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ABSTRACT 1 

Speech is an ecologically essential signal whose processing begins in the subcortical nuclei of the 2 
auditory brainstem, but there are few experimental options for studying these early responses under 3 
natural conditions. While encoding of continuous natural speech has been successfully probed in the 4 
cortex with neurophysiological tools such as electro- and magnetoencephalography, the rapidity of 5 
subcortical response components combined with unfavorable signal to noise ratios has prevented 6 
application of those methods to the brainstem. Instead, experiments have used thousands of repetitions 7 
of simple stimuli such as clicks, tonebursts, or brief spoken syllables, with deviations from those 8 
paradigms leading to ambiguity in the neural origins of measured responses. In this study we 9 
developed and tested a new way to measure the auditory brainstem response to ongoing, naturally 10 
uttered speech. We found a high degree of morphological similarity between the speech-evoked 11 
auditory brainstem responses (ABR) and the standard click-evoked ABR, notably a preserved wave V, 12 
the most prominent voltage peak in the standard click-evoked ABR. Because this method yields distinct 13 
peaks at latencies too short to originate from the cortex, the responses measured can be 14 
unambiguously determined to be subcortical in origin. The use of naturally uttered speech to evoke the 15 
ABR allows the design of engaging behavioral tasks, facilitating new investigations of the effects of 16 
cognitive processes like language processing and attention on brainstem processing. 17 

 18 

SIGNIFICANCE STATEMENT 19 

Speech processing is usually studied in the cortex, but it starts in the auditory brainstem. However, a 20 
paradigm for studying brainstem processing of continuous natural speech in human listeners has been 21 
elusive due to practical limitations. Here we adapt methods that have been employed for studying 22 
cortical activity to the auditory brainstem. We measure the response to continuous natural speech and 23 
show that it is highly similar to the click-evoked response. The method also allows simultaneous 24 
investigation of cortical activity with no added recording time. This discovery paves the way for studies 25 
of speech processing in the human brainstem, including its interactions with higher order cognitive 26 
processes originating in the cortex. 27 

 28 

INTRODUCTION 29 

When speech enters the ear and is encoded by the cochlea, it goes on to be processed by an 30 
ascending pathway that spans the auditory nerve, brainstem, and thalamus before reaching the cortex. 31 
Far from being relays, these subcortical nuclei perform a dazzling array of important functions, from 32 
sound localization (Grothe and Pecka, 2014) to vowel coding (Carney et al., 2015), making their 33 
function essential to understand. In humans, the primary method for measuring activity in subcortical 34 
nuclei is the auditory brainstem response (ABR): a highly stereotyped scalp potential in the first ~10 ms 35 
following a very brief stimulus such as a click, recorded through electroencephalography (EEG) 36 
(Burkard et al., 2006). The potential comprises components referred to as waves, given Roman 37 
numerals I–VII according to their latency. Individual waves have been tied to activity in specific parts of 38 
the ascending pathway: wave I (~2 ms latency) is driven by auditory nerve activity, wave III (~4 ms) by 39 
the cochlear nucleus, and wave V (~6 ms) principally by the lateral lemniscus (Møller et al., 1995). 40 
However, because the waves are so rapid, and the signal-to-noise ratio so low, the ABR must be 41 
measured by presenting thousands of repeated punctate stimuli. Thus, while there are important 42 
neuroscience questions regarding how subcortical nuclei process natural stimuli like speech, or how 43 
they might be affected by cognitive processes through efferent feedback (Terreros and Delano, 2015), 44 
the practical limitations of the ABR paradigm make it primarily a clinical tool. 45 

One common method for measuring the brainstem response to speech is the complex ABR (cABR) 46 
(Skoe and Kraus, 2010). The cABR represents the averaged response to repetitions of a short spoken 47 
syllable (e.g., a ~40 ms “da”). It can be analyzed in the time domain, but because the stimulus is longer 48 
than the response, ambiguity about the origin of response components arises. The voiced part of the 49 
speech elicits a frequency following response (FFR) that can be analyzed in the frequency domain. The 50 
FFR at the stimulus’s harmonics is reasoned to have subcortical origins because of the lower frequency 51 
phase-locking limit in the auditory cortex (Joris et al., 2004), but a recent magnetoencephalography 52 
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study showed cortical contributions to the FFR (Coffey et al., 2016), rendering strong conclusions about 53 
exclusively subcortical phenomena difficult to make. 54 

A different method, used for studying cortical activity, treats the auditory evoked potential as the 55 
impulse response of a linear system, which can be mathematically derived from known input and output 56 
signals (Aiken and Picton, 2008; Lalor et al., 2009; Lalor and Foxe, 2010; Ding and Simon, 2012a, 57 
2012b). Continuous natural speech is presented (input) while EEG is recorded (output), and the brain’s 58 
response is calculated through linear regression. Rather than raw audio, the regressor (i.e., input) used 59 
is the amplitude envelope, which by construction contains no fast fluctuations, making it too slow for 60 
studying subcortical nuclei. A recent study aimed at the brainstem used the amplitude envelope of a 61 
speech stimulus’s fundamental frequency as input, and the envelope of the EEG at that frequency as 62 
output (Reichenbach et al., 2016). The response is a single wave with a peak latency of 10 ms, 63 
suggesting brainstem involvement, but a width of 100 ms, making it impossible to exclude cortical 64 
contributions. 65 

Here we measured auditory brainstem activity in response to natural speech using a new paradigm. 66 
The methods were based on cortical studies, with an important difference: the regressor was the 67 
rectified speech audio, meaning that fine structure was largely preserved. The speech-evoked 68 
responses were very similar to click-evoked ABRs, most notably in the presence of a distinct wave V. 69 
Because the latency of the wave V peak is shorter than a cortical source could produce, it can be 70 
unambiguously attributed to subcortical generators. We show that it is possible to study speech 71 
processing in the human brainstem, paving the way for subcortical studies of attention, language, and 72 
other cognitive processes. 73 

 74 

MATERIALS AND METHODS 75 

Experimental design and statistical analysis 76 

Our goal was to measure the speech-evoked ABR in human listeners and validate it against the click-77 
evoked response. We first recorded click-evoked responses to psuedorandomly timed click trains and 78 
then validated them against the responses evoked by standard, periodic click trains. We then compared 79 
the speech-evoked response to the pseudorandom click-evoked response. We validated by comparing 80 
the overall morphology, as well as the presence and latency of wave V in the speech-evoked response. 81 

All subjects’ click- and speech-evoked responses were plotted individually. To compare the similarity of 82 
two responses from a single subject (e.g., the click-evoked response to the speech-evoked response), 83 
Pearson’s product-moment correlation was used. The median and interquartile range of each 84 
distribution of correlation coefficients across subjects was reported, in addition to plotting its histogram. 85 
Two distributions of correlation coefficients were compared using Wilcoxon’s signed-rank test for non-86 
normal distributions. When comparing wave V latencies across stimulus conditions, a paired Student’s 87 
t-test was used to determine if the means differed. 88 

 89 

Subjects 90 

All experiments were done under a protocol approved by the University of Washington Institutional 91 
Review Board. All subjects gave informed consent prior to participation, and were compensated for 92 
their time. We collected data from 24 subjects (17 females). The mean age was 27.8 years, with a 93 
standard deviation of 6.9 and a range of 19–45. Subjects had normal hearing, defined as audiometric 94 
thresholds of 20 dB HL or better in both ears at octave frequencies ranging from 250 to 8000 Hz. All 95 
subjects identified English as their first language except for two, who identified a different language but 96 
had been speaking English daily for over twenty years. 97 

 98 

EEG recording 99 

Scalp potentials were recorded with passive Ag/AgCl electrodes, with the positive and negative 100 
electrodes connected to a differential preamplifier (Brainvision LLC, Greenboro, SC). The positive 101 
electrode was at location FCz in standard 10-20 coordinate system. The negative (reference) electrode 102 
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was clipped onto the subject’s left earlobe. The ground electrode was placed at Fpz. Data were high-103 
passed at 0.1 Hz during recording (additional filtering occurred offline). 104 

Subjects were seated in a comfortable chair in a sound-treated room (IAC, North Aurora, IL). They were 105 
not asked to attend the stimuli. Instead, they faced a computer monitor showing silent episodes of 106 
“Shaun the Sheep” (Aardman Animations, 2007), an animated show that has no talking, making 107 
subtitles unnecessary. They were first presented with 40 epochs of speech stimuli for calculating the 108 
speech ABR, and then were presented with 10 minutes of click stimuli (twenty repetitions of a frozen 30 109 
s epoch). All stimuli were presented over insert earphones (ER-2, Etymotic Research, Elk Grove, IL) 110 
which were plugged into a stimulus presentation system consisting of a real-time processor and a 111 
headphone amplifier (RP2.1 and HB7, respectively, Tucker Davis Technologies, Alachua, FL). Stimulus 112 
presentation was controlled with a python script using publicly available software (available at 113 
https://github.com/LABSN/expyfun). 114 

 115 

Speech stimuli 116 

Speech stimuli were taken from two audiobooks. The first was A Wrinkle in Time (L’Engle, 2012), read 117 
by a female narrator. The second was The Alchemyst (Scott, 2007), read by a male narrator. The 118 
audiobooks were purchased on compact disc and ripped to uncompressed wav files to avoid data 119 
compression artifacts. They were resampled to 24,414 Hz, the native rate of the RP2 presentation 120 
system. They were then processed so that any silent pauses in the speech longer than 0.5 s were 121 
truncated to 0.5 s . Because the ABR is principally driven by higher stimulus frequencies (Abdala and 122 
Folsom, 1995), the speech was gently high-passed with a first-order Butterworth filter with a cutoff of 123 
1,000 Hz and a slope of 6 dB / octave. The speech was still natural sounding and intelligible. This filter 124 
also helped to compensate for low-frequency spectral differences between the male and female 125 
narrator around their fundamental frequencies. After that, the speech was normalized to an average 126 
root-mean-square amplitude that matched that of a 1 kHz tone at 75 dB SPL. Figures 1A,D,G show the 127 
pressure waveform of the word “Thursday” spoken by the male narrator, the spectrogram of that word’s 128 
first syllable, and the power spectral density (PSD) of a 30 s segment of the female and male speech 129 
stimuli. 130 

The audiobooks were then sectioned into epochs of 64 s, including a 1 s raised cosine fade-in and 131 
fade-out. The last four seconds of each epoch were repeated as the first four seconds of the next one, 132 
so that subjects could pick up where they left off in the story (if they were listening), meaning that 60 s 133 
of novel speech was presented in each epoch. The stimuli were not new to the subjects—before this 134 
passive listening task, they had completed a session using the same stimuli where they had to answer 135 
questions about the content they had just heard. Data from that task were for a different scientific 136 
question and do not appear here. These minute-long excerpts were presented in sequence, two from 137 
one story and then in alternating sets of four, finishing with two epochs from the second story. Speech 138 
stimuli were presented diotically. 139 

 140 

Click stimuli 141 

Click stimuli were aperiodic trains of rarefaction clicks lasting 82 µs (representing two samples at the 142 
24,414 Hz sampling rate, which was closest possible to the standard 100 µs click duration with our 143 
hardware). Clicks were timed according to a Poisson point process with a rate of 44.1 clicks / s. The 144 
timing of one click had no correlation with the timing of any other click in the train, rendering the 145 
sequence spectrally white in the statistical sense. A pair of 30 s sequences was created and presented 146 
dichotically 20 times to each subject, meaning that 26,460 clicks contributed to each ear’s response. 147 
The responses presented herein are the sum of the monaural responses. Clicks were presented at 75 148 
dB peak-to-peak equivalent SPL (i.e., the amplitude of clicks matched the peak-to-peak amplitude of a 149 
1 kHz sinusoid presented at 75 dB SPL). 150 

While no previous study has used exactly this type of click timing, several have used various types of 151 
pseudorandom sequences (Burkard et al., 1990; Thornton and Slaven, 1993; Delgado and Ozdamar, 152 
2004; Holt and Özdamar, 2014). Uniformly, these studies find that the ABRs from randomized versus 153 
periodic click trains are highly similar at the same stimulation rates. Random timing has two main 154 
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benefits over the much more common periodic timing: 1) the analysis window for the response can be 155 
extended arbitrarily to any beginning and end point without fear of temporal wrapping, and 2) no high-156 
pass filtering is necessary to remove the strong frequency component at the (periodic) presentation 157 
rate, because it does not exist. A third benefit, specific to this study, is that the same analysis could be 158 
done to compute the speech-evoked and the click-evoked ABR, yielding a more direct comparison 159 
between the two. Figures 1B,E,H show part of a Poisson click train in the same manner that Figs. 160 
1A,D,G do for speech. 161 

To be sure that the click paradigm we used yielded results matching standard ABRs evoked with 162 
periodic click trains, we also collected ABRs using periodic click trains of the same rate of 44.1 clicks / 163 
s, presented diotically. Periodic trains were also presented in twenty epochs of 30 s, yielding the same 164 
total sweep count of 26,460. The periodic click train stimulus is shown in Figs. 1C,F,I. 165 

 166 

Data analysis 167 

Responses to both speech and click train stimuli were found through deconvolution, in a manner 168 
broadly similar to previous papers focused on cortical activity (Lalor et al., 2009; Lalor and Foxe, 2010). 169 
The essence of deconvolution is determining the impulse response of a linear time-invariant system 170 
given a known input (here, the processed continuous speech signal) and a known output (here, the 171 
recorded scalp potential). The methods in this study vary from previous ones in the preprocessing 172 
steps, but otherwise utilize essentially the same mathematical principles. 173 

 174 

Speech stimuli preprocessing 175 

Before we could derive the speech response, we needed to calculate the regressor from the audio 176 
data. The auditory brain is mostly agnostic to the sign of an acoustic input, as evidenced by the high 177 
degree of similarity between evoked responses to compression versus rarefaction clicks (Møller et al., 178 
1995). For this reason, some sort of rectifying nonlinearity applied to the input speech is needed as a 179 
preprocessing step. We used half-wave rectification. Specifically, we performed all analyses twice—180 
once keeping the positive peaks, and then a second time keeping the inverted negative peaks—and 181 
then averaged the resulting responses, in a process akin to the compound peristimulus time histogram 182 
used by Pfeiffer and Kim (1972). This significantly reduced, but did not eliminate, stimulus artifacts, 183 
similar to the common technique of alternating polarity in the click-evoked ABR (Hall III, 2006). 184 
Following rectification, the data were downsampled from 24,414 Hz to the EEG recording rate of 10,000 185 
Hz. 186 

 187 

Click train preprocessing 188 

Owing to its extreme sparsity, downsampling a click train using standard methods would result in 189 
significant signal processing artifact, viz., Gibbs ringing. We instead used the list of click times from the 190 
original click train (24,414 Hz sampling rate) and created a click train at 10,000 Hz sampling rate by 191 
placing unit-height single-sample impulses at the closest integer indices corresponding the original click 192 
times. 193 

When the input to a system has a white power spectrum, the system’s impulse response can be 194 
determined as the cross-correlation of the input and output. For a click train, which is essentially a 195 
series of unit-height single-sample impulses, the deconvolved impulse response becomes equivalent to 196 
the click-triggered average, which is how ABRs are usually calculated. This results in a convenient 197 
parity between the typical averaging methods used for ABR and the deconvolution used here. In other 198 
words: rather than using a completely new mode of analysis for ABR (deconvolution), we have instead 199 
generalized the methods already in use to be appropriate for arbitrary stimuli, beyond click trains. 200 

 201 

EEG preprocessing 202 

EEG data were first high-pass filtered at 1 Hz (first-order Butterworth), and then notch filtered at 60, 203 
180, and 300 Hz with 5 Hz wide second-order infinite impulse response notch filters, designed with the 204 
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iirnotch function of the SciPy python package (RRID:SCR_008058). Because of the continuous nature 205 
of the stimuli, no epoch rejection was done. Instead, any time the EEG potential crossed ±100 µV, a 1 s 206 
segment of the response was zeroed, centered around the offending sample, removing it from the 207 
calculation. This operation effectively reduced the energy of an epoch. So that the amplitude of the 208 
calculated response was not affected, the EEG data for each epoch was multiplied by a corrective gain 209 
factor gr: 210 

gr = N / (N – Nr), 211 

where N is the total number of samples in the epoch and Nr is the number of rejected samples. After 212 
filtering and resampling, the data were segmented into epochs that started with the stimulus onset and 213 
ended 100 ms after the stimulus (epochs were thus 64.1 s long for speech stimuli and 30.1 s long for 214 
clicks). 215 

 216 

Response calculation 217 

We used linear least-squares regression to calculate the responses, as in previous work (Lalor et al., 218 
2009). The response was considered to be the weights over a range of time lags that best 219 
approximated the EEG output as the weighted sum of the input stimulus regressor over those lags. For 220 
the sake of computational and memory efficiency, the stimulus autocorrelation matrix and stimulus-221 
response cross-correlation were both calculated via their Fourier counterparts using frequency-domain 222 
multiplication. These specific methods have been incorporated into the mne-python package (Gramfort 223 
et al., 2013) (RRID:SCR_005972) (https://github.com/mne-tools/mne-224 
python/blob/8fc2a545f494de0f828b931f2285dbff426e72ad/mne/decoding/time_delaying_ridge.py). No 225 
regularization was employed. The response weights were calculated over the range of lags spanning 226 
−150 to 350 ms. After the response was calculated, it was low-pass filtered at 2,000 Hz (first-order 227 
Butterworth), and then baseline corrected by subtracting the mean potential between −10 and 0 ms 228 
from the whole response. For the speech stimuli, the response to each narrator was calculated 229 
separately, and then averaged to calculate each subject’s speech-evoked response. 230 

 231 

Speech-evoked response amplitude normalization 232 

Auditory onsets elicit much larger responses than ongoing stimulus energy due to adaptation (Thornton 233 
and Slaven, 1993). However, this non-linear adaptation is not accounted for by the linear regression. 234 
For that reason, the raw speech-evoked responses, for which the majority of the stimulus energy can 235 
be considered “ongoing,” were much smaller than the click-evoked responses, whose stimuli are 236 
essentially a series of onsets. To correct for this, we computed a single empirical subject-specific 237 
normalization factor, gn, that put the speech-evoked responses in a similar amplitude range as the click-238 
evoked ones: 239 

gn = Ei(σc,i) / Ei(σs,i), 240 

where σc,i is the standard deviation of subject i’s click-evoked response in the range of 0–30 ms, σs,i is 241 
the same for the speech-evoked response, and Ei represents the mean over subjects. All speech-242 
evoked responses shown in microvolts have been multiplied by gn. In our study gn had a value of 27.5, 243 
but it must be stressed that this value depends on the unitless scale chosen for storing the digital audio, 244 
and is thus not suitable for use in other studies. For this reason no direct amplitude comparisons were 245 
made between click- and speech-evoked responses. Instead, their morphologies and wave V latencies 246 
were compared. 247 

 248 

Standard ABR measurement 249 

The ABR to the periodic click trains was calculated through traditional averaging rather than regression. 250 
The raw data were notch filtered to remove line noise and low-pass filtered at 2,000 Hz as described 251 
above. However, the high-pass filter was different: a causal second order Butterworth filter with a cutoff 252 
of 150 Hz was used to be consistent with standard practice and to generate a canonical waveform 253 
(Burkard et al., 2006; Hall III, 2006). The response to each click presentation was then epoched from 254 
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−3 ms to 19.7 ms, which was the longest window allowed by the periodic click rate of 44.1 clicks / s 255 
before temporal wrapping occurred. Filtered epochs were rejected if the peak-to-peak amplitude 256 
exceeded 100 µV. 257 

 258 

RESULTS 259 

Poisson click trains yield canonical ABRs 260 

Responses to Poisson click trains were used as the benchmark to which the speech-evoked responses 261 
were compared. Even though similar types of pseudorandom stimuli have been used in the past, it was 262 
important to confirm that these specific stimuli used here provided canonical ABR waveforms. The 263 
grand average periodic and Poisson click trains are shown overlaid in Fig. 2A (both shown high-pass 264 
filtered at 150 Hz). To quantify their similarity, we computed Pearson’s correlation coefficient between 265 
the two waveforms for each subject between lags of 0 and 19.7 ms. The median correlation was 0.89 266 
(interquartile range 0.82–0.92), indicating a very high degree of similarity. The histogram of correlations 267 
is shown in Fig. 2B. 268 

Figure 2C shows the average Poisson click-evoked response under two filtering conditions: 1) high-269 
pass filtered at 150 Hz as in Fig. 2A, and 2) broadband (high-passed at 1 Hz as described in the EEG 270 
pre-processing methods section above). The latter will be used henceforth as the click-evoked ABR to 271 
which the speech-evoked ABR is compared. It is thus important to note that even though these 272 
responses seem to have morphological differences from the “standard” ABR, that is simply because 273 
using pseudorandom click timing obviates the need for high-pass filtering, and that filtering was 274 
bypassed in the interest of comparing the whole responses. The wideband responses we obtained here 275 
using Poisson click trains were highly similar in shape, amplitude, and latency to previous wideband (5 276 
Hz high-pass) ABRs obtained using low rate (11 Hz) periodic clicks (Gu et al., 2012), and were much 277 
more efficient to obtain. 278 

 279 

Early speech-evoked responses exhibit brainstem response characteristics 280 

Broadly speaking, there were strong similarities between the early (< 30 ms) click-evoked and speech-281 
evoked responses (Fig. 3A). In this latency range, responses are likely to progress from brainstem to 282 
thalamus and primary auditory cortex as latency increases. We will first make whole-waveform 283 
comparisons, and then consider specific canonical ABR components. 284 

To compare the overall waveforms, we computed Pearson’s correlation coefficient of the speech- and 285 
click-evoked waveforms for each subject in the range of 0–30 ms (Fig. 3B). The median correlation 286 
coefficient was 0.70 (interquartile range 0.63–0.75). Figure 3C shows each subject’s click- and speech-287 
evoked response, in descending correlation order. In our speech-evoked responses, waves I–IV were 288 
“smeared” together. However, we found a clear wave V in individual subjects’ responses as well as the 289 
grand average. Wave VI was also visible in the grand average, but was less consistent at the 290 
individual-subject level. 291 

We identified wave V by low-pass filtering at 1,000 Hz with a zero-phase filter and finding the peak of 292 
the waveform in the 5–7 ms range. For the click-evoked responses, wave V was present for all 293 
subjects, with a latency of 6.50 ± 0.25 ms (mean ± standard deviation). For speech-evoked responses, 294 
wave V was present for all subjects, with a latency of 6.17 ± 0.30 ms. The speech-evoked wave V 295 
preceded the click-evoked by 0.26 ms (t(23) = 6.6, p = 1×10−6, paired t-test). As shown in Fig. 4, the 296 
click-evoked and speech-evoked wave V latencies were correlated across subjects (r = 0.75, p = 297 
3×10−5, Pearson’s product-moment). This shows a strong correspondence between the click-evoked 298 
and speech-evoked ABR. 299 

In some subjects’ speech-evoked waveforms there are early peaks that seem to resemble waves I and 300 
III. However, these are likely driven by recording artifacts (electromagnetic leakage of the earphone 301 
driving signal into the EEG electrode recording). While it may have been possible to reduce these 302 
artifacts further through additional signal processing, we did not do that for sake of simplicity and 303 
transparency. However, it is important to note that a simple modification to the paradigm—alternating 304 
the polarity of the speech stimulus—should all but remove stimulus artifacts in the future. This could be 305 
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done at the level of the 64 s epochs, or it could be done at the word or phrase level, as long as the 306 
phase inversions were hidden by silent gaps in the speech. 307 

 308 

Speech responses depend minimally on sex of talker stimuli 309 

One important question is whether the speech-evoked response maintains its morphology independent 310 
of the specific input stimulus, or if it depends on the specific narrator. To investigate this, we split the 311 
responses to male- and female-narrated trials and compared them to determine the role that the 312 
difference in the narrators’ input spectra might play. The grand average waveforms for the two narrators 313 
are of the same magnitude and overall shape, despite the differing spectra of their input stimuli (Fig. 314 
5A). The median female-male correlation coefficient was 0.73 (interquartile range 0.60–0.83; Fig. 5B). 315 
Figure 5C shows each subject’s response to the female- and male-narrated speech, in the same order 316 
as Fig. 3C to allow comparison. 317 

While perfect overlap would be indicated by correlation coefficients of 1.0, splitting the data in half (viz., 318 
into male- and female-narrated epochs) adds noise to each of the responses. To put the male-female 319 
correlation coefficients in context, we can split the data a different way and compare. We split the data 320 
into halves that contained the same number of male and female epochs (i.e., each split contained 10 321 
male and 10 female trials). We then compared those waveforms in the same way as above. The 322 
median correlation coefficient between splits was 0.83 (interquartile range 0.70–0.91). We compared 323 
the male-female split coefficients to these arbitrarily split coefficients, and found a significant difference 324 
(T(23) = 58, p = 0.009, Wilcoxon signed-rank test). This indicates that while the responses to female 325 
and male-uttered speech are very similar, there is still some dependence on the stimulus. 326 

 327 

DISCUSSION 328 

Early speech responses are interpretable as ABRs 329 

The major goal of this work was to study the response of the human auditory brainstem to naturally 330 
spoken, continuous speech. We derived the speech-evoked responses using regression and validated 331 
them against click-evoked responses. Comparison of the speech-evoked and click-evoked ABR 332 
revealed a high degree of morphological similarity between waveforms, similar overall wave V 333 
latencies, and a strong correlation between click- and speech-evoked wave V latency across subjects. 334 
Taken together, these results show that the speech-evoked ABR is just that—the response of the 335 
auditory brainstem. 336 

Incoming acoustic information travels up the auditory pathway in an initial feedforward sweep, from 337 
brainstem to thalamus to cortex. Because the response calculated here is broadband, distinct 338 
components over the range of latencies were preserved. We can thus “localize through latency” and 339 
logically conclude that the peak in the response at 6 ms has subcortical origins, because it is too soon 340 
after the stimulus to be cortical, where the earliest estimated latencies are 11–14 ms (Wassenhove and 341 
Schroeder, 2012). This eschews the problem of source mixing when attempting to determine brainstem 342 
activity through spatial means, such as beamforming and dipole fits. However, as discussed below, our 343 
method does not preclude those analyses—rather it complements them and facilitates their use, 344 
particularly at longer latencies where sources have cortical origins more appropriate for spatial filtering. 345 

 346 

Subcortical and cortical responses are available simultaneously 347 

While the focus of this work is on the brainstem and midbrain responses, these methods can be used to 348 
measure both subcortical and cortical activity. Simultaneous subcortical and cortical measurements are 349 
possible with the cABR (Skoe and Kraus, 2010), but the differing parameters for number of trials and 350 
inter-stimulus  interval needed mean that recording paradigms can be very long. Work aimed at optimal 351 
parameters for simultaneous subcortical-cortical recordings has been successful (Bidelman, 2015), but 352 
still necessarily results in compromises. The present methods allow simultaneous measurement with no 353 
additional recording time and no limitations on the response window due to inter-stimulus interval. 354 
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This flexibility is illustrated in Fig. 6. Figure 6A shows the speech-evoked ABR, Fig. 6B extends the 355 
window and employs a low-pass filter appropriate for viewing the middle latency response (Hall III, 356 
2006), and Fig. 6C extends the time window further and lowers the low-pass frequency to accentuate 357 
late auditory evoked potentials of cortical origin. If a full electrode montage (and sufficient hard drive 358 
space) is available, the interaction of brainstem processing with any number of cortical processes is 359 
now possible to investigate under natural conditions. 360 

 361 

Filtering must be done carefully 362 

It is common practice in EEG experiments to use zero-phase filters whose impulse responses are non-363 
causal and symmetric about 0 lag. This is done to preserve the latencies of the peaks and is 364 
appropriate in most cases. However, the strength of the present approach lies in using the latency of 365 
the response peaks to confirm their subcortical origin. If a non-causal filter is used to filter the EEG 366 
data, then it is possible that a peak at a latency corresponding to cortical activity (e.g., 25 ms) could 367 
affect the response waveform at brainstem latencies (e.g., 6 ms). This could have the result of 368 
erroneous findings that attribute cortical phenomena to subcortical nuclei. Thus, the following two 369 
guidelines should be followed for experiments specifically aimed at the auditory brainstem. First, EEG 370 
data should be filtered with causal filters. Second, when calculating regressors, any filtering that is done 371 
to the input stimulus should be anti-causal (i.e., with an impulse response has values only at negative 372 
lags). The latter can be practically accomplished by reversing the signal in time, filtering it with a 373 
standard causal filter, and then reversing that result. Using causal filters will inevitably affect the 374 
latencies of peaks, but this can be mitigated by filtering sparingly (i.e., as broadband as the specific 375 
analyses will allow) with low-order filters. 376 

 377 

Responses to arbitrary stimuli can be measured 378 

For a spectrally rich but non-white stimulus like speech, an important step in deconvolution is whitening 379 
the input stimulus. For a linear system, two broadband stimuli with different spectra should yield the 380 
same impulse response. However, there is no such guarantee for a non-linear system like the auditory 381 
system. 382 

The present study suggests that a range of stimuli can be used. First, we consider the main 383 
comparison: speech-evoked to click-evoked ABR. Natural speech is different by almost any metric from 384 
Poisson click trains, and yet the responses that we find through regression are very similar (Fig. 3A,B). 385 
Second, we consider the responses to female versus male speech. Males typically speak at a 386 
fundamental frequency about half that of females. Such a difference, when estimating the response of a 387 
highly non-linear system using linear methods, could have resulted in major differences in the response 388 
waveforms, but this was not the case (Fig. 5A,B). Taken together, it is reasonable to expect that the 389 
technique could be applied to other real-world non-speech stimuli such as music or environmental 390 
sounds, as well any spectrally rich synthetic stimulus of interest in the lab. 391 

Despite the similarity between responses to different stimuli, the differences (e.g. between the female 392 
and male speech-evoked responses) represent a caveat. In future studies, experimenters must be 393 
careful in making comparisons between responses across conditions that did not use identical stimuli. 394 
We suggest that these methods will be most useful in cases where the acoustic stimuli can be 395 
counterbalanced across conditions. While this is good practice in most studies, it is especially important 396 
here for drawing strong conclusions. 397 

 398 

Other regressors may offer improvements 399 

The principal difference between this study and those that came before it is the regressor. Because the 400 
auditory system is fundamentally nonlinear (viz., it responds with the same sign to both compression 401 
(positive) and rarefaction (negative) clicks, some sort of manipulation of the audio into an all-positive 402 
signal is needed. Previous studies have used the amplitude envelope (Aiken and Picton, 2008; Lalor 403 
and Foxe, 2010), spectrotemporal representations (Ding and Simon, 2009), and even dynamic higher-404 
order features of speech (Di Liberto and Lalor, 2017). 405 
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Critically, the rectified speech audio used here is a broadband signal, which is what allows distinct ABR 406 
components at short latencies to be resolved in the derived response. There are many other 407 
transformations one could do, which will have important effects on the response waveform obtained. 408 
We piloted several (for example, “raising” the audio to be all-positive by adding it to its Hilbert amplitude 409 
envelope), but decided on the half-wave rectified audio due to its simplicity and the robustness of the 410 
responses it yielded. It is possible—likely, even—that there are better transformations. One 411 
shortcoming of our approach is that no distinct wave I was found, and all of waves I–V were smeared 412 
together. An improvement in the regressor is the most likely route to addressing this, and will be a focus 413 
of future work. 414 

 415 

Conclusions and future directions 416 

Here we present and validate a method for determining the response of the auditory brainstem to 417 
continuous, naturally uttered, non-repeated speech. Speech processing involves a complex network 418 
that ranges from the earliest parts of the auditory pathway to auditory and association cortices. The 419 
techniques described here facilitate new neuroscience experiments by making it possible to measure 420 
activity across the auditory neuraxis while human subjects perform natural and engaging tasks. These 421 
paradigms will allow study of the subcortical effects of language learning and understanding, attention, 422 
multisensory integration, and many other cognitive processes. 423 

 424 
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FIGURES 494 

 495 

Figure 1. Acoustic stimuli. (A,B,C) Pressure waveforms for one second of speech, Poisson click train, 496 
and standard periodic click train, respectively. Vertical scale is arbitrary but consistent across plots. 497 
(D,E,F) Spectrograms of a smaller excerpt of the above stimuli, with darker colors corresponding to 498 
higher power. (G,H,I) Power spectral density plots of the above stimuli, calculated from 30 s of data 499 
using Welch’s method with a segment length of 5.67 ms, segment overlap of 50%, and Hann window. 500 

 501 

 502 

 503 

 504 

Figure 2. Comparison of ABR to standard periodic click trains and Poisson click trains. (A) The average 505 
ABR waveform evoked by the standard, periodic click train at 44.1 clicks / s (black) and the 506 
psudorandom Poisson click train (gray; 44.1 clicks / s overall rate). Areas show ±1 SEM. Both 507 
responses are high-pass filtered at 150 Hz. The spike at −1 ms is a stimulus artifact, and occurs before 508 
0 ms to compensate for the 1 ms tube delay of the earphones. (B) The histogram of correlation 509 
coefficients between the standard and Poisson click-evoked ABRs. Solid/dotted black lines show 510 
median/quartiles. (C) Comparison of the Poisson click-evoked ABR with 150 Hz high-pass filtering 511 
(gray) and without (i.e., broadband; blue). The latter is used as the benchmark response for the 512 
remainder of the study. 513 

  514 
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 515 

Figure 3. Comparison of click responses (blue) with speech responses (red). (A) The average 516 
waveform across subjects (areas show ±1 SEM). (B) The histogram of correlation coefficients between 517 
the click-evoked and speech-evoked stimuli for each subject. Solid/dotted black lines show 518 
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median/quartiles. (C) Individual subject responses. The correlation coefficient is shown in the upper 519 
right corner. 520 

 521 

 522 

 523 

Figure 4. Speech-evoked versus click-evoked wave V latencies across subjects. The strong correlation 524 
across subjects points to common neural generators. Points have been jittered slightly to prevent 525 
overlap. Regression line is shown with the 95% confidence interval shaded. 526 

  527 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 22, 2017. ; https://doi.org/10.1101/192070doi: bioRxiv preprint 

https://doi.org/10.1101/192070
http://creativecommons.org/licenses/by-nc/4.0/


16 
 

 528 

Figure 5. Comparison of female-narrated responses (green) with male-narrated responses (purple). (A) 529 
The average waveform across subjects (areas show ±1 SEM). (B) The histogram of correlation 530 
coefficients between the female-evoked and male-evoked stimuli for each subject. Solid/dotted black 531 
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lines show median/quartiles. (C) Individual subject responses arranged in the same order as Fig. 3C for 532 
easy comparison. The correlation coefficient is shown in the upper right corner. The poor correlation of 533 
the worst subject (r = 0.11) is the result of a strong stimulus artifact. 534 

 535 

 536 

 537 

 538 

Figure 6. Changes to the range of lags and filtering parameters allows early, middle, and late 539 
responses to be analyzed from the same recording. (A) The speech-evoked auditory brainstem 540 
response with canonical waves V and VI labeled. (B) The middle latency response with its canonical 541 
waves labeled (low-pass frequency: 200 Hz). (C) The late auditory evoked potential with its canonical 542 
waves labeled (low-pass frequency: 20 Hz). Shaded areas show ±1 SEM. 543 
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