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Abstract

Trait-based approaches in direct intraspecific and interspecific interactions address proximate and evolutionary questions
across biological systems. However, interest in particular questions or systems has led to specialised descriptions of how
interactions occur. We propose a generalised description in which interactions can be: defined by goals (e.g. consumption,
parasitism, pollination); charted systematically (with logic statements); and explained by performance inequalities (comparing
traits of individuals). Consequently, goal failures (‘forbidden links’) are interaction outcomes; alternative strategies to goal
success exist; and matching traits are reformulated as difference traits. To illustrate, we introduce a new network measure:
minimum mechanistic dimensionality, the minimum number of traits for the mechanistic explanation of the outcomes. Our
dimensionality offers alternative explanations for intransitive networks. We show that previous approaches underestimate
the dimensionality of 658 published empirical ecological networks (animal dominance, food webs, pollination, parasitism,
seed dispersal) by omitting concepts emerging from the framework (mechanistic perspective, trait-mediated goal failures,
generalisation to alternative interaction strategies). Such underestimation can prevent models from generating networks at
the interaction outcome level. The framework provides a common mechanistic basis for proximate and evolutionary questions,
inspiring hypotheses and trait-based models of social network dynamics, antagonistic or mutualistic community assembly or
invasion, and coevolution.

Keywords: Theoretical ecology, multilayer networks, niche space, phenotype space, morphospace, trophic interactions,
commensalism, interference competition, cooperation, rock–paper–scissors.

INTRODUCTION

A wide range of questions about direct intra- and interspe-
cific interactions are addressed with trait-based approaches.
These questions can be categorised as proximate or evolu-
tionary (Dewsbury, 1999). For example, proximate (‘how’)
questions address which key traits best explain interaction
outcomes (Eklöf et al., 2013; Vieira & Peixoto, 2013; Olito
& Fox, 2015; Dehling et al., 2016), and how are key traits in-
volved in the interactions and outcomes (Ibanez et al., 2012;
Ryan & Cummings, 2013; Dy et al., 2014); evolutionary
(‘why’) questions focus on justifying key traits correlating
with individual fitness (Sih et al., 2012; Seppälä, 2015), on
the relative impact of phylogenetic history (Becerra, 2003;
Sanders et al., 2014), and on the evolution of traits and
population or community structure (Pinter-Wollman et al.,
2014; Strauss, 2014). Two main categories of trait-based
approaches are the phenomenological and mechanistic (Ings
et al., 2009). For instance, explanation of food web structure
can be attempted phenomenologically by assuming exploita-
tion of resources with mainly smaller trait values in a range
(Williams & Martinez, 2000), or by assuming mechanistic
rules of allometric foraging behaviour (Petchey et al., 2008).

Addressing study questions related to direct biotic inter-
actions requires a conceptual or mathematical description
of how interactions occur. For example, investigating key
traits in phage–bacterium interactions requires a conceptual

representation of the infection process (Dy et al., 2014).
Studying plant–herbivore coadaptation relies on understand-
ing how plants and herbivores interact via defences and
counterdefences (Becerra, 2003). Interaction mechanisms of
trait complementarity and exploitation barriers underlie the
theoretical study of plant–pollinator community structure
(Santamaŕıa & Rodŕıguez-Gironés, 2007).

Direct biotic interactions in different systems appear
to occur sharing four common features: (i) interactions
can be of various types within a system; (ii) for each
interaction type, there can be alternative associated
strategies; (iii) in each interaction strategy, there can be
multiple required tasks; and (iv) the outcome of each
task depends on the comparison between specific traits
of the interacting individuals. Interaction types range
from mutualistic, to antagonistic or victim–exploiter
interactions, to intra- and interspecific helping, dominance,
fighting, and territoriality (Morin, 2011; Davies et al.,
2012). For one type of interaction, examples of alternative
interaction strategies are different feeding modes (Kiørboe,
2011), various visual or olfactory floral signals (Schiestl
& Johnson, 2013), novel pathways to bacterial infection
(Meyer et al., 2012), and alternative combative mechanisms
employed in fungal competition for space (Boddy, 2000).
An interaction strategy usually includes multiple tasks:
from the encounter–detection–identification–approach–
subjugation–consumption steps of a typical predation
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sequence (Endler, 1991), to the attachment–DNA injection–
replication–transcription–translation–assembly–lysis phases
of a phage infection process (Dy et al., 2014). For a
specific task, the competing traits involved are measurable
features of the interacting individuals (Arnold, 1983; McGill
et al., 2006; Violle et al., 2007): from physiological (e.g.
plant–herbivore toxin–detoxification enzyme concentra-
tions), to morphological (e.g. animal–plant proboscis
length–depth of nectar in floral tube), to behavioural (e.g.
cheating–punishment in cleaner–client fish), to phenological
(e.g. predator–prey temporal presence–absence) properties.

Despite the accumulated empirical knowledge about how
interactions occur, previous theoretical works lack an explicit
incorporation of the feature of alternative interaction strate-
gies, and frequently other features in their mathematical
descriptions. On one hand, theoretical works have focused
on particular types of interaction in one strategy, for exam-
ple, on mutualistic (Santamaŕıa & Rodŕıguez-Gironés, 2007;
Vázquez et al., 2009a; Campbell et al., 2011; Guimarães Jr
et al., 2011; Nuismer et al., 2013), antagonistic (Abrams,
2000; Nuismer et al., 2005; Nuismer & Thompson, 2006;
Gilman et al., 2012), or trophic interactions (Cohen & New-
man, 1985; Williams & Martinez, 2000; Cattin et al., 2004;
Stouffer et al., 2006; Allesina et al., 2008; Petchey et al.,
2008; Gravel et al., 2013). On the other hand, theoretical
works for different interaction types lack multiple tasks in
the single interaction strategy (Kopp & Gavrilets, 2006), or
lack mechanistic perspective (Eklöf et al., 2013; Bastazini
et al., 2017; Ovaskainen et al., 2017). To our knowledge, only
two frameworks for the occurrence of interactions appear
able to incorporate all four features, although they lack an
explicit reference to alternative interaction strategies (Poisot
et al., 2015; Bartomeus et al., 2016).

Our work aimed to develop a generalised description of
how interactions occur. We present the framework in three
stages, encompassing all four features in the description of
interactions outlined by empirical studies (Fig. 1). Direct
interactions of various types: (1) appear directed by goals
(first feature in the description of interactions); (2) follow al-
ternative subgoal strategies to goal success (second and third
features); and (3) are resolved by trait competition (fourth
feature). Following the framework description, two frame-
work applications are provided. First, we summarise our
framework by applying it to an empirical plant–pollinator
system (Kennedy, 1978), showing the systematic charting
of the interactions and traits, e.g. how plant exploitation
barriers are involved in the interactions. Second, we create
a new dimensionality measure for the minimum number of
traits required in the mechanistic explanation of the out-
comes in a system. We show that the minimum number of
required traits in empirical systems can be underestimated
by omitting basic framework concepts. We conclude that
our generalised mechanistic description provides a more com-
prehensive conceptual and mathematical basis for proximate
and evolutionary questions in direct biotic interactions.

FRAMEWORK

Before presenting the framework, we raise three points. First,
the framework is applicable to individuals, but also to other
levels of biological organisation, e.g. populations, species, or
other taxonomic or functional groups, assuming it is sensible
from a trait-based viewpoint (Ings et al., 2009). Therefore,
we broadly refer to interacting ‘players’ throughout. Sec-
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Figure 1: Summary of the four features in our generalised
mechanistic description of direct biotic interactions. In each
feature’s panel, the illustration of a hypothetical system on
the left is accompanied by the main concept and logical
operator associated with that feature on the right. Dotted
boxes and arrows indicate focusing in to the next feature.
The four features are: (a) interactions in a system appear
to be directed by multiple ‘focal goals’; (b) for each focal
goal, there can be alternative strategies (‘modes’) leading to
success; (c) in each mode, there can be multiple ‘subgoals’
that all must be achieved; and (d) for each subgoal success
in a mode, the performance in a ‘trait’ of one interacting
individual must be higher than the performance in a trait
of the other interacting individual.

ond, the framework concerns direct interactions. Indirect
interactions are out of scope, requiring intermediary play-
ers, or environmental variables (Abrams, 1987; Wootton,
1994). Third, we limit this first account of the framework to
only pairwise interactions. The pairwise interaction is the
simplest case, with the minimum number of players for an
interaction to occur. Thus, our systems range from a pair
of interacting players, to networks of pairwise interactions
(see Box 1 for definitions of network terms; for a review of
network theory, see Newman, 2003).

Stage 1: Defining the study system

Step 1: Player goals

The unifying concept underpinning our framework posits
that interactions ‘appear’ to be directed by goals. We
adopt an intentional language of ‘goals’ in our framework for
the sake of directness, recognising that the apparent goal-
directedness of interactions (West & Gardner, 2013) arises
from the programmed operation of biological ‘teleonomic
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Box 1: Definitions of terms in network (graph) theory

Network (graph): A conceptual and mathematical rep-
resentation of connections among objects (e.g. a food
web representing who consumes whom).

Edge (link): A connection among one or more objects
of a network. Edges may have direction (e.g. directed
from resources to consumers in a food web), can be of
various types (e.g. predatory or parasitic interactions in
a food web), and may have qualitative and quantitative
attributes (e.g. consumer exploitation strategy and
biomass consumed from each particular resource).

Vertex (node): An object of a network. Vertices can be of
various types (e.g. plant or herbivore), and may have
qualitative and quantitative attributes (e.g. life stage
and body mass of each individual or species).

Part: A set of vertices of the same type (e.g. the part of
the plants, and the part of the herbivores).

Multilayer network: A network composed of multiple
layers. Various aspects determine the network layers.
Examples of aspects are the type of edges, the season
that the data were collected, and the identity of the
observer. Thus, we would create a layer for each com-
bination of edge type, season, and observer. A layer
can host a subset of the vertices, and edges can connect
vertices in different layers.

Unipartite graph: A network with all vertices belonging
to one part. Edges are allowed between any vertices
(e.g. in a food web with potential consumption of an
individual or species by any other individual or species).

Bipartite graph: A network with the vertices allocated in
two parts. Each vertex can have edges only with vertices
from the other part (e.g. in a plant–herbivore network,
representing consumption of plants by herbivores).

Weighted network: A network with weighted edges, i.e.
edges with quantitative attributes (e.g. a weighted food
web can show not only who consumes whom, but also
how much).

processes’ and ‘purposive behavior’ sensu Mayr (1992, 1998).
Common examples of player focal goals are consumption,
dominance, replacement, capturing of territory, defeat, and
parasitism of others; or attraction of their provisioning, pro-
tection, cleaning, dispersal, and pollination services. We
expect at least one focal goal to underlie a study system, and
multiple goals can be implemented in an integrated system,
i.e. as a multilayer network (Ings et al., 2009; Fontaine et al.,
2011; Kivelä et al., 2014; Pilosof et al., 2017). In a multi-
layer network, each layer relates to one focal goal, i.e. one
type of interaction (Fig. 1a). Commonly studied systems
appear to be governed by one or two focal goals (Fig. 2), for
example, the food webs with the single goal of consumption
of the other players, and the phage–bacterium systems with
the phages’ goal to exploit the bacteria. Examples with
two goals are plant–animal systems with the plants’ goal
of receiving an animal service (e.g. pollination), and with
the animals’ goal of exploiting a plant resource (e.g. nectar
or pollen). Hence, we represent such plant–animal systems
with bilayer networks, with one layer for the plants’ goal,
and one layer for the animals’ goal.

Categories of minimal systems

1 goal–1 part 2 goals–2 parts/goal1 goal–2 parts

Other 
systems 
in same 
category

Cooperation
Dominance
Overgrowth

Fighting
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Figure 2: Framework stage 1: defining and categorising a
study system. We determine player focal goals, partition
players to goal pursuers and attracters, and identify the
possible goal pursuit outcomes (see Box 2 for definitions
of framework terms). A system must have at least one
underlying focal goal, and goal failures are also interaction
outcomes. Our ‘minimal’ systems have at most two focal
goals, with each player pursuing one goal in maximum. In
the third category of 2 goals–2 parts/goal, the two focal
goals are shaded differently, distinguishing the outcomes of
each goal in the minimal network.

Step 2: Goal pursuers and attracters

An interaction appears to occur due to a goal pursued by
one interacting player, the ‘pursuer’, attracted to the other
player, the ‘attracter’. A player can be considered only
pursuer, only attracter, or both pursuer and attracter of
a focal goal (Fig. 2). In the example of food webs, each
player is both a potential consumer (pursuer) and a potential
resource (attracter). We allocate all players to one group,
called ‘part’, as both pursuers and attracters of consumption,
representing food webs as unipartite graphs. In the example
of phage–bacterium systems, the phages are only pursuers,
and the bacteria are only attracters. In this case, we have
two parts, representing phage–bacterium systems as bipar-
tite graphs: the part of pursuers (the potential exploiters),
and the part of attracters (the potentially exploited). As
in bipartite graphs, we assume no interactions within the
pursuers or the attracters of a part, since a goal-directed
interaction occurs only between a pursuer and an attracter.
In general, there can be only two allocation possibilities in
pairwise interactions: (1) unipartite, with players belonging
to one part, considered both pursuers and attracters of a
focal goal; or (2) bipartite, with players allocated to two
parts, the part of pursuers, and the part of attracters. In the
example of the bilayer plant–animal system, both network
layers are bipartite: in the first layer of the plants pursuing
pollination, the plants are pursuers, and the animals are
attracters; conversely, in the second layer, the animals are
now pursuers of floral exploitation, whereas the plants are
attracters.

3

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 21, 2017. ; https://doi.org/10.1101/192260doi: bioRxiv preprint 

https://doi.org/10.1101/192260
http://creativecommons.org/licenses/by-nc/4.0/


Step 3: Possible interaction outcomes

Given the focal goals, and the allocation to parts, we can
identify the possible outcomes (Fig. 2). For example, there
are three possible outcomes in a unipartite food web: one
of the two interacting players consumes the other, neither
consumes the other, or they are mutually consumed. Al-
though the latter outcome of mutual consumption might
be impossible in trophic interactions, it can be plausible in
other unipartite systems (e.g. cooperation after mutual pur-
suit of help). In the example of a bipartite phage–bacterium
system, there are two possible outcomes: a phage exploits a
bacterium, or fails to do so. Lastly, in the example of the
plant–animal system, we recognise four possible outcomes:
the plant is pollinated, and the animal exploits the plant;
neither the plant nor the animal succeed in exploiting the
other; the plant is not pollinated, but it is exploited; or
the plant is pollinated, and it is not exploited. Note that
goal failures are also considered interaction outcomes in our
framework.

After defining the study system, we can categorise it based
on the focal goals, the allocation of players to parts, and the
possible outcomes (see Fig. 2 for our categories of minimal
systems, i.e. of two goals in maximum, with each player
pursuing at most one goal).

Stage 2: Charting the modes of interaction

Step 1: Goal hierarchy

To achieve a focal goal, the pursuers must succeed in sub-
goals. Achieving these subgoals depends on the success of
further subgoals lower in the hierarchy, and so forth, leading
to a branching hierarchy of goals (Fig. 3). For example, two
of the prerequisites for a phage to exploit a bacterium are
the attachment to the bacterial surface, and the ejection of
the viral DNA (Dy et al., 2014). Although a phage must
attach to a bacterium before ejecting the DNA, our goal
hierarchy lists these two subgoals, dismissing any temporal
dependencies. Lower in the hierarchy of the attachment
subgoal, two different receptors could be used for attach-
ment, i.e. two alternative routes to achieve the attachment
subgoal. In general, a goal might require success in all, or
in at least one of its subgoals. In other words, subgoal state-
ments are associated with the logical operations of AND
(conjunction), and OR (disjunction). Note that goals re-
garding direct interactions can be understood as embedded
in a general hierarchy of goals, with the increase of inclusive
fitness as the ultimate goal at the top hierarchical level
(Fig. 3). Hence, each individual appears as pursuing the
maximisation of its inclusive fitness (Hamilton, 1964; West
& Gardner, 2013), by strategically investing in the various
subgoals of the whole goal hierarchy.

Step 2: Interaction form

We reorganise the logically associated subgoals from the
lowest level of the focal goal hierarchy to the standardised
structure of our ‘interaction form’ (Fig. 3). The interaction
form is organised into clauses. We name a clause ‘mode’,
a distinct strategy towards focal goal achievement. The
interaction form enables alternative, independent modes for
focal goal success (Fig. 1b). Success via even one mode
is sufficient for the success of the focal goal, due to the
disjunctive OR connecting the modes (Fig. 3).

Each mode contains subgoals that must be achieved for a
success in the focal goal (Fig. 1c). If a pursuer fails in even

IF

Increase
inclusive fitness

Section of phages'
goal hierarchy

OR THEN

Reproduce

Exploit
bacterium

Exploit 
bacterium

Eject
DNA

Attach to
bacterium

Bind to
receptor BOR

Bind to
receptor A

AND

Mode 1

Bind to
receptor A

Degrade
cell wall

AND

AND
...

Mode 2

Bind to
receptor B

Degrade
cell wall

AND

AND

...

Interaction form

Degrade
bacterial cell wallAND AND ...

Figure 3: Framework stage 2: charting the modes of inter-
action. With a hypothetical phage–bacterium system, we
illustrate the conversion of a section of a focal goal hierar-
chy (to ‘exploit bacterium’) to the interaction form. In our
goal hierarchy, we list the subgoals upon which the achieve-
ment of a goal depends, without limiting the list because of
temporal dependencies, e.g. although a phage must attach
to a bacterium before ejecting the DNA, we list these two
prerequisites as subgoals of the goal to exploit bacterium.
Either all the listed subgoals must be achieved (branching
subgoals associated with the logical operator ‘AND’), or at
least one of them (operator ‘OR’). The lowest hierarchical
level subgoals, with their logical association, are reorgan-
ised to the interaction form, a standardised way to describe
the interactions regarding a focal goal in a system. The
interaction form posits that there can be alternative modes
for focal goal accomplishment (mode 1 and 2 in the phages’
example), whereas all mode subgoals must be achieved for a
success via a mode. Logic assures that any logical structure
(i.e. any logically associated, lowest hierarchical level sub-
goals) can be reorganised to the standardised structure of
the so-called ‘disjunctive normal form’ (i.e. our interaction
form).

one subgoal of a mode, the focal goal is not achieved via
that mode, illustrated by the conjunctive AND connecting
the subgoals. In general, the clauses of the interaction form
give priority to the conjunctive operations inside each mode,
first checking for success via each mode, and then across
modes.

Essentially, our interaction form is the ‘disjunctive normal
form’ in logic. Any structure of logical statements can be
equivalently expressed in disjunctive normal form (Cohn,
2003). Similarly, any logical association of the subgoals in
the lowest level of the goal hierarchy can be equivalently
charted in a standardised and comparable way by the inter-
action form.

Stage 3: Explaining the subgoal outcomes

Step 1: Power–toughness subgoal performance traits

Conceptually, any outcome arises from a goal. Mechanisti-
cally, an outcome is determined by the performance of the
interacting players (Fig. 1d). In the card game Magic: The
Gatheringr, a creature has two traits (‘power’ and ‘tough-
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Parasite egg similarity to host egg 

Toughness (T) against success vsPower (P) to succeed

P > T
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Figure 4: Framework stage 3: explaining the subgoal out-
comes. Four examples are given, passing from the subgoal
(of a focal goal), to the respective players, subgoal perfor-
mance traits, and subgoal success outcome in each example.
For a subgoal in the interaction form, a goal pursuer trait
competes with a goal attracter trait. We call the pursuer
trait ‘power’, and the attracter trait ‘toughness’, from the
power–toughness creature traits of the card game Magic:
The Gatheringr (Garfield, 2017). To determine the subgoal
outcome, we compare the power and the toughness trait
values with an inequality (taken from the creature combat
rules of Magic: The Gatheringr).

ness’) indicating respectively the power to inflict damage,
and the toughness against enemy attacks (Garfield, 2017).
Correspondingly in our framework, we identify a pursuer
trait working towards subgoal success, and an attracter trait
preventing subgoal success (Fig. 4). Whereas creatures
in the card game interact with a single power–toughness
pair of traits, real players can possess multiple pairs for the
potentially multiple subgoals in the interaction form. We
consider that pursuer and attracter are challenged in one
trait ‘dimension’ of their phenotype space for each subgoal
performance competition.

Step 2: Inequality rule of performance competition

The pursuer’s subgoal success follows from the pursuer’s
power superiority over the attracter’s toughness (Fig. 4).
Simply, if the power of the pursuer is greater than the tough-
ness of the attracter, the pursuer succeeds in the subgoal,
which is the creature combat rule in Magic: The Gather-
ingr (Garfield, 2017). The inequality rule can demand more
than the marginal superiority of the pursuer’s power. For
example, to explain weighted subgoal successes, the inequal-
ity rule can require power superiority proportional to the
subgoal success weight, instead of only marginal superiority
for explaining qualitatively the successes.

Box 2: Definitions of terms in the framework

Focal goal: A goal that appears to direct one type of
interaction. Multiple focal goals can be studied with a
multilayer network, where each focal goal underlies a
type of interaction (edge) in a layer.

Players: The interacting objects in a system. The players
are the vertices in a network representation of a system.

Pursuers: Players regarded as pursuing a focal goal (e.g.
predators pursuing consumption of prey).

Attracters: Players regarded as attracting pursuers (e.g.
prey attracting their consumption by predators).

Part: A group of only pursuers, only attracters, or both
pursuers and attracters. Such a group is a network part
in a network representation.

Possible outcomes: A goal success or failure of a pursuer.
In multiple focal goals, the overall possible outcomes
are the combination of successes and failures in all focal
goals.

Goal hierarchy: Goal achievement can depend on the
achievement of other goals, creating a hierarchy of goals.

Subgoal: A goal lower than a focal goal in the goal hier-
archy.

Interaction form: A standardised and generalised descrip-
tion of how direct interactions occur for a focal goal:
alternative strategies to focal goal success.

Mode: A strategy based on subgoals via which a focal
goal can be reached.

Power: The pursuer trait acting towards success in a
subgoal of a mode.

Toughness: The attracter trait acting against pursuer
success in a subgoal of a mode.

Dimension: The pursuer or attracter phenotype space
trait dimension which is challenged in a power–
toughness performance competition for a mode subgoal.

Inequality rule: If the pursuer power is sufficiently larger
than the attracter toughness, the pursuer wins in the
subgoal performance competition of a mode.

APPLICATIONS

Framework overview with an empirical system

We illustrate the use of our framework by applying it to an
empirical plant–animal system from a lowland wet forest
near Puerto Viejo, Heredia, Costa Rica (Kennedy, 1978).
The first occurrence of a framework term is given in italics
(see Box 2 for definitions). The players are representa-
tive individuals of species reported for that site (Fig. 5):
three Euglossine bees (Eulaema speciosa, E. seabrai, and E.
meriana), a hummingbird (Phaethornis longirostris), and a
closed-flowered plant (Calathea marantifolia).

Stage 1: Defining the study system

We define a system in three steps: determining the player
focal goals, allocating the players to parts, and identifying
the types of possible outcomes. We determine two focal
goals (Fig. 5): the animals’ goal of consuming nectar, and
the plant’s goal of receiving animal pollination services. In
the animals’ focal goal, the animals are assigned to the part
of pursuers, and the plant to the part of attracters; in the
plant’s focal goal, the plant is now the pursuer, and the ani-
mals are the attracters. Thus, we have one bipartite graph
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Mode 2 (M2)

Animals' focal goal: nectarivory

Plant's focal goal: biotic pollination

OR

(M2)(M1)(M1)(M1)

FALSE

TRUE

Pursuer (   ) achieved goal: 

Puncture sepals: Ability to puncture sepals > Sepal unpuncturability
Subgoal: Animal power > Plant toughness

Mode
Subgoal: Plant power > Animal toughness
Hit animal with triggered style: Presence of functional pollination mechanism > Absence from pollination mechanism's reach 

Mode 1 (M1)

AND

Open flower tip: Ability to cut tip > Tip hardness

Separate petals: Ability to separate petals > Petal inseparability
AND

Fit mouth in corolla tube: Mouth part thinness > Tube narrowness 
AND

Reach nectar: Mouth part length > Tube depth for nectar 

Subgoal: Animal power > Plant toughness

Figure 5: A summary application of the framework for an empirical system (lowland wet forest near Puerto Viejo, Heredia,
Costa Rica, in Kennedy, 1978). We show selected subgoals, for the sake of illustration. From left to right, the animals
reported are the three Euglossine bees Eulaema speciosa, E. seabrai, and E. meriana, and the hummingbird is Phaethornis
longirostris. The plant species is the closed-flowered Calathea marantifolia (a closed, white flower is shown in the species
token). The modes via which animal pursuers succeed are given in parentheses next to the arrowed outcomes. Species token
size indicates the relative size of the representative individual.

layer for each focal goal. There are four types of possible
outcomes in this category of minimal systems (category of
2 goals–2 parts/goal, in Fig. 2).

Stage 2: Charting the modes of interaction

The first step is to decompose a focal goal to subgoals in a
goal hierarchy. The second step reorganises the goal hierar-
chy’s lowest level subgoals to the standardised interaction
form. Note that the interaction forms will contain only a
few subgoals for the sake of illustration.

For the animals’ focal goal of consuming nectar, there are
two alternative strategies to success: by opening the petals
OR through the calyx. This is translated to two disjunctively
associated subgoals branching from the focal goal in the
goal hierarchy. The first subgoal of consuming nectar by
opening the petals requires success in four subgoals: cutting
the flower tip AND separating the petals AND fitting the
mouth part in the corolla tube AND reaching nectar down in
the holding chamber. Thus, the first subgoal of consuming
nectar by opening the petals further branches to the four
conjunctively associated subgoals. The second subgoal of
accessing nectar directly through the calyx requires the
puncturing of the sepals. Passing to the animals’ interaction
form, the initial disjunctive branching in the goal hierarchy
translates to two alternative modes to focal goal success
(Fig. 5): the first mode includes the four subgoals that
all must be achieved for the opening and exploitation of a
flower; and the second mode includes only the subgoal of
puncturing the sepals.

The plant’s focal goal mode of biotic pollination imple-
ments a specialised mechanism with a trigger that must be
pressed inside the flower, releasing the style to hit the animal
for pollination. In the goal hierarchy, the focal goal requires
the subgoal achievement of hitting an animal with the trig-
gered style. Thus, the plant’s interaction form comprises a

single unidimensional mode (Fig. 5).

Stage 3: Explaining the subgoal outcomes

In the first step of identifying traits for the subgoal pursuits
(Fig. 5), an animal nectarivory pursuer has to overcome
plant toughness traits which are exploitation barriers (Santa-
maŕıa & Rodŕıguez-Gironés, 2015). For the plant’s focal goal,
the power of the plant pollination pursuer is a functional
mechanism for the precise transfer of pollen (Santamaŕıa
& Rodŕıguez-Gironés, 2015). The animals might avoid the
mechanism by not pressing the trigger, or by not being
present on the movement path of the triggered style.

In the second step, we attempt to infer any inequalities in
subgoal performance competition based on the descriptions
of Kennedy (1978). All bees achieve the nectarivory focal
goal via the first mode of opening flowers, the hummingbird
via the second mode of puncturing flowers, and the plant is
pollinated only by the E. speciosa bee (Fig. 5). Bees appear
unable to puncture the relatively tough calyx, failing via the
second nectarivory mode. The hummingbird does not appear
to use the first nectarivory mode, perhaps due to expected
failure in at least one subgoal (e.g. mouth part cannot fit in
the thin corolla tube). For the plant, given the presence of
a functional pollination mechanism (the plant power equals
one), the animals’ toughness depends on the way they handle
flowers. The pollinating bee E. speciosa forces its head into
the flower (the bee’s toughness equals zero, inferior to the
plant’s power), activating the trigger, and the style hits the
bee’s head. E. seabrai has similar proboscis length, but this
bee forces the proboscis in by keeping the head outside of
the flower (this bee’s toughness equals one, equivalent to
the plant’s power), and out of the style’s reach. The larger
E. meriana, with the lengthier proboscis, does not trigger
the mechanism because there is no need to force its head
closer to the tube opening to reach nectar (bee’s toughness
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Figure 6: Hidden mechanistic information of at least two dimensions involved in the interactions of an empirical rock–paper–
scissors, intransitive network of outcomes. The empirical system is reported in Jackson & Buss (1975), with three species: the
ectoproct Stylopoma spongites (player A), and the sponges Tenaciella sp. and Toxemna sp. (players B and C, respectively).
We show three attempts to explain minimally the observed outcomes, with the first attempt being mechanistically impossible.
Our framework suggests two feasible minimal explanations, the second of which is similar to that suggested by Jackson &
Buss (1975): player A replaces B, and B replaces C via destructive overgrowth, whereas C replaces A via an alternative
strategy (‘mode’ in our framework), by toxic effects. We indicate hypothetical subgoals, and power|toughness integer scores in
arbitrary units of performance.

equals one). Lastly, the hummingbird does not pollinate
because it robs nectar through the calyx (bird’s toughness
equals one).

Minimum mechanistic dimensionality

In the application described above, the four animals suc-
ceeded in their focal goal via two alternative modes, one
multidimensional (four dimensions; bees), the other uni-
dimensional (hummingbird). Minimally, we could observe
these four successes via one unidimensional mode: all ani-
mals could ‘easily’ consume nectar from a plant with open,
wide and short flowers, e.g. pursuing only the first mode’s
subgoal of reaching nectar in the tube (Fig. 5). In other
words, if that system was mechanistically minimal, the same
outcomes would have occurred from interactions in one trait
dimension. Thus, the idea behind this application is to find
a minimal interaction form which is sufficient for the mecha-
nistic explanation of all the observed interaction outcomes of
a system. By comparing a theoretically minimal interaction
form with the empirically observed one, we can gain insight
into the extra strategies, measures, or defences of the players.
For instance, the plant attracter imposed five exploitation
barriers to the nectar consumers (Fig. 5), challenging these
animal pursuers in five dimensions instead of the theoreti-
cally required one dimension. Additionally, by computing
the minimum number of dimensions involved in the inter-
actions of empirical systems, we can inform mechanistic
models about the minimum number of trait dimensions that
must be employed to generate realistic ecological networks.

Rock–paper–scissors needs at least two dimensions

The success of the nectarivory pursuers at the empirical
plant–animal system in Kennedy (1978) could minimally
arise by interactions in one trait dimension. However, one
dimension is not sufficient to explain mechanistically the
outcomes of an intransitive network of outcomes between
three species, such as the cyclic spatial replacement of ma-
rine invertebrates studied by Jackson & Buss (1975): ecto-
proct species Stylopoma spongites (player A) replaces sponge
species Tenaciella sp. (player B), which in turn replaces
sponge species Toxemna sp. (player C), which in turn re-
places the ectoproct species player A (Fig. 6).

It is impossible to explain the observed focal goal outcomes
in this unipartite graph with interactions via a unidimen-
sional interaction mode. The pair of power–toughness traits
for the single subgoal must satisfy a system of six inequalities
for three failures and three successes. For the successful re-
placements, the power of a winning pursuer must be greater
than the toughness of a defeated attracter. For the fail-
ures, the power of a losing pursuer must be less than or
equal to the toughness of an undefeated attracter. This
system of six linear inequalities creates a cyclic sequence of
ever-increasing power–toughness scores (impossible attempt
in Fig. 6). For example, the single subgoal in the unidi-
mensional mode could be destructive overgrowth, with the
offensive and defensive heights of an encrusting invertebrate
X taken respectively as power (PX) and toughness (TX)
subgoal performance traits. If we arrange appropriately the
three successes and three failures, we have a cycle of ever-
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increasing, alternating offensive–defensive heights. Initially
setting the offensive height of player A to one, PA = 1 in
arbitrary units of integer length, then the cyclic relation
would be: PA = 1 ≤ TC = 1 < PB = 2 ≤ TA = 2 < PC =
3 ≤ TB = 3 < PA = 4. This is impossible to satisfy, since
it returns to PA requiring a value larger than the initial
offensive height.

Our framework provides two alternative minimal mech-
anistic explanations for the emergence of a rock–paper–
scissors system. First, we can find solutions for two pairs of
power–toughness traits if we add a second dimension in the
same mode (e.g. requiring non-destructive overgrowth AND
destruction of rival underneath; minimal explanation I in
Fig. 6). We explain the focal goal failure of players A and B
as failure in the first dimension (e.g. overgrowth), and the
failure of C as failure in the second (e.g. destruction of rival,
even if C can overgrow B). Second, we can find solutions
for two pairs of power–toughness traits if we add a second
dimension in a new unidimensional mode (e.g. requiring
destructive overgrowth OR elimination via allelopathy; min-
imal explanation II in Fig. 6). In that case, we explain
the success of A and B as success via the first mode of
destructive overgrowth, and the success of C as success via
the second mode of allelochemical elimination. Minimal
explanation II is described by Jackson & Buss (1975) for
this cryptic reef system: ectoproct player A replaces via
overgrowth sponge player B, sponge player B replaces via
overgrowth sponge player C, but ectoproct player A does
not replace sponge player C via overgrowth as well; instead,
ectoproct player A is replaced by sponge player C via toxic
effects. Hence, our framework can provide alternative mini-
mal mechanistic explanations for intransitive cycles of three
or more players.

Solving inequalities for the minimum dimensionality

As we illustrated with the rock–paper–scissors example (Fig.
6), systems might require more than one dimension for the
mechanistic explanation of their outcomes. We showed that
one method to find the minimum number of dimensions is
by attempting to solve a system of linear inequalities. If the
system of linear inequalities is impossible, a simple strategy
is to increase by one the integer number of dimensions d,
and retry. The minimum d ≥ 1 for a feasible system of
inequalities is our minimum mechanistic dimensionality. In
the example of Fig. 6, there were two minimal explanations:
another dimension belonging to the same mode (minimal
explanation I); and another dimension belonging to a new
unidimensional mode (minimal explanation II). We will
focus on these two extreme explanations, although there
could be intermediate minimal interaction forms for more
than two dimensions.

Under minimal explanation I (e.g. Fig. 6), the d dimen-
sions must be involved in the same mode. On one hand, an
observed focal goal success of pursuer A against attracter B
must be the result of success in all subgoals (e.g. a successful
parasite has overcome all the host defences). Specifically, the
power of pursuer A in any dimension i, PA,i ≥ 0, must be
greater than the toughness of attracter B in that dimension,
TB,i ≥ 0: PA,i > TB,i. Since success might require more
than the marginal superiority of the pursuer’s power (e.g.
for explaining weighted subgoal successes with power supe-
riority proportional to the subgoal success weight), we can
add a superiority threshold, tA,B,i > 0, making the subgoal

success requirement PA,i ≥ TB,i+tA,B,i. On the other hand,
an observed focal goal failure of pursuer A against attracter
B must be the result of failure in at least one subgoal (e.g.
a parasite fails against at least one host defence). We can
use a binary variable as an indicator of failure in dimension
i, fA,B,i (Williams, 2013). If fA,B,i = 1, then pursuer A
fails against attracter B in subgoal dimension i; otherwise,
fA,B,i = 0, a subgoal success. The demand for a failure
in at least one dimension i can be formulated with the lin-
ear inequality

∑d
i=1 fA,B,i ≥ 1. Finally, we include bounds

for the power–toughness differences (Williams, 2013): the
sufficiently negative lower bound of the pursuer’s power
inferiority in case of subgoal failure, m; and the sufficiently
positive upper bound of the pursuer’s power superiority in
case of subgoal success, M . Thus, for an observed focal goal
failure, the following couple of inequalities must be satisfied
in any dimension i:

PA,i + MfA,B,i ≤ TB,i + M, (1)

PA,i −mfA,B,i ≥ TB,i + tA,B,i. (2)

The extra inequality
∑d

i=1 fA,B,i ≥ 1 forces at least one of
the indicator variables to equal one, i.e. failure in at least
one subgoal. In the case of a subgoal failure in dimension
i, fA,B,i = 1, Inequality 1 is the subgoal failure require-
ment, and Inequality 2 is the lower bound for the pursuer’s
power inferiority. In case of a subgoal success, fA,B,i = 0,
Inequality 1 gives the upper bound for the pursuer’s power
superiority, and Inequality 2 becomes a success requirement.

Under minimal explanation II (e.g. Fig. 6), each one of the
d dimensions must be involved in a different unidimensional
mode. On one hand, an observed focal goal failure of any
pursuer A against any attracter B must be the result of
failure in all d modes, PA,i ≤ TB,i in any mode i (e.g.
a parasite cannot invade via any of the alternative host
entrances). On the other hand, an observed focal goal
success of pursuer A against attracter B must come from
success via at least one mode (e.g. a parasite successfully
invaded via at least one host entrance). We now use a
binary variable to indicate success via mode i, sA,B,i. Given
the same bounds as in minimal explanation I, the following
couple of inequalities must be satisfied in any mode i:

PA,i + msA,B,i ≥ TB,i + tA,B,i + m, (3)

PA,i −MsA,B,i ≤ TB,i. (4)

With the extra inequality
∑d

i=1 sA,B,i ≥ 1, we force at least
one of the indicator variables to equal one, i.e. success via
at least one mode.

A complete system of linear inequalities incorporates all
focal goal successes and failures of all possible pursuer–
attracter pairs (see Appendix S1 in the Supporting Informa-
tion for examples of complete systems of linear inequalities
under minimal explanations I and II). Such systems of linear
inequalities, with continuous traits and integer indicator
variables, can be formulated and solved as mixed integer
programming problems (Williams, 2013).

Minimum dimensionality of empirical systems

We applied the linear inequalities method to 658 empiri-
cal systems, covering six different types of ecological net-
works: animal social networks, food webs with basal species
excluded, basal species–consumers, plant–pollinator, host–
parasite, and seed dispersal networks. Considering a single
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Figure 7: Minimum mechanistic dimensionality of 658 empirical systems. Each shaded cell shows the frequency of systems
having the specific pair of values in our two minimum dimensionalities, that is: alternative modes of one dimension each
(x-axis), and concurrent dimensions in a single interaction mode (y-axis). One focal goal was underlying each empirical system:
(a) animal dominance in unipartite graphs (size range 6–31 individuals); (b) consumption of non-basal species in unipartite
graphs (size range 6–57 species, basal species excluded from the original food webs); (c) consumption of basal species from
consumers exclusively feeding on them in the same original food webs of (b), in bipartite graphs (size range 11–91 species);
(d) plant biotic pollination in bipartite graphs (size range 8–114 species); (e) ectoparasitism of small mammals in bipartite
graphs (size range 8–92 species); and (f) plant seed dispersal in bipartite graphs (size range 6–86 species). Parameters in the
linear inequalities method for all systems of linear inequalities: m = −200; M = 200; tA,B,i = 1, for all pairs of pursuer A
with attracter B, in any dimension i. See Appendix S1 for methods, and Table S1 for empirical network sources, references,
characteristics, and raw data for the plots.

focal goal underlying each system, and assuming adequate
sampling effort (e.g. no focal goal failures due to rarity)
we asked three questions about our minimum mechanistic
dimensionality: (1) Is it higher under the assumption of alter-
native unidimensional modes, compared to the assumption
of a single multidimensional mode? (2) Is it higher with goal
failures included instead of excluded? (3) Is it higher than
the phenomenological dimensionality developed by Eklöf
et al. (2013)? Finding our minimum dimensionality higher
for any of the three questions means that the minimum
number of traits involved is underestimated when ignoring
any of the three corresponding framework concepts: (1) the
alternative interaction modes; (2) the trait-mediated goal
failures; and (3) the mechanistic description of interactions.
Our linear inequalities method incorporates to the system
of linear inequalities the power–toughness constraints from
all focal goal successes and failures of a network. Hence,
it provides a lower bound to the number of dimensions for
reproducing mechanistically all outcomes of a network under
our framework. Any underestimation of the lower bound
can therefore prevent network models from mechanistically
generating or predicting ecological networks at the level of
the individual interaction outcomes (Petchey et al., 2008;
Vázquez et al., 2009b; Olito & Fox, 2015).

For this analysis, we computed five minimum dimension-

alities in each system (see Appendix S1 for methods). Four
of the dimensionalities were based on our framework, and
the fifth was the phenomenological dimensionality of Eklöf
et al. (2013). The systems of linear inequalities for our four
minimum mechanistic dimensionalities were formulated and
solved with the Gurobi Optimizer (Gurobi Optimization
and Inc., 2017) as mixed integer programming problems
(Williams, 2013). We computed the fifth dimensionality
with C code (Kernighan & Ritchie, 1978) provided in the
Supporting Information of Eklöf et al. (2013). Sources, refer-
ences, characteristics, and the five minimum dimensionalities
of each empirical system for Fig. 7 and Fig. 8 are provided
in Table S1.

For the first question, the minimum mechanistic dimen-
sionality was generally higher under the alternative modes
explanation, shown by the overall pattern of the two min-
imum mechanistic dimensionalities (Fig. 7). The dimen-
sionality assuming alternative modes (x-axes in Fig. 7)
increased faster than the dimensionality assuming a single
interaction mode (y-axes), especially in the systems of non-
basal consumption, biotic pollination, ectoparasitism, and
seed dispersal (Fig. 7b, d–f). 54% of the empirical systems
had higher dimensionality assuming alternative modes, with
only 7% of the systems having higher unimodal dimension-
ality (Fig. 8a).
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Figure 8: Three minimum dimensionality comparisons in the
658 empirical systems of our dataset (Fig. 7). For each em-
pirical network, we calculated the ratio of: (a) our minimum
mechanistic dimensionality under minimal explanation II
(alternative unidimensional modes), to our minimum mecha-
nistic dimensionality under minimal explanation I (a single
multidimensional mode); (b) our minimum mechanistic di-
mensionality under minimal explanation II, to the same
dimensionality with the failures excluded from the system of
linear inequalities; and (c) our minimum mechanistic dimen-
sionality under minimal explanation I, to the comparable
minimum phenomenological dimensionality of Eklöf et al.
(2013). Violin plots show the normalised distributions of
the dimensionality ratio for the systems of each type (focal
goal). The intercept of the dotted horizontal lines equals one.
See Appendix S1 for methods, and Table S1 for empirical
network sources, references, characteristics, and raw data
for the plots.

For the second question, 92% of the empirical systems
had higher minimum dimensionality with goals failures in-
cluded instead of excluded (Fig. 8b). For this question, we
compared our minimum multimodal dimensionality with
the same dimensionality but with goal failure inequalities
excluded from the linear inequalities system (Inequality 4
for subgoal failure requirements in the case of an otherwise
focal goal success via at least one mode, and the subgoal
failure requirements via all modes in the case of a focal goal
failure). The minimum dimensionality with goal failures
excluded always equals one because all pursuers can have
power greater than toughness in one dimension, hence ex-
plaining any structure of only observed successes unimodally.
We further restricted the formulation by requiring pursuers
and attracters to compete over one trait per dimension,
instead of the default power–toughness pair. In that way,
the unipartite systems of animal dominance and non-basal
consumption could require more than one dimension with
failures excluded, but again the minimum dimensionality
of bipartite systems is always equal to one. Even after the
restriction to common trait competition, 84% of the uni-
partite systems had higher minimum dimensionality with

failures included rather than excluded.
For the third question, 80% of the empirical systems had

higher minimum mechanistic dimensionality compared to
the phenomenological dimensionality of Eklöf et al. (2013).
We used our minimum dimensionality under the assumption
of a single mode (minimal explanation I), which is compa-
rable to the niche approach of Eklöf et al. (2013). Only
6% of the unipartite systems of dominance and non-basal
consumption had higher minimum dimensionality under
the phenomenological approach (Fig. 8c), and none of the
bipartite systems had higher minimum phenomenological
dimensionality (with 95% of them having higher minimum
mechanistic dimensionality).

DISCUSSION

We introduced a novel framework describing how interac-
tion modes and traits of individuals contribute to success or
failure in direct biotic interactions, organised in three stages:
(1) determination of focal goals that appear to direct the in-
teractions; (2) hierarchical decomposition of the focal goals
in strategies (modes) of subgoals for success; and (3) expla-
nation of the subgoal outcomes by the pairwise comparison
of traits. Each stage has a main corresponding consequence:
(1) a focal goal failure is an outcome of interaction; (2) there
can be alternative modes for focal goal success; and (3) the
inequality rule can handle difference, and matching traits—
after reformulating them to difference traits—as described
below. We thereafter discuss the plausibility of the stages
and their conceptual consequences.

The foundational concept of the framework is the ‘goal’,
and we explicitly incorporate failure to obtain goals. The
‘focal goal success’ outcomes in our framework are the ‘in-
teractions’ typically described in the literature (Vázquez
et al., 2009a; Poisot et al., 2015; Bartomeus et al., 2016);
and our ‘focal goal failure’ outcomes are synonymous to the
‘forbidden links’ or ‘forbidden interactions’ of some authors
(Jordano et al., 2003; Morales-Castilla et al., 2015). Under
our framework, players interact given their mere inclusion
in the study system, even if they never actually meet. Com-
monly, behavioural studies employ a few predictor traits
for the explanation of only the observed dominance events
in a system (Chase & Seitz, 2011), i.e. explanation of only
the focal goal successes. In contrast, we found that three
to six pairs of competing traits must be involved in several
dominance systems (Fig. 7a). For example, in the elephant
family named ‘AA’ in Archie et al. (2006), almost all ob-
served dominance events are towards younger elephants, and
the authors conclude the system is a unidimensional (age-
ordered) dominance hierarchy based only on the successes,
in agreement with our result of one required dimension
when goal failures are excluded (Fig. 8b). Our minimum
mechanistic dimensionality, explicitly incorporating focal
goal failures, suggests three dimensions for this system un-
der both minimal explanations, because there are several
older–younger pairs where no dominance or aggression was
observed, i.e. focal goal failures unexplained by Archie et al.
(2006). In other words, our framework predicts mechanisms
preventing these older elephants from dominating the spe-
cific younger family members. Most elephants dominated
only younger members of their matriline, and of two specific
matrilines (Archie et al., 2006). These two preferences are
candidates for the two extra dimensions that we expect
under our framework, which are lost when ignoring focal
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goal failures.

A potential issue in the second framework stage (mapping
the interactions to a standardised form) is the seemingly
arbitrary creation of the goal hierarchy. Our goal hierar-
chy concept comes from Wainwright’s ‘hierarchical nature
of performance’ (Wainwright, 2007). Higher performance
breaks down to lower level performance subtraits, breaking
down further to morphological, physiological, behavioural,
and phenological performance subtraits. For example, a
phage’s higher performance in exploiting a bacterium de-
pends on its ability to attach on a bacterium, which depends
on the phage’s possession of tail proteins able to bind to
specific bacterial receptors (Dy et al., 2014). In each level,
performance corresponds to a task, function, goal in our
terms (e.g. ‘performance in exploiting a bacterium’). Conse-
quently, there must be a correspondence between the traits
and subtraits of a performance trait hierarchy, and the goals
and subgoals of a goal hierarchy. Studied traits are chosen
based on the question, the biological level of interest, and
the methods and resources at hand (Wagner, 2001). The
corresponding goals and subgoals can be chosen similarly,
for the creation of the underlying goal hierarchy.

With the conversion of the goal hierarchy to the interac-
tion form, we were able to incorporate explicitly the fea-
ture of alternative interaction modes observed empirically
(Fig. 1b). In previous theoretical trait-based works, an
exploiter has to overcome all the barriers or defences of a
potential resource to consume or parasitise (Santamaŕıa &
Rodŕıguez-Gironés, 2007; Gilman et al., 2012; Débarre et al.,
2014; Speed et al., 2015). Other theoretical works adopt
one of the four principal versions of the ‘ecological niche’
concept (Schoener, 1989), i.e. its ‘resource-utilisation’ ap-
proach (MacArthur & Levins, 1967). In the niche approach,
the niche dimensions act in conjunction to determine the
characteristics of the exploited resources (Stouffer et al.,
2006; Allesina et al., 2008; Eklöf et al., 2013). The ‘mode’
in our framework is equivalent to these two approaches,
since a pursuer’s performance must be sufficiently high in
all the subgoals of a mode. Based on this equivalence, we
found that our minimum mechanistic dimensionality was
frequently higher than the phenomenological dimensionality
in the niche approach of Eklöf et al. (2013) (Fig. 8c). Thus,
we showed that a phenomenological approach assuming a
single mode can frequently underestimate the minimum di-
mensionality of ecological networks. With our generalisation
to alternative modes, we furthermore showed that minimum
dimensionality can be underestimated even mechanistically
under the assumption of a single instead of multiple interac-
tion modes (Fig. 8a). In general, our framework introduces
the possibility of alternative explanations for the outcomes
in a system depending on how modes are assumed to be
involved in the interactions. As in Fig. 6, this idea of al-
ternative assumptions and explanations could offer a new
mechanistic perspective in the study of intransitive networks
(Durrett & Levin, 1997; Frean & Abraham, 2001; Czárán
et al., 2002; Kerr et al., 2002; Reichenbach et al., 2007;
Szolnoki et al., 2014; Kelsic et al., 2015).

For the third framework stage (of explaining the subgoal
outcomes), we adopted a phenotype space instead of a niche
space approach. One problem with the niche approach is
the loss of mechanistic information (as shown in Fig. 8c),
when dimensions originate phenomenologically, or abstractly
from multiple trait-axes ordination (Eklöf et al., 2013). For

example, body size is a trait with high explanatory power
in food webs (Stouffer et al., 2011). However, more traits
allometrically scaling with body size are mechanistically
involved in trophic interactions (Woodward et al., 2005).
Even mechanistically, realised niches commonly span a range
of the resource gradient (MacArthur & Levins, 1967; Levins,
1968), hiding two traits per niche dimension (one for each
extreme of the niche range). For example, with the maxi-
mum of the prey size range limited by the predator’s mouth
gape, the niche range minimum must be limited by a second
predator trait, like the predator’s inability to capture or
handle smaller prey. Another problem is that exploiters
might have no place in the niche space because it is cre-
ated by trait dimensions of the resources (MacArthur &
Levins, 1967; Schoener, 1989), and resource traits can be
irrelevant for exploiters (e.g. plant traits for herbivores).
Our framework takes into account the traits of both inter-
acting players simultaneously, and a dimension is simply a
challenged trait-axis in the phenotype space of pursuers or
attracters. Apart from its simplicity, the established pheno-
type space approach (Dietrich & Skipper Jr., 2012; Pigliucci,
2013) can be adopted to study, for instance, trade-offs in
traits used in different subgoals, interaction modes, or focal
goals (Arnold, 1983; Ghalambor et al., 2003; Fontaine et al.,
2011; Shoval et al., 2012; Pilosof et al., 2017).

The inequality rule at the third framework stage is ap-
plicable to various types of traits. Continuous-valued quan-
titative traits can be modelled directly (e.g. the animal
reaching nectar in Fig. 4). Comparison of traits with or-
dered levels (binary, semiquantitative, and quantitative but
discontinuous, Legendre & Legendre, 1998) can be mod-
elled with appropriate scaling (e.g. degree of egg similarity
versus degree of discrimination ability for the bird brood
parasitism example in Fig. 4). Categorical qualitative traits
can be redefined to binary traits (e.g. the prey qualitative
trait with categories ‘diurnal’ or ‘nocturnal’ was redefined
to a binary trait for presence–absence of activity during the
day in Fig. 4). Moreover, the inequality rule can model
both cases of competing traits (Abrams, 2000; Santamaŕıa
& Rodŕıguez-Gironés, 2007; Nuismer et al., 2013): difference
traits (also called barrier traits, or unidirectional axes of
vulnerability), and matching traits (complementarity traits,
or bidirectional axes of vulnerability). The natural case in
our framework is the difference traits, since larger power–
toughness difference contributes to success. However, if we
state the subgoals appropriately, matching traits can be
reformulated as difference traits. In the brood parasitism
example of Fig. 4, we could have compared the eggs of para-
site and host as matching traits, because parasite eggs more
similar to the host eggs contribute to parasitism success.
Instead, we compared as difference traits the similarity of
parasite eggs to the ability of the host to recognise them.
Another example is the difference traits formulation for the
temporal match of predator and prey during the day (Fig.
4).

Hence, the three framework stages and their main con-
ceptual consequences exhibit generality and plausibility:
from the focal goals and the trait-mediated failures, to the
goal hierarchy and the alternative interaction modes, to the
pursuer–attracter phenotype spaces and the modelling of
different types of competing traits.
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CONCLUSION AND FUTURE DIRECTIONS

By incorporating all four features of the empirical descrip-
tion of interactions explicitly (Fig. 1), our framework can
support more comprehensive and mechanistic trait-based
approaches to proximate and evolutionary questions. For
proximate questions, it encourages the systematic descrip-
tion of empirical systems as networks, in a standardised and
hence comparable form. Theoretical investigations could
benefit from the novel conceptual consequences, e.g. in-
cluding alternative interaction modes in trait-based models
of animal social network dynamics (Pinter-Wollman et al.,
2014). For evolutionary questions, it can inspire new hy-
potheses, e.g. about the reasons for redundancy in strategies,
defences, or performance in empirical systems, compared to
alternative minimal systems from our theoretical application
of minimum mechanistic dimensionality.

We introduced this framework assuming constant perfor-
mance, determinism in the power–toughness competition,
and qualitative (success–failure) trait competition outcomes.
In future extensions, power and toughness performance could
be variable, e.g. function of climatic or other environmental
variables (Ockendon et al., 2014; Poisot et al., 2015), goal
success could follow probabilistically (Poisot et al., 2016),
e.g. as an increasing function of the power–toughness differ-
ence, and quantitative outcomes in weighted networks could
be explained by power–toughness differences. Assuming
adequate sampling effort, our mechanistic description has
not considered in this first account the effects of: interac-
tions on individual fitness or population growth (Burkholder,
1952; Hamilton, 1964); phylogenetic relationship (Rohr &
Bascompte, 2014; Eklöf & Stouffer, 2016); and abundance
(Vázquez & Aizen, 2003; Vázquez et al., 2009a; Cagnolo
et al., 2011). However, it can dictate how players interact
mechanistically, for example: in game theoretical models
with interaction payoffs (Archetti et al., 2011); in coevolu-
tionary models with phylogenetic history (Manceau et al.,
2017); and in spatial models with interacting dispersers or
foragers, for the effect of neutrality on community assembly
or invasion (Morales & Vázquez, 2008). We hope further
development and testing of this framework will open new
research paths, and give fresh insight into previous work
dealing with ecological systems in a trait-based approach.
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Brown, L., Dormann, C. F., Edwards, F., Figueroa, D.,
Jacob, U., Jones, J. I., Lauridsen, R. B., Ledger, M. E.,
Lewis, H. M., Olesen, J. M., van Veen, F. J. F., Warren,
P. H. & Woodward, G. (2009). Ecological networks –
beyond food webs. Journal of Animal Ecology, 78, 253–
269.

Jackson, J. B. C. & Buss, L. (1975). Allelopathy and spatial
competition among coral reef invertebrates. Proceedings
of the National Academy of Sciences, 72, 5160–5163.

Jordano, P., Bascompte, J. & Olesen, J. M. (2003). Invariant
properties in coevolutionary networks of plant–animal
interactions. Ecology Letters, 6, 69–81.

Kelsic, E. D., Zhao, J., Vetsigian, K. & Kishony, R. (2015).
Counteraction of antibiotic production and degradation
stabilizes microbial communities. Nature, 521, 516–519.

Kennedy, H. (1978). Systematics and pollination of the
”closed-flowered” species of Calathea (Marantaceae). Uni-
versity of California Publications in Botany, 71, 1–90.

Kernighan, B. W. & Ritchie, D. M. (1978). The C pro-
gramming language. Prentice Hall, Englewood Cliffs, NJ,
USA.

Kerr, B., Riley, M. A., Feldman, M. W. & Bohannan, B.
J. M. (2002). Local dispersal promotes biodiversity in a
real-life game of rock–paper–scissors. Nature, 418, 171–
174.

Kiørboe, T. (2011). How zooplankton feed: mechanisms,
traits and trade-offs. Biological Reviews, 86, 311–339.
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multilayer nature of ecological networks. Nature Ecology
& Evolution, 1, 0101.

Pinter-Wollman, N., Hobson, E. A., Smith, J. E., Edelman,
A. J., Shizuka, D., de Silva, S., Waters, J. S., Prager,
S. D., Sasaki, T., Wittemyer, G., Fewell, J. & McDonald,
D. B. (2014). The dynamics of animal social networks: an-
alytical, conceptual, and theoretical advances. Behavioral
Ecology, 25, 242–255.

Poisot, T., Cirtwill, A. R., Cazelles, K., Gravel, D., Fortin,
M.-J. & Stouffer, D. B. (2016). The structure of proba-
bilistic networks. Methods in Ecology and Evolution, 7,
303–312.

Poisot, T., Stouffer, D. B. & Gravel, D. (2015). Beyond
species: why ecological interaction networks vary through
space and time. Oikos, 124, 243–251.

Reichenbach, T., Mobilia, M. & Frey, E. (2007). Mobility pro-
motes and jeopardizes biodiversity in rock–paper–scissors
games. Nature, 448, 1046–1049.

Rohr, R. P. & Bascompte, J. (2014). Components of phylo-
genetic signal in antagonistic and mutualistic networks.
The American Naturalist, 184, 556–564.

Ryan, M. J. & Cummings, M. E. (2013). Perceptual biases
and mate choice. Annual Review of Ecology, Evolution,
and Systematics, 44, 437–459.

Sanders, J. G., Powell, S., Kronauer, D. J. C., Vasconcelos,
H. L., Frederickson, M. E. & Pierce, N. E. (2014). Stability
and phylogenetic correlation in gut microbiota: lessons
from ants and apes. Molecular Ecology, 23, 1268–1283.
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