) Zooming in the novel locus detected using bivariate analysis. r: linkage526

disequilibrium measured as correlation coefficient between the top variant and each527

variant in the region.528
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Supplementary Figure 8: Bivariate genome-wide association analysis of529

two developmental trait, FT GH: Days to flowering (greenhouse), MT GH:530

Maturation period.531

(a) Manhattan plots comparison of bivariate and univariate analysis results, where the532

novel variants only discoverable when combining two phenotypes are shown in green.533

The horizontal dashed line represents a 5% Bonferroni-corrected genome-wide significant534

threshold. (b) Zooming in the novel locus detected using bivariate analysis. r: linkage535

disequilibrium measured as correlation coefficient between the top variant and each536

variant in the region.537
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