
J. of . M 00 (2013) 1–8

Manuscript
in

preparation

Xenomai-based multiple-process system, for real-time data
acquisition and graphical display control

Hadrien Carona, Pierre Pougeta,b,c,d

a ecnarF,siraP,)CMPU(eiruCeiraMteerreiPétisrevinU
bInstitut du Cerveau et de la MoelleÈpinire, Paris, France

cINSERM UMRS 975
dCNRS 7225

Abstract

To elicit complex and rich graphical displays, and record neuronal phenomena ofinterest while all simultaneously being capable
to interact in a closed-loop with external devises is a challenging task to all neurophysiologists. To facilitate this process, we
have developed an Open-Source software system using a single computer running a well established Linux architecture (Ubuntu)
associated to a kernel duo providing hard real-time support (Xenomai). We show that a single computer using our API is capable,
for any tasks that require OpenGL displaying, to acheive millisecond accuracy programmed events. In this report, we describe the
design of our system, benchmark and its performance in a real-world setting, and describe some key features.

Keywords: Realtime, Visual display, Neurophysiology

1. INTRODUCTION1

Eliciting graphical displays, while simultaneously recording neuronal phenomena ofinterest and interact in a2

closed-loop with some external devises is a challenging task to realize in a standertized commonly used computer.3

One of the first well-known systems to accomplish this task was the complex UNIX-based real-time (RT ) application4

developed for oculomotor experiments by Hays et al. (1982). As new applications have continued to emerge, how-5

ever, many have forsaken true (or hard) real-time control and response in favor of simplicity, extended functionality,6

alternative operating systems, and/or user-friendly design. Those systems that have maintained real-time support (e.g.,7

TEMPO, ePrime, Matlab Psychtoolbox) are often costly, proprietary, and require additional code in order to define8

specific experiments. Finally, other systems utilizing the proven LabVIEW development architecture (e.g., Kodosky9

and Dye, 1989; Kullmann et al., 2004; Poindessault et al., 1995; Pruehsner et al., 2003; Sakatani and Isa, 2004;Gandhi10

and Bonadonna, 2004) was developed and optimized. However while these systems offer open access configuration,11

displaying are largely limited due to an LED board design necessary to a system refresh rate of 1 kHz and lacking12

monitor driver’s development. By creating an open source system that has minimal programming overhead and al-13

low OpenGL graphical developpement, we hoped to allow users to focus on the essential features of experimental14

design and the basic elements of behavioral control and monitoring rather than on the often arcane details of the video15

presentation and data acquisition hardware. Our major goals were:16

• To allow behavioral control with high temporal precision in free open source ressources.17

• To allow straightforward scripting of behavioral tasks using OpenGL and C++ syntax and functions.18

1

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 21, 2017. ; https://doi.org/10.1101/191973doi: bioRxiv preprint 

https://doi.org/10.1101/191973
http://creativecommons.org/licenses/by-nc-nd/4.0/


H. Caron et al / J. of . M 00 (2013) 1–8 2

• To interface transparently with data acquisition hardware for input / output functions, such as analog continuous19

signal, joystick and button- press acquisition, reward delivery, digital event marker output, as well as analog and20

TTL output to drive stimulators and injectors.21

• To allow the full reconstruction of task events from the behavioral data file by including complete descriptions22

of behavioral performance, the event markers and their text labels, the task structure, and the actual stimulus23

images used; as a demonstration of this goal, to allow the replaying of any given trial from the behavioral data24

file alone.25

• To provide the experimenter with an information rich display of behavioral performance and to reflect task26

events in real-time to aid the assessment of on-going behavior.27

Rexeno is a software we developed that seeks to bind all these characteristics into a single piece of program,28

using a single computer, taking advantage of the best Open Source ressources available. The main charactestic of this29

program is that it will be able to interract in real-time with every ressources connected to it (Screens, A/D cards, Hard30

Drive, etc...).31

Our tested system was composed of a Dell Computer with an Intel Duo processor (model E5405) running at 2.0032

GHz and containing 2048MB of RAM (Dell Inc., Round Rock, TX). The graphics hardware in this machine consisted33

of an nVidia ENGT250 silent with 1024MB of video RAM. Output from this dual-headed graphics card was split34

to two subject displays running in full-screen mode at pixel resolutions of 1024 768. The displays were standard35

cathode-ray tubes mea- suring 19 inches in the diagonal, also from Dell. The refresh rate for the tests reported here36

was 60 Hz and the experimenters display window was set to update every 16.6 ms during behavioral monitoring to37

allow near-real-time (< 1msec) observation of the subjects performance.38

To assess the performance of our software, we first collected data from a photodiode coupled with our neurophys-39

iological recording system (Plexon Inc, TX, USA). Thus, we analyzed data simple from the on-going training of two40

rhesus monkeys (macaca mulatta, male, respectivelly 10.5 and 16 Kg) in a saccade inhbitory task.41

For the animal testing and in order to allow eye-tracking, head fixation was achieved using a titanium head-post42

system (Crist instrument, Hagerstown, MD, USA). Visual fixation was required for a total of 3s (about 1 s of initial43

fixation followed by a 1-1.500 ms target presentation. An inter-trial-interval of 1 to 2 s was used. Data from three44

consecutive months of training (one session each day) were collected and confirmed to yield nearly identical results,45

so one of these sessions was chosen arbitrarily for presentation below. This session consisted of 1500 trials over 246

hours. At all times, the animal was handled in accord with EU guidelines and those of the ICM Animal Care and47

Use Committee. Analog X and Y position signals conveying behavioral output con- sisted of an optical eye-tracking48

system (Eyelink 2k, SR Research Ltd., Mississauga, Ontario, Canada) running at 1000 Hz. For a more straightforward49

demonstration, a schematic diagram, the code (timing script) and the conditions file for a simpler task (a standard pro-50

saccade task) is shown in Figure ??. The object of this paper is to explain how we designed and tested our Real Time51

System, then we will detail how to obtain and use it. Usability is a critical issue for us because we needed powerful52

tools designed by others in order to build Rexeno, and we hope it will also be adapted by others in order to help them53

in their respective tasks.54

2. Material and Methods55

2.1. Existing alternatives56

One millisecond is a relatively course (small ?) unit of measure by electronic standards. However such temporal57

precision on a non-hard-real-time system, running on most popular operating systems (Windows, Mac, Unix), has58

no guarantees, because the predictability of software events is limited by the design of the operating system (OS).59

Specifically, even those processes designated as having a real-time priority can be pre-empted by both kernel-level60

events and by interrupt requests, as well as by other processes with equally high- priority (Ramamritham et al., 1998).61

While using systems with multiple processors may provide some benefit, they do not alter the fundamental problem.62

System developers have no way to control the hardware outside of the capabilities provided by the running OS.63

2

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 21, 2017. ; https://doi.org/10.1101/191973doi: bioRxiv preprint 

https://doi.org/10.1101/191973
http://creativecommons.org/licenses/by-nc-nd/4.0/


H. Caron et al / J. of . M 00 (2013) 1–8 3

2.1.1. Rex64

Rex is a major solution in the world of Sensorimotor Research. Based on a QNX RTOS, it is capable of displaying65

events, interacting with DIO, AIO, with a sub-millisecond reliability. It was our main inspiration for this project and66

most of our objectif was to program a free alternative containing as many elements from Rex as possible, in an open,67

improvable, configurable framework.68

2.1.2. Matlab & PsychoToolBox69

Matlab is a possible platform for such projects, nevertheless, there are notable limitations. Windows or Mac70

cannot support hard real-time operation. Therefore, while sub-millisecond jitter is acceptable in many, if not most,71

psychophysical settings, there are nonetheless many potential applications for which the software described here72

would not be suitable. In particular, experiments that must provide feedback within a very small temporal window73

(for example, to influence an on-going synaptic event) would find 2-5 ms jitter simply too variable. Furthermore,74

likewise, delivering feedback that requires a great deal of processing could potentially incur unacceptably long delays.75

There is a potential risk of blind period at the beginning of each behavioral tracking episode. Other limitations include76

the current inability to display movies or translating visual stimuli while simultaneously tracking behavioral signals.77

In addition, behavioral signals are not currently stored during the inter-trial interval. The ability to store analog78

signals continuously would benefit not only behavioral signals, but neurophysiological ones as well. In other words,79

although many acquisition cards are clearly capable in terms of number of channels, sampling rates and PC storage80

of recording neural data alongside behavioral signals, no support has been built-in for this purpose. Such a capability81

would likely be useful for many potential applications.82

2.2. Our Solution : Rexeno83

2.2.1. General Presentation84

We designed Rexeno’s structure to be flexible and compatible for many di↵erent types of experiments. One can85

plug about any analogical signal as an input (in Figure 1, we listed EEG, Eye Movements and Respiratory Movements,86

but these are just examples.) We also wanted to make the system compatible with any other hardware that requires87

triggering though digital signals (for example : Electrical stimulator devises, Transmagnetic stimulator, or Plexon88

hardware for single unit, local field potential or electroencepahlographical signals). We will show in subsection 4.289

how to configure these Strobes with Rexeno.90

Figure 1. Rexeno Setup

2.2.2. Hardware91

Prioritizing portability, we interfaced high quality hardware that was already commonplace in the world of visual92

cognition study. Here is a list of the hardware used for our system :93

• Display : CRT Screen94

• Data Acquisition : National Instruments DAQ NI 622095

3

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 21, 2017. ; https://doi.org/10.1101/191973doi: bioRxiv preprint 

https://doi.org/10.1101/191973
http://creativecommons.org/licenses/by-nc-nd/4.0/


H. Caron et al / J. of . M 00 (2013) 1–8 4

• Graphic Card : NVidia96

• CPU : Intel Xeon E540597

2.2.3. Software & Solutions98

Rexeno uses several freely available libraries, compatible with mainstream and high quality hardware, in order99

to obtain the best performances possible. Here are the main software ressources that we used in order to create our100

program :101

• Xenomai 2.6.0 : One of the most interesting options in Real-Time Operating Systems. Enables us to control102

software behabiour down to the µsec. Also provides real-time drivers for Analog/Digital interactions with AD103

cards.104

• OpenGL 2.0 : The main open-source graphical library. This 2.0 version allows us to display about anything105

and also provides powerful solutions to accelerate complicated rendering calculation with the graphic card using106

a dynamic pipeline (shader programming with GLSL)107

Figure 2. Software Architecture

2.2.4. Verification methodology108

We use this software on several di↵erent machines dedicated to neurophysiology in humans or non-human pri-109

mates. This software has been very adept at the creation of basic sensori-motor tasks, and is especially useful for the110

creation of cognitive tasks with greater numbers of stimuli and contingencies. These tasks are often coded within an111

hour, and modifications are simple to test. Because di↵erent behavioral tasks can potentially place heavy demands112

on di↵erent aspects of the operating system and hardware (e.g., vary- ing graphics, disk and memory use), end-users113

should not take observed timing accuracy in one task as direct evidence of satisfactory accuracy in another; thorough114

testing must be performed to assess the performance of new behavioral paradigms and new hardware configurations.115

The occurrence of temporal slips (unexpectedly increased latencies) often can be detected using time-stamps placed116

after critical behavioral events. These mark an event with reference to the deterministic system clock. A delay in117

the appearance of an expected time-stamp can then be used to reject trials in which timing constraints were not met.118

Of course, a delayed time-stamp could also represent a false-alarm when the delay occurred in the processing of that119

time-stamp itself and not in the preceding event. Fortunately, as we found above, such temporal slips can be made120

4

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 21, 2017. ; https://doi.org/10.1101/191973doi: bioRxiv preprint 

https://doi.org/10.1101/191973
http://creativecommons.org/licenses/by-nc-nd/4.0/


H. Caron et al / J. of . M 00 (2013) 1–8 5

very infrequent, and are rarely longer than a millisecond. Once appropriate care has been taken to ensure accuracy in121

the three domains that are most likely introduce temporal jitter and error (video output, data sampling, and software),122

the reliance on a high-level language for behavioral control o↵ers numerous bene-fits aside from simply the ease of123

task coding and portability across a wider range of hardware platforms. In particular, the simplicity with which new124

features can be coded encourages the development of new functions that improve usability and record keeping. While125

in principle such benefits could be realized in a low-level language, in practice, the di�culty and time-consuming126

nature of programming in such a language hinders their development by those who would like to spend their time127

designing and carrying out experiments rather than tweaking software.128

3. Constraints129

3.1. Definitions130

As can be seen (in Figure 1), the interaction with the environment can be summerized with the following outputs131

:132

• Display : What appears on the subject’s screen.133

• Backup : What was recorded by the machine134

• Digital Triggers : Sent by the NIDAQ card.135

Rexeno’s goal is to bring Hard Real-Time capability to these outputs.136

137

Definition : A program is said to respect hard real time constraints when it’s time of execution is deterministic.138

The current system uses Xenomai’s Analogy Drivers for the interaction with NIDAQ card, so we know than these139

programs are real time compatible[? ]. The interaction with the screens use NVidia proprietary drivers that do not140

o↵er real time guarentee (which is normal, this was not what they were designed for). Because of these drivers, it is141

not possible today to guarentee hard real time constraints while displaying something on a screen, what our tests will142

have to do is define under what conditions, jitters are still acceptable.143

3.2. Testing the system144

In order to verify the accuracy of our system, we designed the Double Flash Protocole, which consists of 2000145

trials. Each trial consists of two successive flashes (duration = 50 frames ⇡ 833 ms). Time between front edge of146

the flash is 100 frames (⇡ 1666.667ms). A photodiode is placed on the screen so that the flash creates a tension at147

the terminals of the photodiode. This tension was recorded at the same time by the Rexeno System, and by a Plexon148

Acquisition Unit. We can see a typical trial recorded on the Plexon unit in Figure 3a.149

150

It is designed to evaluate jitter between input and :151

• Hard Drive Backup152

• Displaying153

• Digital output154

3.3. Specific Hardware Interactions155

3.3.1. Hard Drive Backup156

Description157

. In a given trial, we wish to evaluate how precise the hard drive recording is. This task requires interaction with the158

Nidaq card and with the Hard Drive hardware. As said before, the Nidaq card has Real-Time compatible hardware159

(the Analogy drivers). This is not the case of the Hard Drive which cannot write in real time. This could be a problem160

because RT program is only as strong as it’s weakest link. A “seek” operation requires about 5ms (depending on the161

hardware configuration[? ]), which is obviously not enough for 1000 Hz recording (writing on several files might162

5

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 21, 2017. ; https://doi.org/10.1101/191973doi: bioRxiv preprint 

https://doi.org/10.1101/191973
http://creativecommons.org/licenses/by-nc-nd/4.0/


H. Caron et al / J. of . M 00 (2013) 1–8 6

Figure 3. a,b,d,f - Two flashes at the same position separated by a time gap e - Two flashes on the same display frame but di↵erent positions c -
Regular acquisition

1.6035 1.604 1.6045 1.605 1.6055 1.606 1.6065 1.607

x 106

0.0

0.2

0.4

0.6

0.8

1.0

Flash 1 Flash 2

Flash Gap

0 200 400 600 800 1000 1200 1400 1600 1800 2000
�0.8

�0.6

�0.4

�0.2

0.0

0.2

0.4

0.6

0.8

100 200 300 400 500 600 700 800 900

�1.5

�1.0

�0.5

0.0

0.5

1.0

1.5

2.0

7 8 0 8 0 0 8 2 0 8 4 0 8 6 0 8 8 0 9 0 0 9 2 0 9 4 0
0

1

2

3

4

7 8 0 8 0 0 8 2 0 8 4 0 8 6 0 8 8 0 9 0 0

1

2

3

4

a)

b)

c)

d)

e)

Te
ns

io
n 

(a
rb

itr
ar

y 
un

its
)

Time (ms)

Jit
te

r (
m

s)

Trial Id (No Unit)

Jit
te

r (
m

s)
Te

ns
io

n 
(a

rb
itr

ar
y 

un
its

)

Flash Up

Flash Down

Ph
ot

od
io

de
 U

p
Ph

ot
od

io
de

 D
ow

n

Flash Id (No Unit)

Time (ms)

f)

100 200 300 400 500 600 700 800 900

1665

1665.2

1665.4

1665.6

1665.8

1666

Fl
as

h 
Ga

p 
(m

s)

Trial Id (No Unit)

Photodiode
Digital Strobe

0.5 1 1.5 2

x 106

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

Timed Event

Sample Id (no unit)

Ti
m

e 
be

tw
ee

n 
tw

o 
sa

m
pl

es
 (m

s)

6

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 21, 2017. ; https://doi.org/10.1101/191973doi: bioRxiv preprint 

https://doi.org/10.1101/191973
http://creativecommons.org/licenses/by-nc-nd/4.0/


H. Caron et al / J. of . M 00 (2013) 1–8 7

create several “seek” operations on the hard drive at a given time, leading to data loss). Our solution was to use the163

IOstream C++ Library, which creates a bu↵er capable of saving on RAM memory large quantity of data and writing164

several Nidaq acquisitions to the disk using a single “write” operation. Another hardware specification indicates :165

“Host to/from drive (sustained) = 200Mb/sec“.166

On the other hand, we aim for a 1000 Hz acquisition frequency (on 8 analogy channels) which creates the following167

quantity of data :168

169

With :170

• NChannels = 8171

• S izeS ingle Acquisition = 8 Bytes172

• Frequency = 1000Hz173

• ⇥ represents the data’s encoding function1
174

Thanks to (3), we know we should be able to write all data in time without any loss (provided we use the streaming175

bu↵er technique). In the next two paragraphs, we will check that this was correctly implemented.176

Extracting data177

. In order to check that the recorded manifestations have coherent timestamps, we decided to create an algorithm that178

will detect the Flash’s relative timestamps.179

The result of this algorithm is shown in Figure 3b.180

Our acquisition frequency being 1000 Hz (on the plexon and on the rexeno system,) the ±1 ms jitter is expected181

and compatible with Visual Cognition Studies (a visual saccade has a typical duration of 10ms).182

3.3.2. On-Screen Displaying183

Displaying a stimuli is a task that requires interaction with a screen. This is done using the OpenGL2.0 library184

which will interact with the Nvidia graphic card’s drivers. The problem is the same as it was with the Hard Drive : the185

driver is not real-time compatible. In order to obtain deterministic displaying of stimuli, we took advantage of the186

CRT screen hardware which functions with a 60Hz displaying frequency. Our technique was simple and exploited the187

OpenGL’s double bu↵er capacity : if the protocol needs to draw a stimuli at the nth frame, we wait until the (n � 1)th
188

frame and draw the corresponding stimuli on the back bu↵er which will automatically be displayed on the CRT screen189

at the next frame.190

The flash gap was supposed to be 100 frames at 60Hz, On Figure 3f is the evaluation of this gap using the Plexon191

recording and the FrontEdge algorithm. The 1000Hz acquisition frequency creating again a ± 1 ms jitter.192

3.3.3. Digital Output193

Triggering digital output uses only the Analogy RT drivers. So we can control time very precisely. In order to194

trigger events with displayed stimuli, we wait for a vBlank synchronisation to occur, wait a certain amount of time195

depending of the CRT’s frequency and send the digital pulse. To evaluate the jitter, we recorded the strobe events196

on the plexon and compared these timestamps to the ones returned by our FrontEdges function. The result of this197

di↵erence can be seen on Figure 3b.198

3.3.4. Vertical Synchronisation & Tearing199

In order to fully control what is displayed on the subject’s screen, we had to use the VBlank synchronisation of the200

NVidia drivers. If enabled, the graphic card waits for the VBlank event (cathod ray beam is turned o↵ for repositioning201

at the top left of the screen) before starting to draw anything. This avoids the tearing e↵ect. We used an experiment202

where two flashes (one on the ”up” half of the screen, the other on the ”bottom” side) were supposed to appear on203

screen at the same frame. Theoretically, the ”up” flash should appear before the ”down” flash because of the VBlank204

synchronisation. With a photodiode placed at various positions, we decided to verify that assertion. Results are on205

Figure 3e.206

1Depends on the entropy but it’s asymptot should be a constant
7

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 21, 2017. ; https://doi.org/10.1101/191973doi: bioRxiv preprint 

https://doi.org/10.1101/191973
http://creativecommons.org/licenses/by-nc-nd/4.0/


H. Caron et al / J. of . M 00 (2013) 1–8 8

3.4. Conclusion207

Even if it is impossible today to control in Hard Real Time every feature of the Rexeno station, we can emulate208

real time by exploiting various techniques on a regular x86 computer.209

4. How to use Rexeno210

4.1. Using Rexeno211

As we have seen, creating a fully reliable real time environment can be a challenging task. That is why we have212

decided to fully package all these algorithms into one piece of software and distribute it freely to anyone who would213

be interested. Making it, we hope, a good choice for people interested in setting up an experiment where precise214

timing is necessary.215

4.2. Defining a task216

The user can define his protocole though a GUI that creates configurations files. These will be in charge of217

describing the di↵erent trials.218

Figure 4. Interface for trial creation

Here is an example of a configuration file created by the interface :219

220

idtrial1 300 GO TARGET1221

id1 Square Target 0.97 0 End Fixation End Target 0 255 0 0.03 3222

id2 Cross Eye 0 0 0 10000 255 0 0 0.1223

id3 FixationWindow Fixation 0 0 0 End Fixation 255 255 0 0.32 0.32 Fixation Duration224

id4 NeutralWindow Neutral 0 0 0 End Fixation 0 200 0 0.32 0.32225

id5 RedoWindow Redo 0 0 100 End Fixation 200 0 0 2 2 0226

id6 Square Fixation 0 0 0 End Fixation 0 255 0 0.03 1227

id7 CorrectWindow CorrectWindow 0.97 0 End Fixation End Target 255 255 0 0.5 0.5 Target Time228

id8 Time 300229

id9 Variable GO TARGET1 1230

endtrial231

232

With such a file, we can launch the task with a subject. The main events are presented in Figure ??233

8

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 21, 2017. ; https://doi.org/10.1101/191973doi: bioRxiv preprint 

https://doi.org/10.1101/191973
http://creativecommons.org/licenses/by-nc-nd/4.0/


H. Caron et al / J. of . M 00 (2013) 1–8 9

Figure 5. Interface for trial creation
Subject Screen Supervisor Screen

a) Subject's eye
is outside the
fixation window.
The application
pauses.

b) The subject's
eye goes to the
red dot and
activates the
fixation window.

c) Trial unpauses
and displays a
target.

d) Subject's eye
goes to the target
and validates the
trial.

Eye Position
Correct Window : Validates trial (triggers reward)
Fixation Window : Pauses until eye is inside

9

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 21, 2017. ; https://doi.org/10.1101/191973doi: bioRxiv preprint 

https://doi.org/10.1101/191973
http://creativecommons.org/licenses/by-nc-nd/4.0/

