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Abstract  

Information that regulates gene expression is encoded throughout each gene but if different regulatory 

regions can be understood in isolation, or if they interact, is unknown. Here we measure mRNA levels 

for 10,000 open reading frames (ORFs) transcribed from either an inducible or constitutive promoter. 

We find that the strength of co-translational regulation on mRNA levels is determined by promoter 

architecture. Using a novel computational-genetic screen of 6402 RNA-seq experiments we identify 

the RNA helicase Dbp2 as the mechanism by which co-translational regulation is reduced specifically 

for inducible promoters. Finally, we find that for constitutive genes, but not inducible genes, most of 

the information encoding regulation of mRNA levels in response to changes in growth rate is encoded 

in the ORF and not in the promoter. Thus the ORF sequence is a major regulator of gene expression, 

and a non-linear interaction between promoters and ORFs determines mRNA levels.  

 

Introduction 

Precise control of gene expression is essential (Skotheim et al. 2008) and the way this 

regulatory information is encoded in enhancers, promoters, 5’ untranslated regions (UTRs) and other 

regulatory regions throughout the gene sequence has been well characterized (Shalem et al. 2013; 

Keren et al. 2013; Dvir et al. 2013; Kudla et al. 2009; Shalem et al. 2015). Steady-state mRNA levels 

are determined by the combination of synthesis and decay rates. It was generally assumed that 

promoters mostly determine synthesis rates, while sequences in the 5’UTR, open reading frame 

(ORF) and 3’UTR determine mRNA translation and degradation rates. While there is now evidence 

that synthesis, decay and translation are tightly coupled,there is no clear delineation of regulatory 

mechanisms within different parts of a gene and the precise mechanisms that link the promoter to 
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cytoplasmic processes remain unknown (Haimovich et al. 2013; Wolffe and Meric 1996; Ladomery 

1997). 

 

As the location that regulates the initiation of transcription, the promoter is a reasonable place 

to start thinking about mRNA expression. In yeast, genes can broadly be split into two classes based 

on promoter architecture, those with a consensus and evolutionarily conserved TATA box, and those 

without one (TATA-less). TATA-binding protein (TBP) binds TATA+ promoters at the TATA box, 

but TBP also binds TATA-less promoters at a TATA-like sequence that is one or two mismatches 

away from the TATA consensus. TATA-less promoters are TATA-like. While recent work suggests 

that this distinction is not quite binary, multiple lines of evidence have shown that, on many different 

levels, genes which lack a consensus evolutionarily conserved TATA box are fundamentally different 

from the TATA+ class (Taatjes 2017; Kubik et al. 2017). Genes lacking a TATA box are depleted of 

nucleosomes around the transcription start site (TSS) and exhibit lower transcriptional plasticity 

(Tirosh and Barkai 2008; Rhee and Pugh 2012).  For simplicity, we will generally refer to the TATA+ 

class as constitutive and the TATA-like (TATA-less) class as inducible.  

 

Features within the open reading frame itself, such as codon usage, correlate with steady-state 

mRNA levels (Akashi 2003; Neymotin et al. 2016, 2014). There are two proposed reasons for this 

correlation: natural selection for specific codon usage and an active role in codon usage in regulating 

mRNA levels. In first, codon usage is shaped by ribosome dynamics and tRNA pools, with selection 

for accurate and fast translation, especially among abundant proteins (Plotkin and Kudla 2011). In the 

second, codon usage directly affects mRNA levels (Chen et al. 2017), likely through translation-

coupled decay. There is ample evidence for both models, suggesting a model in which both the act of 

translation and selection on codon usage are together responsible for the observed correlation between 

codon usage and gene expression among native genes.   

 

In addition to effects from codon usage, the stability of transcripts is determined by multiple 

other processes, one of which is nonsense mediated decay (NMD). Initially identified as a quality 
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control mechanism for transcripts that contain an aberrant premature termination codon (PTC) within 

the ORF, there is now abundant evidence that NMD affects the expression of between 5% and  20% 

of native transcripts in yeast and mammalian cells (Behm-Ansmant et al. 2007; Kervestin and 

Jacobson 2012; He and Jacobson 2015; Tani et al. 2012). The precise mechanism is still unclear, but 

three models have been proposed: the Exon Junction Complex (EJC) model, the Upf1 3′-UTR sensing 

and potentiation model, and the faux 3′-UTR model (He and Jacobson 2015; Le Hir et al. 2000; 

Amrani et al. 2004; Hogg and Goff 2010). Previous observations suggest that the EJC model is the 

main source for NMD in mammals, but yeast mainly trigger NMD through the other two mechanisms 

(Lindeboom et al. 2016). The latter have a common denominator: long 3’UTRs, which result from 

PTCs but can also be found in native mRNAs. Thus, 3’UTR length encodes regulatory information in 

a way that depends on active translation. 

 

 To further complicate the relationship between sequence and expression, some transcription 

factors (TFs) influence mRNA stability and localization (Braun et al. 2015; Bregman et al. 2011; Zid 

and O’Shea 2014). Thus, in addition to affecting mRNA synthesis rates, promoters play a role in other 

parts in the life of an mRNA. However, three major questions remain: by which mechanisms do 

elements in the promoter influence the lifecycle of the mRNA, where in the gene are different types of 

regulatory information encoded, and are there genetic interactions between discrete regulatory 

regions?  

 

 Promoters influence mRNA levels. Coding sequences influence mRNA levels. To determine 

if there is a genetic interaction between these two spatially distinct regulatory regions, we generated a 

pooled library of over 10,000 yeast genomic DNA fragments cloned into plasmids containing either 

inducible TATA box containing GALL promoter or the constitutive TATA-less RPL4A promoter.  

This library exhibits over four orders of magnitude of expression, most of which can be predicted 

using a sequence-feature based mathematical model. Intriguingly, in both the library and in native 

transcripts, co-translational features such as codon usage more strongly influence mRNA levels when 

expression is driven by a constitutive promoter. To identify the molecular mechanism for this 
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difference in co-translational regulation between promoter architectures we performed a 

computational genetic screen across 6402 RNA-seq experiments, and found that the RNA helicase 

Dbp2 specifically insulating transcripts of TATA+, but not TATA-less promoters from the effects of 

co-translational regulation on steady-state mRNA levels. Finally, we used RNA-seq and promoter-

YFP expression data to show that, specifically for TATA-less promoters, the ORF contains more 

regulatory information than the promoter. 

 

Results 

ORF-encoded sequence features play an active role in regulating gene expression in 

native transcripts 

 To determine the ability of coding sequences to regulate gene expression we developed a 

method to decouple native genomic sequences from their 5’ and 3’ regulatory context (Fig. 1A, 

Supplemental Fig. 1). We digested the yeast genome with four restriction enzymes and inserted the 

resulting random genomic DNA fragments into a plasmid containing the inducible GALL promoter, a 

start codon, the ClaI restriction site and three staggered stop codons (Supplemental Fig. 1A). This 

generated a pool of over 10,000 plasmids, each of which contains a single random fragment of the 

yeast genome. The cloned random gDNA fragments derive from the entire yeast genome and 

therefore contain parts of native coding sequences as well as untranslated regions (UTRs), promoters, 

transcription terminators and other chromosomal features (Supplemental Fig. 1B, Supplemental 

Table 1). We transformed the plasmids into yeast and measured expression of each transcript as the 

ratio between RNA and DNA abundance (Fig. 1B). In spite of having the same promoter, 5’ 

untranslated region and transcription terminator, the expression of the gDNA fragments varies of over 

four orders of magnitude (Fig. 1C, Supplemental Fig. 2). To determine the sources of this regulation 

and to quantify the contribution of individual sequence features to changes in expression, we 

computed over 4000 sequence features for each insert, such as dimer and trimer nucleotide counts, 

GC content, codon bias and the presence of premature stop codons (see methods). We fit a linear 
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model with a minimal number of predictive features to the experimental data and found that a model 

with seven features can accurately predict expression (R2=0.64 for all inserts, and R2=0.61 for inserts 

with no premature stop codon) (Fig. 1D, Fig. 2B, Supplemental Fig. 3), suggesting that a small 

number of ORF-encoded sequence features generate a large amount of the variation in gene 

expression. To determine if ORF-encoded sequence features regulate expression in native genes we 

used the same model, without taking into account 3’UTR length to predict expression of native genes 

from their coding sequence (Fig. 1E).  

 

The ability of the ORF-feature model to predict expression of native genes could be because 

coding sequences play an active regulatory role, or it could be due to co-evolution and selection for 

certain sequence properties in genes whose expression levels are determined by more stereotypical 

regulatory regions such as the promoter. To differentiate correlation from causation we took 

advantage of data in which the strength of 859 promoters driving YFP was measured (Keren et al. 

2013). We find that ORF features are equally good as promoters in predicting steady-state mRNA 

levels, and that a combined model including both promoter-YFP data and ORF features performs 

significantly better (Fig. 1F). Thus, ORF-encoded sequence features play an active role in regulating 

gene expression in native transcripts.  

 

Co-translational regulation is stronger for mRNAs regulated by TATA-less promoters  

While the majority of experiments that investigated transcriptional, co-translational and post-

translational regulation used inducible promoters (Shalem et al. 2013; Puchta et al. 2016; Meaux et al. 

2008; Shah et al. 2013; Radhakrishnan et al. 2016), most of these promoters are in fact not condition-

specific. Promoters can be roughly divided into two broad categories, those with a TATA box 

(SAGA-dominated and inducible or regulated) and those lacking a conserved TATA box (TFIID-

dominated and constitutive) (Basehoar et al. 2004; Tirosh and Barkai 2008; de Jonge et al. 2016; 

Struhl 1986; Huisinga and Pugh 2004). To determine if ORF-encoded sequence features are 

regulatory for constitutive promoters we built the random gDNA fragment library in a second plasmid 
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in which the regulated TATA box containing GALL promoter was replaced with the equally strong 

constitutive ribosomal RPL4A promoter (Fig 2A, Supplemental Fig. 4). We found that codon bias 

(tRNA Adaptation Index (tAI) (dos Reis et al. 2003)) and 3’UTR length, both of which require active 

translation to be interpreted by the cell (Gardin et al. 2014; Kervestin and Jacobson 2012; Presnyak et 

al. 2015), have more importance in a model trained on RPL4Apr data compared to GALLpr data (Fig. 

2B). Both 3’UTR length and codon bias have a stronger effect on expression when transcription is 

driven by the constitutive RPL4A promoter (Fig. 2C,D, Supplemental Fig. 5).  

 

To determine if this promoter-specific effect of co-translational regulation affects native 

genes we divided promoters into two categories, those with an evolutionarily conserved TATA box 

(inducible) and those without (TATA-less, or constitutive) (Basehoar et al. 2004). To measure the 

effect of NMD separately for each class of transcript we used RNA-seq measurements from a Δupf1 

strain, which is defective in nonsense-mediated-decay (NMD) (Smith et al. 2014). Consistent with the 

gDNA library, native transcripts from TATA-less promoters are affected by NMD in a manner that 

increases with 3’UTR length, while transcripts from promoters with an evolutionarily conserved 

TATA box are unaffected by NMD (Fig. 2E, Supplemental Fig. 6). To determine if the effect of 

codon bias on native genes is stronger for TATA-less promoters we used a linear model to predict 

mRNA levels from either promoter-YFP expression data alone (Keren et al. 2013) or from a model 

that includes both promoter-YFP data and codon bias (tAI (dos Reis et al. 2003)) and measured the 

increase in R2 when including codon bias as a model feature (Fig. 2F). Consistent with results from 

the gDNA library, codon bias is more strongly predictive of mRNA levels for transcripts driven by 

TATA-less promoters (Fig. 2G). These differences are not due to differences in expression, mRNA 

stability or codon bias, since the distribution of mRNA expression, degradation rates and tAI are 

similar between the two classes of genes (Supplemental Fig. 4). To determine if ORF-encoded 

sequence features are more predictive of native expression levels for TATA-less genes, we predicted 

expression from sequence separately for the two classes of genes. ORF features are more predictive of 

expression in TATA-less genes (Fig. 2H,I). In both, for the gDNA library and native genes, co-

translational regulation affects mRNA levels more strongly when expression is driven by TATA-less 
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promoters, suggesting the existence of some mechanism that carries information from the promoter to 

the ribosome.  

 

A genetic screen of 6402 RNA-seq experiments identifies the RNA helicase Dbp2 as 

TATA containing promoter specific insulator damper of co-translational regulation 

 

To identify the molecular mechanism underlying the difference in co-translational regulation 

between TATA and TATA-less promoters we performed a computational genetic screen for mutants 

that alter our ability to predict mRNA levels from promoter-YFP data. We screened 6402 RNA-seq 

experiments, all RNA-seq experiments that have been done in S. cerevisiae (Ziemann et al. 2015), for 

mutants that affect the ability of codon bias to predict expression in a promoter-class-specific manner 

(Fig. 3A). For each of the 6402 experiments we calculated the increase in R2 upon including codon 

bias as a predictive feature. Codon bias has more predictive power for TATA-less genes across 

thousands of RNA-seq experiments (Fig. 3B). We identified a single mutant which significantly 

reduces this difference across multiple biological replicates. Deletion of Dbp2 (Beck et al. 2014) 

increases the effect of codon bias on gene expression specifically for TATA containing genes (Fig. 

3C, Supplemental Fig. 7). Furthermore, DBP2 expression varies across the dataset and this variation 

correlates with the effect of tAI. Conditions and mutants with low DBP2 expression have a higher tAI 

effect on expression of TATA+ but not TATA-less genes (Supplemental Fig. 7A). This suggests that 

Dbp2, a co-transcriptionally loaded RNA helicase (Ma et al. 2016; Cloutier et al. 2012), specifically 

reduces the effect of co-translational regulation on mRNA levels in a promoter-specific manner. 

Interestingly, Dbp2 physically interacts with nucleosomes, Pol-II-associated GTFs , and the ribosome 

(Stark et al. 2006) (Supplemental Fig. 8).  

  

To confirm the results of the screen and to determine if Dbp2 plays a role in other forms of 

co-translational regulation of mRNA levels, such as NMD, we built a set of four synthetic NMD 

reporters (Fig. 3D). Each plasmid contains two fluorescent proteins, mCherry and YFP, with or 
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without a premature termination codon (PTC) in the intervening linker. In the presence of a stop 

codon in the linker, YFP becomes a long 3’UTR and this targets the transcript for NMD (Muhlrad and 

Parker 1999). Each of the two constructs is driven by either a constitutive (RPL4A) or a regulated 

(GALL) promoter. We transformed the plasmids into wild-type, Δupf1 and Δdbp2 yeast and measured 

mCherry and YFP expression (Supplemental Fig. 4). The NMD effect is the ratio of the mCherry 

signal in the noPTC and PTC constructs. In wild-type cells the effect of NMD is stronger in the 

TATA-less RPL4Apr plasmids, consistent with the gDNA library and native genes. Consistent with 

the computational RNA-seq screen, transcripts from the inducible GALL promoter are more strongly 

affected by NMD in a Δdbp2 strain (Fig. 3E). This suggests a model in which Dbp2 mutes the effect 

of codon bias and NMD on mRNA levels specifically for TATA containing promoters.  

 

For TATA-less promoters, growth-rate mediated regulation of expression is 

implemented in the coding sequence, not the promoter  

Why implement regulation in coding sequences? In response to changes in growth rate, cells 

alter the expression of thousands of genes (Brauer et al. 2008; García-Martínez et al. 2016). In yeast, 

expression of translation-related genes is positively correlated with growth rate, while genes 

associated with environmental stress response, respiration and oxidative phosphorylation are 

negatively correlated with growth rate (Fig. 4A, Supplemental Table 2)(Brauer et al. 2008). TATA-

less genes tend to be positively correlated with growth rate, while TATA containing genes are 

negatively correlated (Fisher’s exact test p=10-27, odds ratio = 4.0). To determine if the information 

encoding regulation of expression in response to changes in growth rate is in the promoter, we took 

advantage of a dataset in which promoter-YFP expression data for 859 genes were measured in ten 

different environmental conditions (Keren et al. 2013). For each gene we calculated the slope, how 

promoter-YFP expression changes with growth rate (Fig. 4A), and compared it to the change in 

steady-state mRNA levels upon changes in growth. We find that changes in the mRNA levels of 

constitutive genes (TATA-less) are worse predicted by promoter-YFP data (Fig. 4B). Therefore, for 

TATA-less genes, information encoding growth-rate mediated regulation of expression lies outside of 
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the promoter. To determine if the information that regulates expression with growth rate is encoded in 

the ORF, we asked if ORF encoded sequence features can predict how mRNA levels change as a 

function of growth rate. We find that ORF features predict growth-mediated changes poorly for 

TATA genes and better for TATA-less genes (Fig. 4C). For constitutive genes, there is more 

regulatory information in the ORF than in the promoter (Fig. 4D,E).  

 

Discussion 

 We used a pooled library of random mRNAs under the control of either the TATA+ inducible 

GALL promoter or the TATA-less constitutive RPL4A promoter to identify features inside of 

transcripts that exhibit quantitatively different effects on steady-state mRNA levels as a function of 

promoter architecture. Our observation that codon usage affects mRNA levels when we use fragments 

of the yeast genome shows that naturally existing variation in codon bias among native yeast genes 

directly affects mRNA expression. The fact that our predictions of mRNA levels are not perfect (R2 < 

1) means that there is still much to be understood regarding the exact molecular mechanisms by which 

this occurs. The storage of public data and metadata in a standardized format allowed us to identify 

the mechanism by which the effect of sequences in the open reading frame are modulated by promoter 

architecture. Overall, the better and more quantitative data become, the more clear it is how little in 

gene regulation we truly understand (Cohen 2017).  

 
Genetic screens involving targeted and random mutation in both cis and trans regulatory 

elements have played a major role in defining the machinery that controls gene expression (Struhl 

1995; Sharon et al. 2012). However, the global output of all biomedical research is exponentially 

greater than the ability of any single lab. In the genomic era, naturally existing genetic variation has 

been utilized to understand gene regulation (Rockman and Kruglyak 2006; Lindeboom et al. 2016). In 

this era of publically available data we are rapidly approaching a point at which functional genomic 

data will be available for almost all mutants in a wide variety of conditions. Here we show that 
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publically available expression data can be used to discover molecular mechanisms underlying 

entirely novel types of gene regulation.  

 

How gene expression is regulated was recognized as a problem prior to the identification of 

DNA as the genetic material (Monod 1966) and reviewed in (Monod 1947). Understanding how 

expression levels are encoded in the genome and how genetic variation affects expression has been 

one of the biggest challenges in molecular biology for the past fifty years (Beer and Tavazoie 2004; 

Rockman and Kruglyak 2006). Much of this work has focused on non-coding regions, specifically on 

the ability of transcription factors to bind distinct regulatory motifs in promoters and enhancers. The 

limited work that has been done understanding the regulatory potential of coding sequences has been 

done in an isolated manner, without considering the other regulatory regions of the gene (Kudla et al. 

2009; Puchta et al. 2016; Radhakrishnan et al. 2016). Our results here show that coding sequences 

contain a large amount of regulatory information that affects gene expression, and that this 

information interacts with information in the promoter architecture. Experimental systems and 

computational analyses that treat regulatory units in isolation miss molecular mechanisms that affect 

the expression of thousands of genes.  

 

Why do organisms implement regulation at the level of the ORF? Measurements of steady-

state mRNA levels from cells proliferating at different rates suggested that thousands of genes are 

regulated in response to changes in growth rate in both yeast (Brauer et al. 2008) and mammalian 

cells (Badia et al. in progress). However, promoter activity, as measured by promoter-YFP signal, 

scales with growth rate similarly for most genes, suggesting little or no promoter-specific regulation 

with growth rate (Keren et al. 2013). Here we show that information encoded in the ORF and 

interpreted in a manner that depends on the promoter architecture and on the RNA helicase Dbp2, 

resolves this conflict. Constitutive genes, which are the majority of genes in yeast, are regulated 

mostly by sequences encoded in the ORF. Why? Translation-mediated regulation is less noisy than 

that mediated by transcription factors (Carey et al. 2013). Furthermore, it may be mechanistically 

easier to make coordinated quantitative changes in the mRNA levels of thousands of genes in a post-
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transcriptional manner, compared to through the use of transcription factors. Therefore implementing 

global regulation at the level of the ORF may be a more reliable and efficient means to coordinate 

changes in expression across thousands of genes.  

 

To implement biologically useful regulation via coding sequences, the regulation needs to be 

targeted to some genes and not others. One way is to have large sequence composition differences 

between groups of genes. A second way is to somehow insulate some genes but not others from this 

mechanism of regulation. Dbp2 is well positioned to do the latter. As an RNA helicase it is likely to 

be relatively sequence-neutral compared to many RNA binding proteins. It remains to be identified if 

Dbp2’s helicase property enables regulation based on differences in secondary structure, as was 

recently observed for Dhh1 (Jungfleisch et al. 2017). In addition, Dbp2 associates with chromatin in a 

nascent-RNA dependent manner and is co-transcriptionally loaded onto mRNAs (Cloutier et al. 2012; 

Ma et al. 2016). Dbp2 is required for multiple stages of co-transcriptional mRNP assembly. This 

raises the possibility that Dbp2 specificity is encoded in the promoter via selective loading of Dbp2 

onto certain classes of transcripts, such as those with TATA boxes. This would in turn regulate mRNP 

assembly and nuclear export. Dbp2 co-IPs with RPL2A (ribosomal 60S subunit protein L2A), 

TIF4631 (the translation factor eIF4G) the SEC13 (nuclear pore complex) (Gavin et al. 2002), 

suggesting that Dbp2 may remain bound to the mRNA throughout its lifecycle, directly linking 

transcription initiation with translation.  

 

Methods 

 

Library plasmids construction 

All plasmids are named and described in Supplemental Table 3. To generate the random gDNA 

fragment library we used as a vector backbone the plasmid pRS416 carrying the URA3 selectable 

marker. We cloned into pRS416 the GALL inducible promoter and CYC1 transcriptional terminator, 
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generating P47. The GALL promoter is a version of the GAL1 promoter truncated to remove the two 

most distal Gal4 binding sites, and has approximately 10% of the promoter activity as the fully intact 

GAL1 promoter(Mumberg et al. 1994). We next used Gibson assembly (NEB, E2611S) to insert the 

ATG-ClaI-Stop fragment (Supplemental Fig. 1A). This fragment was comprised of two annealed 

oligonucleotides, 174 and 175 (see  Supplemental Table 4) in 10X Oligo Annealing Buffer (400 µl 

1M Tris pH 8, 80ul 0.5M EDTA pH8, 800ul 2.5M NaCl, 2720 µl DNase/RNase-Free Water) in a 

reaction containing: top and bottom strand DNA oligos (200 µM each), 2 µl of 10X Oligo Annealing 

Buffer and DNase/RNase-Free Water for a total volume of 20 µl. After incubation at 94ºC for 4 

minutes, we allowed the reaction to cool to room temperature for 10 minutes. To obtain the RPL4Apr 

plasmid (P86) we amplified using Phusion polymerase (Thermo Fisher Scientific, F530S) in GC 

buffer the RPL4A promoter from genomic DNA using primers 222 and 223 (Supplemental Table 4) 

and cloned the amplicon via Gibson assembly (NEB, E2611S) into the SacI and XbaI restriction sites 

of plasmid P47.  

 

Library construction 

The random yeast genomic sequences were obtained by cutting 40 µg of isolated genomic 

DNA (MasterPure™ Yeast DNA Purification Kit. Epicentre, MPY80200) from yeast strain FY4, a 

prototrophic S288C strain, for 4 hours at 37 ºC with a combination of 4 restriction enzymes (TaqαI, 

HpaII, MspI and AciI). All restriction enzymes used in this study are from New Englands Biolabs. 

Size selection was performed using a 2.5% agarose gel and purified DNA was ligated into ClaI cut 

and dephosphorylated (rSAP, New Englands Biolabs, M0371S) vector (P47). Ligated products were 

desalted by drop dialysis using 13 mm diameter, Type-VS Millipore membrane (Merck Millipore, 

VSWP01300) and 3 μl were transformed by electroporation using the UltraClone Kit with 10G Elite 

DUO (Lucigen, 60117-1). E. coli transformants were selected on LB medium (0.5% yeast extract, 1% 

NaCl, 15% bactotryptone) supplemented with 100 μg/ml ampicillin as a selection marker. 

 

To obtain the RPL4Apr plasmid library with the same inserts that are present in the GALLpr 

library we amplified with Q5 DNA polymerase reaction mix (NEB, M0491S) the library previously 
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cloned into P47 using primers 345 and 198 (see  Supplemental Table 4). After cutting pRS416-

RPL4Apr (P86 in  Supplemental Table 3) with XbaI and XhoI restriction enzymes we cloned the 

PCR library fragments into pRS416-RPL4Apr via Gibson assembly (NEB, E2611S), obtaining the 

new promoter library that was transformed in E. coli electrocompetent cells (UltraClone Kit with 10G 

Elite DUO. Lucigen, 60117-1) and plated on LB medium (0.5% yeast extract, 1% NaCl, 15% 

bactotryptone) supplemented with 100 μg/ml ampicillin as a selection marker. The constitutive and 

inducible library plasmids were purified using the Nucleobond XtraMidi Plus EF (Machery-Nagel, 

740422.50). 

 

Yeast transformation 

The gDNA libraries cloned into P47 (GALL) and P86 (RPL4A) were transformed into 

BY4741 (Y49) ( Supplemental Table 3) via the lithium acetate method(Gietz and Woods 2006) and 

plated in glucose synthetic complete dropout plates lacking uracil for plasmid selection. In the same 

way, we transformed the GALL inducible library of the yeast native ORF in the mutant strains Y194 

and Y195 ( Supplemental Table 3). After 2 days of growth at 30C we collected all the transformants 

and we resuspended them to OD of 0.5 in synthetic complete dropout plates lacking uracil 

supplemented with 2% galactose as a carbon source in order to get the GALL promoter induction. 

After growing the cells overnight we scraped off the plates and inoculated four 500 ml flasks of the 

same medium to OD of 0.025 as biological replicates. The cultures were grown about 10 hours at 

30°C to reach an exponential phase with an OD of 0.5, where we took 1.5 ml samples in order to 

extract plasmid DNA (MasterPure™ Yeast DNA Purification Kit, Epicentre) and transcribed RNA 

(MasterPure™ Yeast RNA Purification Kit, Epicentre) from all the biological replicas. We pelleted at 

4 ºC and froze every sample at -80 ºC until processing.         

 

NGS sample preparation 

We used a gene specific primer to generate the cDNA from each RNA preparation 

(Supplemental Fig. 1, primer 198 depicted in yellow and see Supplemental Table 4) using the 

ThermoScript RT-PCR System (Life Technologies, 11146-024). With barcoded primers we amplified 
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the second DNA strand and the library plasmids DNA in order to differentiate between replicas and 

sample origin, in this case, DNA and RNA (for details of barcoded primers combination for the 

libraries see Supplemental Table 4 and Supplemental Table 5). We note that because we made 

cDNA using a primer in the CYC1 terminator, any insert that results in transcription termination 

would give little or no mRNA expression in our assay. The PCR was set up as 50 µl reaction of Q5 

DNA polymerase (NEB, M0491S) in the following cycling conditions: 98°C for 30s; 98°C for 10s, 

55-64°C (depending on primer combination for demultiplexing on technical variability and biological 

replicates) for 30s and 72°C for 30s (20 cycles); and 72°C for 2 min. PCR products were purified 

using MinElute PCR Purification Kit (Qiagen, 28004). NGS libraries were prepared from 100 ng of 

the purified DNA amplicons using Ovation Rapid DR System (Nugen, 0319-32) according to 

manufacturer's instructions. Each library was visualized on a Bioanalyzer (Agilent Technologies) and 

quantified by qPCR with a Kapa Library Quantification Kit (Kapa Biosystems, KK4835). The 

libraries were sequenced through Illumina HiSeq 2500 125bp paired-end reads method.  

 

NMD reporter plasmids construction and measurement 

The four NMD reporter constructs GALLpr-mCherry-PTC-YFP, GALLpr-mCherry-linker-

YFP, RPL4Apr-mCherry-PTC-YFP and RPL4Apr-mCherry-linker-YFP (P71, 68, 74 and P78, 

respectively. For details see Supplemental Table 3) were generated by fusion PCR reaction with 

overlapping oligos amplifying mCherry with primers 538 and 539 (in case of stop codon presence in 

the linker between mCherry and YFP) or primers 538 and 540 (in case of stop codon absence in the 

linker between mCherry and YFP). YFP was amplified with primers 541 and 542 (see Supplemental 

Table 4 for primers details). For all PCR reactions Phusion polymerase (Thermo Fisher Scientific, 

F530S) in GC buffer was used. After fusion of both fragments, the final product was purified using 

MinElute PCR Purification Kit (Qiagen, 28004) and cloned in the ClaI cut and dephosphorylated with 

rSAP (New Englands Biolabs, M0371S) pRS416-GaLLpr and pRS416-RPL4Apr vectors (P47 and 

P86 in Supplemental Table 3). The four NMD reporter plasmids were transformed into Y49 and 

multiple transformants of each construct were inoculated into 96 well plates containing SCGal-URA 

media. Cells were grown overnight, diluted 1:50, and measured by flow cytometry after 15 hours of 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 18, 2017. ; https://doi.org/10.1101/192195doi: bioRxiv preprint 

https://doi.org/10.1101/192195
http://creativecommons.org/licenses/by-nc-nd/4.0/


16 

 

growth, when the OD600 was around 0.5. Wells in which the cell density was too high or too low 

were discarded. All flow cytometry was performed on a BD LSRFortessa (BD Biosciences) with 

488nm and 561nm lasers with 530/28 and 610/20 filters for YFP or mCherry, respectively. Analysis 

of flow-cytometry data was performed using a previously described custom MATLAB pipeline 

(Carey et al. 2013). These two promoters have approximately equal expression levels (Supplemental 

Fig. 4). The same procedure was done for the constructs in Y194 and Y401 strains.  

 

Sequencing data processing 

Samples and replicates for the library were all compact in fastq files with 125bp paired-end 

reads. The first step in processing the reads was removing 3’ Illumina adapters of those reads where 

the inserted ORF was smaller than 125 bp. Next, we took advantage of the oligos used during the 

PCR for the sequencing library preparation to demultiplex each sample and replicate (split reads by 

type of sample origin - DNA or RNA - and replicates 1 or 2). Then the oligos were trimmed from the 

read using cutadapt (Martin 2011), leaving part of the unique genomic DNA sequence that was 

inserted in the plasmid as an ORF. To obtain the entire gDNA sequence inserted, we mapped all 

trimmed reads to the yeast genome using bowtie2(Langmead and Salzberg 2012). Hits where the 

forward and reverse reads mapped not uniquely, in different chromosomes, same strand, or the 

distance between them was >1Kb, were directly discarded. The resting hits were used to obtain the 

complete gDNA fragment used in the library and the number of reads mapped used as a quantification 

measure of number of DNA or RNA molecules. For downstream analysis we attached the 5’ and 3’ 

constant flanking sequence of the plasmid (which contained the designed ATG and stop codons) for 

later quantify other features such as 3’UTR length (measured as the length from the first stop codon in 

the ORF to the start of the CYC1 transcription terminator, Supplemental Table 6). 

 

Expression values and data analysis 

After obtaining the number of reads per unique sequence for each sample and replica we first 

normalize read counts by the total amount of reads per sample and replica using the formula: 
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Where aij represents the read count for a unique sequence variant per 

replica and sample. S is the number of samples (RNA, DNA and 

technical replicas) and R the total number of unique transcripts. In order to normalize by technical and 

biological bias we used as values of expression the log2 ratio between the averaged replicas DNA 

reads and RNA reads: 

Where p represents a pseudocount (p = 0.5). In order to uniformize the measurements across all 

libraries we calculated expression as the z-score value of this last log2 ratio.  

 

It is possible that the effect of codon bias may be partially co-transcriptional; there is good 

experimental evidence that GC content affects the rate of mRNA synthesis, and limited evidence that 

codon bias itself does so(Newman et al. 2016; Zhou et al. 2016). To avoid possibly confounding 

effects we regress out the contribution of insert length and GC content (see methods). This allowed us 

to measure the GC and length-independent role of 3’UTR and tAI to expression.  

 

Model to predict expression in the ORF library using inserts features 

To build a multiple linear regression model to predict expression values based on the 

composition of the ORF (Supplemental Fig. 3 illustrates all steps followed) we used already 

described transcript features (tAI, 3’UTR length, GC content and transcript length) and others of 

unknown mechanism. From the subset of fragments without PTCs that are fully contained within 

native yeast ORFs, the directionality of the inserted fragment had a significant impact on expression 

(fragments oriented in the same direction as the native gene had higher expression that reverse 

oriented ones, t-test p<10-11). Since the genomic orientation of the inserted ORF affects expression but 

the mechanism is unknown, we used a machine learning approach to identify the ORF features that 

better discriminate between forward or reverse oriented sequences to later include them in the final 
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model to predict expression. We built three different classifier models (Logistic regression, Naive 

Bayes and Tree Bagger) based on > 4000 sequence features (bases counts, amino acid counts, codon 

counts, frequency of nts in different position of codons, hexamers…). All three classifiers were 

trained on 1/3 of the data and the number of features of each model was reduced to dozens by 

sequential feature reduction (‘sequentialfs’ Matlab function). The three classifiers performed correctly 

(median AUC = 0.80) when tested in the remaining 2/3 of the dataset. To determine what features 

could predict expression we took all the selected features from the classifiers and used them in a linear 

model to predict expression. Using LASSO, to further reduce the number of predictors, we obtained 5 

sequence features that could explain 11% of the variance in expression: frequency of A or G in the 

first position of the codon (AG1), A or C  in the second position of the codon (AC2), frequency of A 

in the second position of the codon (A2) and the frequency of appearance of two the hexamers 

GAAAGA and ACGTTA. In the final model to predict expression of all variants in our library we 

included the three features AG1, AC2 and A2, as these are likely to be functionally interpreted by the 

translating ribosome inside the cell. For all model predictions we used a 10-fold cross-validation 

scheme to assess the accuracy of all models and to test for overfitting. 

Predicting mRNA level of native genes based on ORF features. 

To measure the contribution of the coding region to changes in expression we used a linear 

regression model that included exclusively ORF features selected previously using the gDNA library. 

3’UTR length and premature termination codon features were not used for models for native genes. 

We used 10-fold cross validation to test the accuracy of the model. mRNA expression levels are from 

(van Dijk et al. 2015). All mRNA-seq datasets give essentially the same result; this can be seen in 

(Fig. 3B), which shows results from a more limited ORF sequence feature model that includes just a 

single predictor. The same model was used to predict the expression of genes for which the promoter 

contribution to expression was previously measured (Keren et al. 2013).  

 

Yeast NMD strength analysis 
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To measure NMD strength for native yeast genes wild-type (SRR1258470,SRR1258471) and 

upf1 (SRR1258533,SRR1258534) RNA-seq reads were downloaded from NCBI SRA 

(PRJNA245106) (Smith et al. 2014). Expression was quantified using kallisto (Bray et al. 2016) (--

single -l 180 -s 20) and orf_coding_all.fasta from SGD (Cherry et al. 2012) (yeast genome R64-2-1). 

For each gene the NMD effect was defined as log2( mean(expression upf1) / mean(expression WT) ). 

To work in a parameter regime comparable to that of the gDNA library, only genes with 3’UTR 

lengths (Nagalakshmi et al. 2008) from 200 - 400nt were analyzed.  

 

Digital expression explorer analysis 

We obtained the processed data of 6402 RNAseq dataset from the digital expression explorer 

database (Ziemann et al. 2015). Expression was calculated normalizing sequence read counts by 

transcript length and sum of reads in each experiment. The effect of codon bias on expression was 

inferred for each experiment as described in Results (Fig. 2F). To ensure a meaningful calculation of 

the effect of codon bias (that assumes Promoter-YFP data (Keren et al. 2013) to be correlated with 

mRNA levels) we removed experiments with a low correlation between expression and Promoter-

YFP data (correlation < 0.4). We next searched for experiments in which the promoter-dependent 

effect changes from the “wild-type” behavior. We grouped the expression datasets by experiment 

(BIOPROJECT) (each setup corresponds to a different work) and graphed each of them separately in 

the same space (TATA/TATA-less vs “effect of codon bias on expression”). We manually looked for 

BIOPROJECTS in which a subset of similar samples (e.g., biological replicates of a mutant strain) 

differs consistently from another subset (e.g., wild-type strains).  

Data access 

DNA-seq and RNA-seq data generated in this study are deposited in the National Center for 

Biotechnology Information Gene Expression Omnibus under accession GSE100452. All code for 

figures and analysis are on GitHub ( 

https://github.com/MikiSchikora/Promoter_architecture_Espinar17/ ).  
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Figure legends 

Figure 1. An expression library of genomic fragments to quantify the ability of ORF-encoded 

sequence features to regulate gene expression. (A) A schematic view of the initial question: Does 

the open reading frame determine gene expression? (B) Scheme of the gDNA library preparation and 

expression measurements. (C) Measured expression distributions for all inserts (blue) and only those 

lacking a premature termination codon (grey). (D) Measured vs predicted expression levels in the 

gDNA library. Expression is predicted from the sequence of each gDNA insert using a 10-fold cross-

validated linear model (R2 is calculated across all test data from all cross-validations). (E) Expression 

predicted from the sequence of each native yeast ORF using the same features as for the gDNA 

library. (F), Including ORF-encoded features in a model of expression increases the ability of 
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promoter-YFP data to predict steady-state mRNA levels. Error bars are standard deviation from 10-

fold cross-validation.  

  

Figure 2. A gDNA library with different promoters identifies sequence features that interact 

with the promoter to determine gene expression. (A) The gDNA library was cloned under the 

control of either the TATA+ GALL promoter or the TATA-less ribosomal RPL4A promoter and the 

expression of both libraries measured in yeast growing on galactose as a carbon source. (B) 

Coefficients from the multiple linear model based on ORF sequence features from libraries with the 

two different promoters. Outlined are the features used for predicting expression in both the libraries 

or native genes. tAI is the tRNA adaptation index. Nucleotides followed by numbers refer to the 

position in a codon, eg: A/G1 is the fraction of codons with an A or G at position 1. (C,D) Lines show 

the median expression for inserts binned by 3’UTR length (c) or codon bias (d). Correlation values are 

for unbinned data and the p-value is a test for a significant difference between the two correlation 

values using bootstrapping. (E) NMD effect, measured as the log2 ratio in mRNA (TPM) between 

upf1 and wild-type cells for native transcripts. Lines show the median NMD effect across transcripts 

binned by 3’UTR length for TATA-containing (red) and TATA-less promoters (blue). The p-value is 

for a t-test for a difference in mean NMD strength for all unbinned data between TATA and TATA-

less genes. (F) The makeup of two linear models, one that predicts mRNA levels from promoter-YFP 

data, and the other that includes codon bias (tAI) as an additional predictor. For both models, native 

genes are split into two classes, TATA and TATA-less, and tAI effect is the difference in R2 between 

the two models. (G) Difference in tAI effect for random samplings of equal numbers of genes from 

each class. (H,I) An ORF-encoded sequence feature model was trained to predict mRNA levels for 

TATA and TATA-less promoters (R2 = squared Pearson correlation coefficient).  

 

 

Figure 3. A computational genetic screen for mutants that alter promoter-specific co-

translational regulation. (A) We analyzed expression data for 6402 RNA-seq experiments in S. 

cerevisiae, and for each experiment predicted mRNA levels from promoter-YFP data alone, or 
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promoter-YFP and codon bias (tAI). (B) For each for the 6402 experiments we calculated the ability 

of tAI to improve R2 for TATA-less and TATA-containing genes. Highlighted is a single experiment 

(Beck et al. 2014) in which the R2 changes in a promoter-class-specific manner between wild-type and 

mutant cells. (C) Shown are the changes in R2 for wild-type and ∆dbp2 cells for TATA containing 

and TATA-less transcripts. Each point corresponds to the effect of tAI on expression from equal-sized 

random samples of TATA (red) and TATA-less (blue) genes. Boxplots show the median and 

interquartile range. p-values are from t-tests. (D) Synthetic system for measuring the effect of NMD 

on gene expression. NMD is the ratio in mCherry expression between plasmids with and without a 

premature termination codon (PTC). (E) In each genotype we measured mCherry expression 16 times 

(biological replicates) for each of the four plasmids. As NMD effect is the ratio between two 

plasmids, for each promoter and genotype we calculated 82 ratios. Boxplots show the median and 

interquartile range for each set of ratios.  

 

Figure 4. ORF features regulate expression in response to changes in growth rate. (A) Brauer et 

al(Brauer et al. 2008) grew yeast at six different growth rates in each of six different environments 

and measured how the expression of each gene changed as a function of growth rate (slope GR-

mRNA). TATA-less genes (blue, N=1088) increase in expression, while those with TATA boxes (red, 

N=401) more often decrease. The p-value is from a Fisher’s Exact test. (B) Keren et al(Keren et al. 

2013) measured promoter-YFP expression at different growth rates. Each point shows the slope 

(expression change as a function of growth rate) for promoter-YFP (y-axis) and steady-state mRNA 

(x-axis) for TATA (red) or TATA-less (blue) genes. (C) GR-mRNA was predicted from ORF features 

allowing us to calculate the slope between growth rate and the contribution of ORF to expression 

(GR-ORF). Shown is the relationship between GR-ORF and GR-mRNA (see fig. A), for each type of 

genes. (D) GR-mRNA was predicted from both GR-Promoter and ORF features (GR- (ORF + 

Promoter)). Shown is the relationship between this and GR-mRNA, for each type of genes (E) R2 

values for a model that predicts GR-mRNA from GR-Promoter, ORF features or ORF + Promoter, for 

each type of genes. Error-bars correspond to the standard deviation, calculated with bootstrapping.  
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Supplementary Figures 

Supplemental Fig. 1. gDNA library and construct. (A) Sequence details of the ClaI restriction site 

(dark blue) where fragments of the yeast genome are cloned. The construct contains a GALL 

promoter (left-bottom blue) a designed region where the ClaI site is located (bottom purple 

annotation) and the CYC1 terminator (bottom yellow annotation). The designed region contains a 

start codon ATG (green), followed by the ClaI site and finishing with three stop codons (red) 

separated by one nucleotide to cover all possible reading frames. (B) Top: distribution of the genomic 

fragments inserted in the GALL library. Bottom: two example resulting strains after insertion of two 

chromosome I fragments. (C) Expression measurements across replicates are reproducible. Shown are 

two independent creations of the GALL promoter library, and one of the RPL4A library. We note that 

if differences in signal (experimental error) were responsible for the results, then we would expect the 

codon bias and NMD effects to be stronger in the experiments with a higher correlation between 

replicates. The opposite is true; both signals are also higher in the RPL4A library than in the GALL 

library #2 (see Supplemental Fig. 5). (D) Shown are the length and expression distribution for the 

entire GALL library (blue) and a small subset with similar insert length (133-153 nt) and GC content 

(0.35-0.45% GC). In this subset with expression varies by 4 orders of magnitude.  

 

Supplemental Fig. 2. Breakdown of expression by insert origin. Inserts were classified according 

to (A) absence/presence of a PTC, (B) if they came from within an ORF or not, and (C) if the 

translational reading frame in our system is the same as the reading frame in the native gene.  

 

 

Supplemental Fig. 3. Flowchart of the steps followed to select the predictors of the ORF-

expression model.  AUC = Area Under the Curve, GLM = Generalized Linear Model, Lasso = Least 

absolute shrinkage and selection operator, AG1 = Containing an A or a G in codon position 1, TC3 = 

Containing a T or A in codon position 3, A2 = Containing an A in codon position 2, AC2 = 

Containing an A or C in codon position 2.  
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Supplemental Fig. 4. Several parameters of constitutive and regulated genes. (A) mCherry 

expression of the NMD reporter constructs lacking a premature termination codon (PTC) between 

mCherry and YFP (see Fig. 3D), driven by the constitutive (blue) and regulated (red) promoter. Each 

construct was measured in wild-type, upf1Δ and dbp2Δ strains. Each point is from a different 

biological replicate. (B) The same as in (A), but for constructs bearing a PTC in the intervening 

mCherry-YFP linker. (C,D) The same as (A,B), but showing YFP expression measurements. (E) 

Distribution of RNA half-life values reported Neymotin et al (Neymotin et al. 2014). Shown are these 

values for TATA (red) and TATA-less (blue) genes. The p value corresponds to a ttest. (F) 

Distribution of mRNA expression levels (in log2 TPM) for the same groups as in (E). The inset shows 

the expression distributions after removing ribosomal proteins. (G) tRNA Adaptation Index (tAI) 

scores for for the same groups as in (E). The line refers to the threshold used in the analysis of how 

tAI affects expression in native genes (see Results). (H) Shown are all of the coefficients for features 

used in the linear model that predicts expression from sequence features. 3’UTR length for native 

genes is zero as only features in the ORF are considered.  

 

Supplemental Fig. 5. The tAI effect of in-frame fully-contained fragments and reproducibility 

across replicates of the gDNA library. (A) Shown are the correlation of tAI on insert length and GC 

content corrected expression for only the subset of inserts that lack a premature stop codon and that 

will be translated in the same reading frame in our library and in the native gene. (B) The RPL4A 

promoter library compared to the two GALL promoter libraries. While the two GALL promoter 

libraries have different correlations among replicates, the result is the same in both libraries.  

 

Supplemental Fig. 6. TATA-less genes are more affected by NMD at native transcripts with 

both short 3’UTRs and long 3’UTRs. (A,B) NMD strength appears to have two regimes, transcripts 

with a 3’UTR length less than 250nt, and those with a longer 3’UTR. (C,E) TATA-less transcripts 

have a stronger NMD effect (p-value for a t-test of mean NMD effect) for transcripts with both short 
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and long 3’UTRs. (B,D,F) Correlation between 3’UTR length and NMD strength for calculated from 

bootstrapped sampling of transcripts.    

 

Supplemental Fig. 7. Low DBP2 expression correlates with a high tAI effect in TATA+ but not 

TATA-less genes across all DEE datasets.  (A) The calculated the tAI effect for all RNA-seq 

datasets in yeast compared with the measured DBP2 expression. Lines show the median tAI effect 

and shaded error bars the standard deviation from bootstrapping. Experiments are binned by DBP2 

expression. Consistent with all our previous data, conditions and mutants with low DBP2 expression 

have a higher tAI effect for TATA+ genes and no change for TATA-less genes. (B) Shown is the 

ability of tAI to predict steady-state mRNA levels for an RNA-seq experiment performed in a WT 

genotype (Beck et al. 2014). Two example genes with different promoters (TATA, and TATA-less) 

show different changes regarding the effect of tAI in a dbp2Δ strain, performed under the same 

conditions. 

 

Supplemental Fig. 8. Dbp2 physically interacts with general transcription factors, chromatin, 

nuclear export machinery and translational machinery. (A) Dbp2 physical interactome of protein-

protein interactions (Cherry et al. 2012). Dbp2 interacts with ribosomal, histone H3 and General 

Transcription Factors (GTFs) of Pol-II (TAF1 is the yeast ortholog of the mammalian TFIIE).  

 

 

 

Supplementary Tables 

 
Supplemental Table 1: Properties of the inserts in the ORF library 

Supplemental Table 2: Results of Gene Ontology Analysis 

Supplemental Table 3: Table of strains and plasmids used in this study 
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Supplemental Table 4: Table of used primers 

Supplemental Table 5: PCR Primer barcode combination 

Supplemental Table 6: Nucleotide sequences of 5' and 3' regions of random ORF library plasmid 

construct (5' to 3') 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 18, 2017. ; https://doi.org/10.1101/192195doi: bioRxiv preprint 

https://doi.org/10.1101/192195
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 18, 2017. ; https://doi.org/10.1101/192195doi: bioRxiv preprint 

https://doi.org/10.1101/192195
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 18, 2017. ; https://doi.org/10.1101/192195doi: bioRxiv preprint 

https://doi.org/10.1101/192195
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 18, 2017. ; https://doi.org/10.1101/192195doi: bioRxiv preprint 

https://doi.org/10.1101/192195
http://creativecommons.org/licenses/by-nc-nd/4.0/


0

0.1

0.2

0.3

0.4

r2  to
 p

re
di

ct
 G

R
-m

R
N

A

-15 0 15
GR-mRNA slope

0

0.05

0.1

0.15

0.2

fra
ct

io
n 

of
 g

en
es

-15 0 15
GR - mRNA slope

-15

0

15

G
R

 - 
Pr

om
ot

er
 s

lo
pe

-15 0 15
GR - mRNA slope

-15

0

15

G
R

 - 
O

R
F 

sl
op

e

-15 0 15
GR - mRNA slope

-15

0

15

G
R

 - 
(O

R
F 

+ 
Pr

om
ot

er
) s

lo
pe

ex
pr

es
si

on
 (m

RN
A)

growth rate (GR)

TATA-less

TATA

Translation

A B 

Environmental  
Stress Response (ESR)

n=636

n=452

n=297

n=103

p < 10-27

r2 = 0.14
r2 = 0.28

r2 = 0.35
r2 = 0.11

r2 = 0.41
r2 = 0.37

C D  

Promoter-YFP ORF ORF
+

PR

E   

GRPr
om

ot
er

-Y
FP

TATA
TATA-less

GR

m
RN

A.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 18, 2017. ; https://doi.org/10.1101/192195doi: bioRxiv preprint 

https://doi.org/10.1101/192195
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 18, 2017. ; https://doi.org/10.1101/192195doi: bioRxiv preprint 

https://doi.org/10.1101/192195
http://creativecommons.org/licenses/by-nc-nd/4.0/


100 200 300
Insert Length

-10

-5

0

Ex
pr

es
si

on
0
1

premature stop 
(73%)   

100 200 300
Insert Length

-10

-5

0

Ex
pr

es
si

on

not
rev
fwd

 fwd in ORF 
(36%)

 out-of-frame in ORF 
(81%)

no premature stop 
(27%)

reverse in ORF 
(34%)

not in ORF 
(30%)

in-frame in ORF  
(19%)

A B

C

100 200 300
Insert Length

-10

-5

0

Ex
pr

es
si

on

0
1

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 18, 2017. ; https://doi.org/10.1101/192195doi: bioRxiv preprint 

https://doi.org/10.1101/192195
http://creativecommons.org/licenses/by-nc-nd/4.0/


ORFs sequences
ATGNNNNNNNTGA 
ATGNNNNNNNTAG 
ATGNNNNNNNTAA 

…

Select features to predict expression

Unknown Already described

Codon bias (tAI)
3’UTR length
GC content
Transcript length

Orientation respect to gDNA 

Find sequence features able to distinguish 
forward oriented inserts than reverse

(machine learning + sequential feature selection)

GLM
classifier

Naive Bayes
classifier

Tree Bagger
classifier

A count 
CG dimer count 

GAT codon count 
A in codon pos 2 (A2) 

…

C base count 
GA dimer count 

A or G  in codon pos 1 (AG1) 
T or C in codon pos 3 (TC3) 

…

A count 
GA dimer count 

A in codon pos 2 (A2) 
A or C in codon pos 2 (AC2) 

…

>4000 features to dozens

Select and reduce the number of features 
that are able to predict expression

GLM
(expression ~ classifiers selected features) 

AUC = 0.79 AUC = 0.80 AUC = 0.80

Lasso
+

Final predictors

−10 −8 −6 −4 −2 0 2 4 6 8 10
Expression

p-val = 9.7e−12  rev
 fwd
 mean rev
 mean fwd

AG1
AC2
A2

GAAAGA
ACGTTA

Interpreted by 
the ribosome

Unknown mechanism
(not used)

Pearson r2 = 0.11

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 18, 2017. ; https://doi.org/10.1101/192195doi: bioRxiv preprint 

https://doi.org/10.1101/192195
http://creativecommons.org/licenses/by-nc-nd/4.0/


DBP2 WT NAM7
10

10.5

11

11.5

12

12.5

13

13.5

lo
g 2
(m
C
he
rr
y P
TC
)

DBP2 WT NAM7
10

10.5

11

11.5

12

12.5

13

13.5

lo
g 2
(m
C
he
rr
y n
oP
TC
)

DBP2 WT NAM7
7

8

9

10

11

12

13

lo
g 2
(G
FP

no
P
TC
)

DBP2 WT NAM7
7

8

9

10

11

12

13

lo
g 2
(G
FP

P
TC
)

RPL4Apr GALLpr

Δdbp2 WT Δupf1 Δdbp2 WT Δupf1

Δdbp2 WT Δupf1Δdbp2 WT Δupf1

RPL4Apr GALLpr

RPL4Apr GALLprRPL4Apr GALLpr

A B

C D

lo
g 2

 m
C

he
rry

 (n
oP

TC
)

lo
g 2

 m
C

he
rry

 (P
TC

)

lo
g 2

 Y
FP

 (n
oP

TC
)

lo
g 2

 Y
FP

 (P
TC

)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
tAI

0

1

2

3

4

5

6

7
TATA-less vs TATA

-0.5 0 0.5 1 1.5 2 2.5 3
log10 RNA stability (Neymotin 2014)

0

0.5

1

1.5

2
TATA-less vs TATA

-0.2 0 0.2 0.4 0.6 0.8 1
Expression

0

0.5

1

1.5

2

2.5
TATA-less vs TATA

E F

G

TATA-less TATA
TATA-less TATA

TATA-less TATA

Pe
rc

en
t o

f n
at

iv
e 

ge
ne

s
Pe

rc
en

t o
f n

at
iv

e 
ge

ne
s

Pe
rc

en
t o

f n
at

iv
e 

ge
ne

s

-0.5 0   0.2 

A2

AC2

AG1

tAI

length

GC

3'utr l

Linear model coefficients

gDNA lib. GALLpr
gDNA lib. RPL4pr
Native genes

H

p = 0.8 t-test  p = 0.48
ks-test p = 0.9

p = 0.7

0 0.2 0.4 0.6
Expression

0

2
p = 0.8
p = 0.9

Without RP

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 18, 2017. ; https://doi.org/10.1101/192195doi: bioRxiv preprint 

https://doi.org/10.1101/192195
http://creativecommons.org/licenses/by-nc-nd/4.0/


0.2 0.3 0.4 0.5 0.6
tRNA Adaptation Index (tAI)

-0.4

-0.2

0

0.2

0.4

Ex
pr

es
si

on

GALLpr
RPL4pr

r = 0.18 , p < 10-06

r = 0.08 , p = 0.02

Inserts in-frame of ORF

200 250 300 350 400 450
3'utr length

-0.5

0

0.5
Ex

pr
es

si
on

r = -0.34 , p < 10-63
r = -0.17 , p < 10-15

Using the GALLpr #2 library

GALLpr
RPL4pr

0.2 0.3 0.4 0.5 0.6
tRNA Adaptation Index (tAI)

-0.5

0

0.5

Ex
pr

es
si

on

r = 0.24, p < 10-16

r = 0.18 , p < 10-9

GALLpr
RPL4pr

A

B

200 250 300 350 400
3'utr length

-0.5

0

0.5

1

Ex
pr

es
si

on

0.2 0.3 0.4 0.5 0.6
tRNA Adaptation Index (tAI)

-0.4

-0.2

0

0.2

0.4

Ex
pr

es
si

on

r = -0.34 , p < 10-63
r = -0.20 , p < 10-22

r = 0.25 , p < 10-16

r = 0.17 , p < 10-7

Using the GALLpr #1 library

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 18, 2017. ; https://doi.org/10.1101/192195doi: bioRxiv preprint 

https://doi.org/10.1101/192195
http://creativecommons.org/licenses/by-nc-nd/4.0/


200 210 220 230 240 250
3'utr length

-0.2

0

0.2

0.4

0.6

lo
g 2 E

xp
U

P
F1

ko
/E

xp
W

T

250 300 350 400
3'utr length

-0.2

0

0.2

0.4

0.6

lo
g 2 E

xp
U

P
F1

ko
/E

xp
W

T

p = 0.0015

p = 0.03

-0.4 -0.2 0 0.2 0.4 0.6
Correlation

0

500

1000

1500

2000

2500

# 
bo

ot
st

ra
ps

-0.6 -0.4 -0.2 0 0.2
Correlation

0

1000

2000

3000

# 
bo

ot
st

ra
ps

-0.4 -0.2 0 0.2 0.4
Correlation

0

1000

2000

3000

# 
bo

ot
st

ra
ps

200 250 300 350 400
3'utr length

-0.2

0

0.2

0.4

0.6
lo

g 2 E
xp

U
P

F1
ko

/E
xp

W
T

p = 0.0003
A B

DC

E F

Fig S6

TATA-less
TATA

TATA-less
TATA

TATA-less
TATA

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 18, 2017. ; https://doi.org/10.1101/192195doi: bioRxiv preprint 

https://doi.org/10.1101/192195
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 18, 2017. ; https://doi.org/10.1101/192195doi: bioRxiv preprint 

https://doi.org/10.1101/192195
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 18, 2017. ; https://doi.org/10.1101/192195doi: bioRxiv preprint 

https://doi.org/10.1101/192195
http://creativecommons.org/licenses/by-nc-nd/4.0/

