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Abstract

Interactions between two different guilds of entities are pervasive in biology.

They may happen at molecular level, like in a diseasome, or amongst individu-

als linked by biotic relationships, such as mutualism or parasitism. These sets

of interactions are complex bipartite networks. Visualization is a powerful tool

to explore and analyse them but the most common plots, the bipartite graph

and the interaction matrix, become rather confusing when working with real

biological networks. We have developed two new types of visualization that

exploit the structural properties of these networks to improve readability. A

technique called k-core decomposition identifies groups of nodes that share con-

nectivity properties. With the results of this analysis it is possible to build a

plot based on information reduction (Polar Plot) and another which takes the

groups as elementary blocks for spatial distribution (Ziggurat plot). We describe

the applications of both plots and the software to create them.
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1. Introduction

Network Science is a powerful tool for biological research across all scales:1

molecular [1, 2, 3], genetic [4, 5, 6], individual [7, 8] and communitary [9, 10].2
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The conceptual framework is valid for them all, and this fact has fostered both3

theoretical and applied developments. An important subset of biological net-4

works are bipartite. They have two different classes of nodes. Each one that5

may be tied to nodes of the opposite guild but never to its peers.6

Gene-protein, host-pathogen and predator-prey interactions are the basis of7

bipartite biological networks. A common structural property of them is the8

core-periphery organisation [11, 12, 13]. This fact is well-known in ecology.9

In mutualistic communities there is one group of very interconnected nodes,10

the generalists, that provide stability and resilience [14]. Species with a low11

number of links (degree) are tied to those specialists. This property is called12

nestedness and there are different indexes to measure its strength [15]. Another13

important structural feature is modularity, that accounts for the existence of14

small groups of nodes of high degree inside a network sparsely connected [16].15

In many cases the issue of interest is not the generalization of the network16

properties but the study of a particular system itself. In these fields dealing with17

complex systems scientists are more interested in finding special relationships18

or understanding the role of a specific node than their statistical properties. A19

more detailed, qualitative rather than quantitative analysis about relationships20

in a complex network may be more useful for some researchers in Medicine,21

Biology, Sociology or even Economy. Visualization may play an important role22

in network analysis as it between data and people [17, 18, 19].23

The range of possible applications is wide [20]. For instance, a field ecologist24

could identify central species and those most endangered within a community25

with a good network plot. A clinical researcher may detect anomalies in com-26

plex gene-protein associations. Visualization is an essential procedure in the27

exploratory stage [21], but it requires fast and interactive applications able to28

disentangle structure. Although a lot of effort has been put in analytic tools29

development, those designed for bipartite biological visualization are still scarce30

[22, 23, 24, 25, 26, 27].31

The most common plots in literature are the bipartite graph and the in-32

teraction matrix, two ways to visualize a bipartite network of any kind. In33
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Figure 1: Mutualistic community in Tenerife, Canary Islands (Spain), with 68 species and 129

links [28]. In mutualism, species fall into two disjoint guilds, such as plants and pollinators or

plants and seed dispersers. Ties amongst species of the same guild are forbidden.

the bipartite graph, nodes of both classes are plotted along parallel lines. In-34

teractions appear as links amongst them (fig. 1). On one hand, it is quite35

simple, as it makes clear the separation of guilds. On the other, it is not easy36

to follow indirect interactions, those between two nodes of the same class linked37

by a common node of the opposite. They are not much relevant in affiliation38

networks (journals-authors, movies-actors) [29], but are extremely important in39

many biological networks. They create feedback loops that increase complexity40

and eventually emerging properties that arise from it [30, 31].41

When the number of nodes of a bipartite plot is in the range of a few tens42

it becomes extremely confusing. It is hard to distinguish individual links and43

impossible to follow indirect interactions. Accumulation of links in the space44

between guilds creates what is known as the hairball effect [32], but the main45

shortcoming of the bipartite plot is that it does not show the network hyerar-46

chical organisation.47

In the interaction matrix, nodes of one guild are arranged along rows and48

species of the opposite guild along columns. A filled cell marks the interaction49

between two species. With the interaction matrix it is possible to visually50

discover patterns of nestedness and modularity, so it is more expressive in the51

representation of structure. On the other hand, indirect interactions are even52

less apparent than in the bipartite plot. The matrix also becomes difficult to53

interpret when the number of nodes and links raise.54

To overcome the drawbacks of the bipartite graph and the interaction ma-55

trix there are two possible attack strategies: information reduction or taking56
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advantage of known network traits to order nodes and links in space. In this57

paper, we explain how structural properties of bipartite biological networks are58

the basis of two new types of visualization. Both rely on a classical technique59

called k-core decomposition. We also describe an interactive application to plot60

them.61

2. Plots62

The rationale behind this research is that, as biological networks are not63

random, this fact should provide a natural way to group nodes using their64

topological properties. These groups must be the basis for a spatial distribution65

that minimizes the hairball effect and, in addition, makes structural sense.66

The k-core decomposition is a fast and efficient technique to cluster nodes67

by their connectivity properties [33, 34]. The k-core of a graph G is a maximal68

connected subgraph of degree k. Each node of the core of order m (called m-69

shell) has links with at least m other nodes that belong to that same core.70

The practical implication of this definition is that nodes are classified according71

to their connectivity. The innermost shell is the set of highest k index nodes.72

Nodes with higher degrees are the generalists. As k index decreases, nodes73

become more specialist. The usual way to identify the m-shell subsets is the74

pruning algorithm: one starts pruning the nodes with just one link, recursively.75

This subset of nodes constitutes the 1-shell. The remaining nodes are tied by76

at least two links. In the next step one extracts nodes with only two links,77

also recursively; this subset is the 2-shell. And so on. This procedure helps to78

recognize how the nodes of the m-shell are tied to the network. We refer to [35]79

for further details on the k-core analysis of bipartite networks.80

As a result of the analysis we define two magnitudes. The first one is kradius.81

The kAradius(m) of node m of guild A is the average distance to all nodes of the82

innermost shell of guild B (set CB).83

kAradius(m) =
1

| CB |
∑
j∈CB

distmj m ∈ A (1)
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where distmj is the shortest path from node m of guild A to node j of guild84

B. In an intuitive way, kradius measures how far the node is from the most85

connected shell, the group that is the corner stone of the network; the closest86

to one the strongest the tie to the core87

The second magnitude is kdegree. It is defined as the sum of the inverses of88

kkradius of neighbour nodes:89

kAdegree (m) =
∑
j

amj

kBradius (j)
m ∈ A,∀j ∈ B (2)

where amj is the element of the interaction matrix that represents the link,90

considered as binary (1 if amj > 0, 0 if amj = 0). Note that this magnitude91

is a weighted degree where the weight is the inverse of the kradius, in such a92

way that links to the periphery are underestimated, so kdegree is a measure of93

centrality.94

2.1. The Polar plot95

The k-core decomposition helps to visualize very large systems and networks96

and to understand their structure [36, 37]. In particular, the fingerprint plot,97

uses a polar coordinate system [38]. Nodes are depicted at a distance pro-98

portional to the shell they belong to and their areas are proportional to their99

degree.100

Taking this idea as the starting point, we build the polar plot. Differences101

are noteworthy. The first one is the bipartite nature of the networks, so space is102

divided in two half planes, one for each guild. Node shapes are also different for103

each guild. This plot provides an overview of how far from the core the nodes104

are and, at the same time, their connectivity (by the size of the marker) and to105

which m-shell they belong (by the color of the marker). This visualization is106

interesting to detect some special features of the network; for instance, a well107

bonded core will present the innermost shell at distance kradius equals to one,108

and a nested network will show a periphery close to the core. This plot shows109

the periphery nodes less relevant for the network connectivity as markers far110
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away from the core and it allows to detect highly connected nodes that do not111

belong to the core. Angle does not convey information, the algorithm computes112

it to reduce node overlapping. Links are not displayed.113

Optionally, the user may choose to display the histograms of kdegree, kradius114

and k-shell. The kradius histogram shows the distribution of node distances115

to network core. The kdegree histogram is very similar to the degree distribu-116

tion but with non-integer bins, due to the weights in its definition. The most117

interesting histogram is that of the kshell; a typical nested network exhibits a118

U-shaped kshell histogram. This shape of distribution is related to a big core119

and numerous peripheral nodes; a L-shaped histogram is related to a network120

with too many peripheral nodes and a small core.121

Figure 2: Host-parasite assembly in Tyva (Russian Federation) [39].

Figure 2 is the polar plot of a host-parasite assembly with a characteristic122
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high concentration of nodes in the innermost shell. Most nodes lay inside the123

kradius 1 circle but there is a sensible number of outlying species. This network124

is moderately nested (NODF = 29).125

2.2. The Ziggurat plot126

The polar plot does not show network links, as it works on the information127

reduction strategy. The ultimate goal of this research is the creation of a new128

kind of diagram with as many details as possible. The basic idea is grouping129

nodes by their k-shell. If we stick nodes with the same k-index in a reduced130

area, links amongst the same shell nodes will not spread across the whole space.131

Only ties with their edges in different shells would have long paths. This simple132

principle is not so easy to implement. The bipartite nature of networks means133

that links have to go from one guild to the opposite.134

The core-periphery organization implies that there are many ties from 1-135

shell nodes towards upper k-index groups. Nodes with high degree are prone136

to be visually suffocated by surrounding links in the bipartite graph. See plant137

species numbers 1, 2, 3, 4 in figure 1. This danger is a formidable obstacle.138

Figure 3 shows a ziggurat plot under construction. It is the same network139

of fig. 1. The k-core decomposition puts each species inside one shell, we do140

not show nodes of 1-shell at this moment. The maximum k-index is 4 for this141

community.142

The innermost shell is found on the center of the plot, slightly leftwards.143

Nodes are rectangular-shaped, and are ordered by kdegree. Heights decrease144

just for plotting convenience. The specular position of both guilds leaves space145

to draw the links amongst them. In fig. 3 we have plotted just three connections146

from pollinator1 towards plants of 4-shell.147

Lower k-shells have ziggurat shape, with nodes ordered by ascending kradius,148

so pollinator7 is the closest to the innermost shell in 3-shell. Links inside the149

shell (gray color) connect the left sides of rectangles (plant4-pollinator9). Links150

between two different shells (green) connect the right side of the highest k-index151

node to the left side of the lowest one (plant17-pollinator7).152

7

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 21, 2017. ; https://doi.org/10.1101/192013doi: bioRxiv preprint 

https://doi.org/10.1101/192013
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 3: Building blocks of the ziggurat plot.

3-shell ziggurats are more distant from the horizontal axis than 2-shell zig-153

gurats. Moving them up or down, it is possible to change the area of the internal154

almond-shaped space defined by the ziggurats and the innermost shell triangles.155

This area is key because links from 4-shell lay here, and do not cross the inner156

ziggurats.157

The outer space is the 1-shell nodes home. We divide them into three groups:158

outsiders, tails and chains of specialists. Outsiders are nodes disconnected from159

the giant component. They are unusual in recorded ecological networks because160
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by definition they do not interact with the community. This network lacks161

outsiders. Tails are nodes directly connected to higher k-indexnodes. They are162

very common, and to reduce the number of lines we apply a simple grouping163

rule. If n tails are tied to the same species of a ziggurat, we plot them in a164

unique box with just one link. Chains of specialists are less frequent. They are165

built with nodes of 1-shell linked amongst them, the edge that has a link with166

a higher k-index shell is the root node (plant13).167

Figure 4: Ziggurat plot of the same plant-pollinator community in Tenerife, Canary Islands

(Spain), that appears in fig. 1

Putting everything together, we obtain the ziggurat plot of fig. 4. This may168

be compared with the bipartite graph of the same network (fig. 1).169

Links are drawn as straight lines or splines, that make the diagram more170

appealing to the eye. If links are weighted, setting the width of each link to be171

proportional to a function of the interaction strength is optional.172
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Note that, for a given node, the main links are those towards higher k-shells.173

With this plot is very easy to observe how many links depart from a node to174

higher and to lower k-shells. One can also compare if a node is connected to175

higher k-shell than another one, and then if its contribution to the network is176

more important.177

3. Exploratory analysis using k-core plots178

- The ziggurat plot unveils structural details that are hard to visualize in the179

bipartite graph. Figure 5 is a network of associations amongst human diseases180

and non-coding RNA (IncRNA), we refer to the original paper to compare181

with the bipartite visualization [40]. It is a small network with 39 nodes and182

low connectivity, just 44 links. The highest degree IncRNA node is number 8183

(XIST), that in the bipartite plot looks as the most central one. The ziggurat184

shows at a glance that despite its high connectivity, it appears in association with185

diseases that belong to its chain of specialists. On the other hand, diseases like186

breast cancer and acute myeloid leukemia are associated with multiple IncRNAs.187

The network of figure 6 is slightly bigger, with 29 gene signatures used for188

predicting the reoperative treatment response of breast cancer and 19 pathways189

to different types of cancer [41]. The bipartite plot is hard to understand in190

the original paper, because of the number of ties. With 149 links, it becomes a191

hairball and the problem is just its own nature.192

Figure 6 shows a network with a stronger hierarchy than figure 5. The193

identification of genes most frequently associated with pathways to cancer is194

straightforward.195

The main application of the polar plot is the visual comparison of networks196

even if their sizes are very different. Figure 7 is a subset of a disease-cofactor197

network. Authors selected diseases tied to at least 5 cofactor-interacting proteins198

(39 nodes) and plotted the bipartite graph 7. The ziggurat plot (fig. 7A) of the199

subset shows an extremely nested structure, an effect of the selection rule. The200

polar plot of this network fragment (fig. 7B) has an uncommon organization of201
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Figure 5: IncRNA-disease association network [40].

disease nodes, at almost the same kradius distance of the center. The polar plot202

of the full network (fig. 7B), with 414 nodes, displays a much richer structure.203

Diseases are distributed across a wider range of kradius. Most cofactors have204

high degree and were not filtered. As a result, the structure of this guild is very205

similar in both polar plots.206

These figures are a small sample of the importance of choosing a good visu-207

alization tool with a correct analysis of decomposition of a network.208

4. Software209

The k-core analysis and plotting of ziggurat and polar graphs is provided as210

an open source application.211
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Figure 6: Gene-pathway association network [41].

4.1. The kcorebip package212

The R package kcorebip contains the functions to perform the analysis and213

to plot static graphs of a network. It comes with a set of networks for testing214

purposes. Ecological data were downloaded from the web of life database [43].215

As the format of the web of life files has became a standard de facto by its216

12

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 21, 2017. ; https://doi.org/10.1101/192013doi: bioRxiv preprint 

https://doi.org/10.1101/192013
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 7: Disease-cofactor network [42]. A: ziggurat plot of the subset. B: polar plot of the

subset. C: polar plot of the full network

simplicity, kcorebip follows the same convention for input files.217

The function network k analysis computes the k-magnitudes and other218

useful indexes, using the functions that provide packages as bipartite and219

igraph [44, 45]. We refer to the user manual for details.220

Ziggurat and polar graphs use basic calls to the ggplot2 graphics package221

[46]. We compute from scratch coordinates and sizes, not relying on other222

network plotting libraries.223
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4.2. Interactive application224

The kcorebip package is a powerful solution for researchers with program-225

ming skills that need high quality plots for scientific publications, but ex-226

ploratory analysis requires a more interactive approach. Bipartgraph has de-227

signed with this need in mind.228

The technological choice is Shiny, the R reactive programming environment.229

It has the advantage of a native backend and a Javascript-based user interface230

that may be easily extended. This combination of technologies ensures a wide231

compatibility with most common operating systems.232

The Interactive Ziggurat is the main feature of Bipartgraph. The orig-233

inal implementation of the kcorebip package only provided the ggplot2 object234

to display or save. To create an interactive version we faced two main choices,235

replicating the code with a dynamic technology or extending kcorebip. We236

found a fast and almost non intrusive solution creating an SVG object. The zig-237

gurat is a set of rectangles, lines and texts. The most time consuming tasks are238

network analysis and spatial distribution. These computations are performed239

just once, and besides each ggplot2 element the function plots, it creates the240

SVG equivalent.241

The browser displays the SVG ziggurat with multiple options for the user:242

tooltips, select a node or a link, highlight connections, zoom in and zoom out.243

In addition, a second panel shows information of highlighted nodes and the244

available information on Wikipedia (fig. 8).245

The configuration panels make plot properties easy to modify. Visual and246

intuitive Shiny controls, as sliders or checkboxes, hide the complexity of the247

input parameters of the ziggurat graph function.248

At any moment, the user may download the high quality, high resolution249

static plot with the Printable Ziggurat option. In order to reproduce the250

results or to include the graph in other environments, such as R Markdown or251

Jupyter notebooks, we added the Download generating code button. When252

clicked upon, Bipartgraph writes a file with the last ziggurat graph call, ready253

to use in any R script.254
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Figure 8: Interactive ziggurat user interface. Plant-pollinator assembly in Garajonay, Canary

Islands (Spain), recorded by Olesen. Highlighted the pollinator species number 11, Gonex-

pteryx cleopatra

There is not interactive version of the Polar plot, as we think that network255

exploration is much easier with the ziggurat. The user may produce the static256

polar plot, the high quality downloadable PNG file and the generating code, in257

the same way that we have explained with the ziggurat.258

5. Conclusions259

Visualization of bipartite biological networks is very useful for researchers260

when they are interested in following the paths from a node or scanning the261

structure of the network. Using the k-core decomposition we have designed and262

developed two new graphs that work by information reduction (Polar plot) and263

spatial grouping by connectivity (Ziggurat plot). They provide two complemen-264

tary views of internal network structure.265

We would like to emphasize the importance of choosing a correct visualiza-266
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tion of complex networks, and in particular of bipartite networks, that helps a267

correct understanding of networks of a large number of nodes and high density.268

Software is provided as Open Source, under a very loose MIT license, and269

comes in two versions. The package kcorebip provides the full functional-270

ity for researchers with a minimum of R programming skills. The application271

Bipartgraph is the fully fledged interactive environment to build both kind of272

graphs for this public. Its user centric design makes it very easy to master,273

provides some additional features and is open to new fields of application such274

as education.275

Software Availability276

Name of software: BipartGraph277

Programming language: R278

Operating system: Windows, Linux and MacOS279

Availability: SW at https://github.com/jgalgarra/bipartgraph280

User interface: Web browser281

License: Free, under MIT License282
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