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Abstract

Epidemiological models are dominated by SEIR
(Susceptible, Exposed, Infected and Removed)
dynamical systems formulations and their elab-
orations. These formulations can be continuous
or discrete, deterministic or stochastic, or spa-
tially homogeneous or heterogeneous, the latter
often embracing a network formulation. Here we
review the continuous and discrete deterministic
and discrete stochastic formulations of the SEIR
dynamical systems models, and we outline how
they can be easily and rapidly constructed using
the Numerus Model Builder, a graphically-
driven coding platform. We also demonstrate
how to extend these models to a metapopulation
setting using both the Numerus Model Builder
network and geographical mapping tools.

Keywords: SIR, SEIR models; stochastic simu-
lation; dynamic networks; compartmental mod-
els

1 Introduction

In a recent comprehensive review of epidemio-
logical models, Smith et al. [1] trace the devel-
opment of systems of differential equations used
over the past 100 years to study disease pro-
cesses. Once the purview of mathematicians,
physicist and engineers, dynamical system for-
mulations of epidemic processes are increasingly
being used by epidemiologists, ecologists and so-
cial scientists to study the potential for disease
pandemics to threaten the lives of humans, do-
mesticated animals and plants, and all organisms
across the globe.

Underpinning all dynamical systems models of
epidemiological outbreaks and endemics disease
are formulations based on the concept of an SEIR
progression (Figure 1), whereby susceptible in-
dividuals in disease class S enter disease class E
on exposure to a pathogen (i.e., infected but not
yet infectious themselves). Individuals in class E
then transfer, after a period of latency, into the
class of infectious individuals, I, only to trans-
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fer on recovery or death to a removed class R.
The recovered individuals may have some tem-
porary, though possibly long term, immunity
(V) and death (D) can arise from both natural
and disease-induced causes (i.e., R=V+D). Vari-
ations and elaboration of the the SEIR process
may include birth and death processes, other de-
mographic class such as age [2] and sex [3], spa-
tial structure [4, 5], and the genetic structure of
hosts and pathogens [6, 7]. Further, stochastic
formulations of SEIR models [8, 9] are increas-
ingly being used to explore the inherent and very
important stochastic aspects of epidemics includ-
ing, probabilities of fadeouts versus breakouts in
the early stages of epidemics, and logistical plan-
ning necessary for managing epidemics of uncer-
tain ultimate size.

Hethcote [10] provided a comprehensive re-
view of the fundamental deterministic dynamics
of SEIR models and their elaboration to include
an M class (that is, individuals born with ma-
ternally provided immunity that wears off over
time), and elementary characterizations of birth
and death process. His results have been consid-
erably extended to elaborated SEIR models that
include more complex characterizations of births
and of deaths, and some age-structure - with a
strong focus in the mathematics literature on the
existence and stability of outbreak and endemic
equilibria [11]. Analyses of stochastic SEIR mod-
els and elaborations remain more challenging,
though some analytical results do exist. Most
stochastic analyses, however, are computation-
ally intensive and the results numerical rather
than analytical. In addition, unlike determinis-
tic SEIR models which are readily fitted to data,
it remains a challenge to fit stochastic models
to data, with new approaches involving concepts
well beyond first courses in calculus or linear al-
gebra.

Given that an SEIR structure underpins all
epidemiological models, whether deterministic,
stochastic, or even agent-based, a succinct, ped-
agogical review of SEIR modeling is useful. In
particular a clear exposition of SEIR models for

the non-mathematician—by which we mean, sci-
entists who have some understanding of calculus,
but do not have formal training in dynamical
systems theory, or the numerical techniques to
competently build and implement computational
models. In addition, the literature lacks exposi-
tory articles that elucidate for biologists and so-
cial scientists the relationship among continuous
and discrete SEIR models (but see [12]), their
stochastic elaborations in systems and agent-
based (i.e., individual-based) computational set-
tings [13,14], as well as extensions to metapopu-
lation settings [15]. These are lacunae we hope to
fill with this paper, while at the same time pro-
viding those scientists who are looking for fast,
reliable ways to obtain and modify code needed
to address their epidemiological models with a
means to do so in the context of the Numerus
Model Builder software development platform.

Finally, given the centrality of dynamic epi-
demic models to containment of outbreaks, pol-
icy formulation and response logistics, modeling
tools are needed that can be used by health-
care professionals not trained in computational
methods to carry out containment policy, and
response analyses. Thus, our strong focus is
on how to use the Numerus Model Builder and
demonstrate its use to address these issues in
the context of epidemics that are spatially struc-
tured, such as the recent outbreak of Ebola in
West Africa [16,17].

2 Homogeneous SEIR Formu-
lations

2.1 Continuous Deterministic Models

SEIR infectious disease models are based on
dividing an otherwise homogeneous population
into the following disease classes: susceptible (S),
exposed (E; infected but not yet infectious), in-
fectious (I), and Removed (R) individuals, the
latter comprising either dead (D) or recovered
with immunity (V; for vaccinated, though nat-
urally so) that may wane over time. Through-
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Figure 1: Flow diagrams for the basic SEIV continu-
ous (A) and discrete (B) time models with transition
rates τ , σ, γ and ν from disease classes S to E, E to
I, I to V and V back to I, respectively. The class of
dead individuals D together with immune individuals
V make up the historically defined “removed class” R.
In the continuous-time formulation, λ is the rate at
which new individuals are recruited to the susceptible
population (births or emigration), µ and α are natu-
ral and disease-induced mortality rates respectively.
In the discrete-time formulation, a competing rates
approach is used to derive transition proportions p,
with identifying subscripts, as described in the text.

out, we use the roman font S, E, I, V and D to
name the class itself and the italic font S, E, I,
V and D to refer to the variables representing
the number of individuals in the corresponding
classes. The assumption of homogeneity implies
that age and sex structure are ignored. We incor-
porate population spatial structure—as would be
found in countries comprising of a network of
cities, towns, and villages—into a metapopula-
tion framework [15, 18], if we assume that a set
of homogeneous subpopulations can be organized
into a network of subpopulations, among which
individuals move in a fashion that reflects appro-
priate movement rates (e.g., propensity to move
as a function of age and sex [19])and geographi-
cal factors (e.g., distances, geographical barriers,

desirability of possible destinations).
If the time scales of the epidemic and move-

ment processes among subpopulations, including
disease induced mortality, are much faster than
the time scale of the background population de-
mography (births, recruitment, natural mortal-
ity and population level migration) then we can
ignore the demography; otherwise we cannot.
For example, in the case of influenza, epidemio-
logical and local movement processes involve no-
ticeable changes at the scale of weeks, while de-
mographic changes in the underlying population
itself (beyond epidemic disease induced death
rates) are obvious only at the scale of years.
In this case, we can ignore natural births and
deaths, and focus on epidemic processes alone.

In the context of an epidemic occurring in a
single homogeneous population of size N at the
start of the epidemic (i.e., at time t = 0), de-
note the per-capita susceptible (S) disease trans-
mission rate by τ(I,N), which we assume de-
pends on both the number of infectious indi-
viduals I(t) and the total number of individuals
N(t) in the population. In addition, we denote
rates of progression from exposed (E) to infec-
tious (I) and onto to removed with immunity
(V ) using the symbols σ and γ respectively (Fig-
ure 1). For generality, as depicted in Figure 1A,
we include a population net recruitment func-
tion λ(t), where all these recruits are assumed to
be susceptible. Later we generalize this in the
context of a metapopulation structure and allow
other disease classes to migrate. We also include
per capita disease-induced and natural mortal-
ity rates α and µ, respectively, that accumulate
in disease class D, as well as allow for the oc-
currence of a per capita immunity-waning rate
ν (Figure 1). Some or all of this latter group of
parameters may be zero, and only become non-
zero as the scope of the analysis undertaken is
enlarged. Also, as a starting point, all parame-
ters are assumed to be constant, except for the
transmission function τ , which at its most fun-
damental has the relatively simple “frequency-
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dependent” structure [20]

τ(I,N) =
βI

N
, where N = S+E+I+V (1)

with the disease transmission parameter β itself
constant over time. The even simpler “density-
dependent” form τ(I,N) = βI should be used
with caution, because at high population den-
sities it is unduly unrealistic; although at low
population density it can be quite useful to gen-
eralize τ(I,N) as being approximately density-
dependent (e.g. see [21] and the Discussion sec-
tion below).

With the above notation, the basic continu-
ous time differential equation formulation of an
SEIR epidemic process (i.e., and SEIV + D) in
a homogeneous population takes the form:

dS

dt
= λ(t) + νV −

(
τ(I,N) + µ

)
S

dE

dt
= τ(I,N)S−

(
σ + µ

)
E (2)

dI

dt
= σE−

(
γ + α+ µ

)
I

dV

dt
= γI−

(
ν + µ

)
V

To complete the description, we need to include
the relationship

N(t) = S(t) + E(t) + I(t) + V (t) (3)

We may also want to evaluate the accumulated
number of deaths Dµ and Dα, due respectively
to natural and disease-induced causes using the
equations

Dµ(t) =

∫ t

0
µN(z)dz

Dα(t) =

∫ t

0
αI(z)dz (4)

The properties of Equations 2 have been ex-
tensively studied over the past three to four
decades [10–12, 22], with the most important
results pertaining to the pathogen-invasion or
disease-outbreak condition. This is informally

derived here for the case τ = βI/N , λ(t) = µN
(i.e., individual birth and death rates are the
same) and ν = 0 from the following consider-
ations. Each infectious individual infects sus-
ceptible individuals at a rate βS/N (≈ β when
S ≈ N) over an infectious period that lasts on
average for a time 1/(γ + α+ µ). However, only
a proportion σ/(σ + µ) of infected individuals
become infectious, due to natural and disease-
induced mortality rates while in state E. Thus
the number R0 of susceptible individuals that
each infectious individual is expected to infect
at the onset of an epidemic is given by

R0 =
βσ

(σ + µ)(γ + µ+ α)
(5)

This derivation for the SEIR model, in the con-
text of density-dependent transmission, can be
found in [22]: it uses the the so-called ”next gen-
eration matrix” method [23–25] to compute this
result. Because an outbreak cannot occur unless
R0 > 1, Equation 5 in turn implies that

Outbreak threshold: β >
(σ + µ)(γ + µ+ α)

σ
(6)

2.2 Numerus SEIR Continuous-Time
Implementation

As an introduction to using Numerus Model
Builder to code dynamical systems models, we
begin with the very simple population growth
model (also known as the logistic model)

dN

dt
= rN

(
1− N

K

)
N(0) = N0 (7)

This equation can be thought of as a spe-
cial case of Equations 1 and 2 when S(0) =
N0, E(0) = I(0) = R(0) = 0, and λ(t) =
rN(t) (1−N(t)/K): under these conditions,
E(t) and I(t) remain zero and S(t) ≡ N(t) for
all t ≥ 0.

In Video 1 at the supporting website, the
reader can find a complete construction of the lo-
gistic Equation 7 using Numerus Model Builder,
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Figure 2: A Numerus Model Builder representation
of Equations 2 to 4, showing the dynamic variables
as green boxes with orange circle icons that represent
the differential equations of the system, and pink cir-
cles to represent input parameters or terms such as
λ = µN or τ = βI/N . The grid represents an out-
put table, and the blue in-square zig-zag a graphing
tool. See Video 2 at the supporting website for more
details.

with solutions generated for various values of r
when K = 1. We note that there is no loss of
generality in setting K = 1 because it can be
seen to be a scaling constant that varies with
the measurement units selected for N . (Verify
this by making the transformation x = N/K in
Equation 7.)

Using Numerus Model Builder to code up
Equations 2–4, we obtain the model illustrated
in Figure 2. We then ran the model for the case
λ(t) = µN and τ = βI/N to explore the effect
of β on solutions to Equation 2 as it increases
from a value below the outbreak threshold to
one above the outbreak threshold, as embodied
in Inequality 6. In particular, for the parameters
listed in the caption to Figure 3, it follows from

Equation 5 that the threshold is:

R0 =
0.3β

(0.3 + 0.01)(0.3 + 0.01 + 0.05)

⇒ β = 0.372

and the impact of β increasing from 0.37 to 0.38
is illustrated in Figure 3A. In this panel, we see
that after an initial drop related to the fact that
individuals entering E must first transition to I
before they can begin to infect individuals in S,
the solution is declining for β = 0.37, but ul-
timately growing for β = 0.38. In addition, as
illustrated in Figure 3B, when ν > 0 the effect of
recycling individuals from the R class back into
the S class, results a slightly higher peak epi-
demic level that does not drop down to nearly
zero before rebounding for a small echo of the
first peak.

2.3 Discrete Deterministic Models

Discrete-time models, as represented by sys-
tems of difference equations, are computation-
ally more efficient than continuous-time differ-
ential equation models, such as Equations 2, be-
cause discrete time models do not require numer-
ically intensive integration. Furthermore, dis-
crete models synchronize directly with period-
ically collected data: which may be daily or
weekly incidence rates in fast moving epidemics,
such as influenza, SARS, or Ebola; or monthly
or annual rates in slower moving epidemics such
as HIV or TB. In long running epidemics that
have a seasonal component, such as TB [26], the
effects of seasonality can only be estimated from
a model if incidence rates are reported monthly
or, at least, quarterly.

Discrete models present an event sequencing
conundrum. For example, consider outflow from
the infectious class over time interval (t, t + 1],
as modeled in the third equation in Equations
2. If there are I(t) individuals in class I at time
t then, assuming no inflow, the total number of
individuals still in class I at time t+1 is obtained
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Figure 3: The incidence I(t) is plotted over time (A.
t ∈ [0, 50], B. t ∈ [0, 1000]) using the Numerus model,
depicted in Figure 2, to generate numerical solutions
to Equations 2 under initial conditions S(0) = 999,
E(0) = 0, I(0) = 1, and V = 0 for the case µ = 0.01,
α = 0.05, σ = γ = 0.3, under the assumption that
λ(t) = µN(t). In addition: in A. ν = 0 and β varies
from 0.35 to 0.40 (in steps of 0.01); and in B. β = 1
and ν = 0.02 (red) and ν = 0 (blue). See Video 3 at
the supporting website for details on making sets of
batch using Numerus Model Builder.

by integrating the equation

dI

dt
= −

(
γ + α+ µ

)
I, I(t) specified

over (t, t+1], i.e., over one unit of time, to obtain

I(t+ 1) = I(t)e−(γ+α+µ) (8)

Hence the proportion of individuals that leave
the infectious class over time (t, t + 1] due to
recovery at rate γ, dying from disease at a rate
α, and dying from natural causes at a rate µ is

pγ+α+µ = 1− I(t+ 1)

I(t)
=
(

1− e−(γ+α+µ)
)

(9)

The simplest way to allocate the proportions
pγ|α+µ, pα|γ+µ, and pµ|γ+α of individuals leav-
ing class I into those that respectively recover,

Figure 4: The incidence I(t) is plotted over time
t ∈ [0, 210] for the continuous (red) and discrete
(blue) Numerus Model Builder coding of SEIV mod-
els represented by Equations 2 and 12 respectively for
the case τ(t) = βS(t)/N(t) and λ(t) = µN(t) using
the parameter values β = 1, α = 0.05, σ = γ = 0.3,
and ν = 0. In the discrete model we note that
Λt = dµ(t) and τ(t) is assumed constant over [t, t+1).
The numerical solutions depicted here correspond to
initial conditions S(0) = 999, E(0) = 0, I(0) = 1,
and V = 0. See Video 4 at the supporting website
for additional details on building the discrete model
using Numerus Model Builder.

die from disease, and die from natural causes is
in proportion to the rates γ, α and µ themselves.
This produces that so-called “competing rates”
formulation [27]:

pγ|α+µ =
γ
(
1− e−(γ+α+µ)

)
γ + α+ µ

pα|γ+µ =
α
(
1− e−(γ+α+µ)

)
γ + α+ µ

(10)

pµ|γ+α =
µ
(
1− e−(γ+α+µ)

)
γ + α+ µ

From this it easily follows that

pγ|α+µ + pα|γ+µ + pµ|γ+α = pγ+α+µ

Using this notation in the context of the ap-
propriate rates for each equation and making the
assumption that

Λt =

∫ t+1

t
λ(s)ds and τt = τ(I(t), N(t))

are constants that apply over time interval (t, t+
1], a discrete equivalent of Equations 2 takes the
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form

S(t+ 1) = Λt + pν|µV (t) + S(t)(1− pτt+µ)

E(t+ 1) = pτt|µS(t) + E(t)(1− pσ+µ)

I(t+ 1) = pσ|µE(t) + I(t)(1− pγ+α+µ) (11)

V (t+ 1) = pγ|µ+αI(t) + V (t)(1− pν+µ)

We note that solutions to this discrete system
will differ from solutions to the continuous sys-
tem, even for constant Λ(t), because τ(t) does
not remain constant over the interval (t, t + 1]
in the continuous model (Figure 4). However,
there is no a priori reason to favor a continu-
ous over a discrete time formulation because the
data represent averages of discrete events (that
is, transitions of individuals from one disease
class to another, or the occurrence of deaths)
rather than continuous, smooth flows. In fact,
stochastic approaches are needed to capture the
full richness of epidemiological dynamics [8,9,17]
and, as discussed below, it is far easier to make
discrete-time models stochastic than continuous-
time models.

To complete this discrete model, we have the
discrete analogues of the continuous live and
dead population variables:

N(t) = S(t) + E(t) + I(t) + V (t)

D(t) = pα|γ+µI(t) (12)

M(t) = MS(t) +ME(t) +M I(t) +MV (t)

where

MS(t) = pµ|τtS(t)

ME(t) = pµ|σE(t) (13)

M I(t) = pµ|γ+αI(t)

MV (t) = pµ|νV (t)

2.4 Discrete Stochastic SEIR Models

Before presenting a stochastic formulation of
Equations 11-13, it is worth noting that one
can simulate continuous systems models, such
as Equations 1-4, as a stochastic process of ran-
domly occurring events using Gillespie’s algo-
rithm [28, 29] and its refinements [30–32]. This
general, event-oriented approach, however, in-
volves considerably more computations invok-
ing numerical integration schemes than working
directly with discrete models. Further, as we
stressed earlier on, a continuous-time model is
theoretically no more privileged than its analo-
gous discretized formulation that has its itera-
tion interval synchronized with the frequency at
which the data are collected.

In developing a stochastic formulation we use
the notation

X̂ := BINOMIAL [n, p]

to denote that X̂ is one drawing of a bino-
mial variable representing the number of times
one of two outcomes occurs in n trails, when
the probability of this outcome occurring in a
single trial is p (i.e., a Bernoulli process with
probability p). More generally, we use the
notation (X̂1, · · · , X̂r) to denote one instance
or one particular drawing of (x1, · · · , xr) ∼
MULTINOMIAL [n; p1, · · · , pr] , where X̂i is the
number of times one of r possible outcomes oc-
curs over n trials, each have probability pi (i =
1, ..., r) of occurring in any one trial.

With this notation, we can write down
equations for the stochastic equivalent of
the discrete deterministic model represented
by Equations 11. We use the additional
notation Û with appropriate designator
subscripts to denote the number of indi-
viduals transferring between disease classes:(

Ŝ(t), T̂ (t), M̂S(t)
)

:= MULTINOMIAL
[
S(t); 1− pτt+µ, pτt|µ, pµ|τt

](
Ê(t), ÛE(t), M̂E(t)

)
:= MULTINOMIAL

[
E(t); 1− pσ+µ, pσ|µ, pµ|σ

]
(14)(

Î(t), Û I(t), M̂ I(t), D̂(t)
)

:= MULTINOMIAL
[
I(t); 1− pγ+α+µ, pµ|α+µ, pγ|α+µ, pα|γ+µ

](
V̂ (t), ÛV(t), M̂V(t)

)
:= MULTINOMIAL

[
V (t); 1− pν+µ, pµ|ν , pν|µ

]
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The stochastic version of our discrete SEIV
model is thus represented by the following equa-
tions:

S(t+ 1) = Ŝ(t) + Λ̂t + ÛV(t)

−
(
T̂ (t) + M̂S(t)

)
E(t+ 1) = Ê(t) + T̂ (t)

−
(
ÛE(t) + M̂E(t)

)
I(t+ 1) = Î(t) + ÛE(t) (15)

−
(
Û I(t) + M̂ I(t) + D̂(t)

)
V (t+ 1) = V̂ (t) + Û I(t)

−
(
ÛV(t) + M̂V(t)

)
where Λ̂t are generated from an appropriate dis-
crete distribution, such as a Poisson distribution
with expected value Λt determined from local
population birth rates or other relevant recruit-
ment processes.

To complete this stochastic discrete model rep-
resented by Equations 14-15, we have

M̂(t) = M̂S(t) + M̂E(t) + M̂ I(t) + M̂V(t)

(16)

as well as N(t) in Equations 12, which is needed
to calculate τt = τ (I(t), N(t)) using an appro-
priate expression, such as given in Equation 1.

2.5 Weakness of the SEIR formulation

Real epidemics are far more complicated than
the idealized epidemics encapsulated in the
above SEIR models. Among assumptions in
SEIR models used to keep them relatively simple
are:

1. The assumption of host homogeneity. This
assumptions is tenuous at best: the host’s
age [33], sex [34], genetic makeup (partic-
ularly MHC locus genes) [35], physiological
state [36], and history of exposure to the
current and related pathogens (the latter
due to cross-immunity issues [37]) all play

a role in affecting the vulnerability of the
host to infection, the length of time the host
is infectious, and the risk of the host dying
from disease.

2. The assumption of spatial homogeneity.
This is related to the assumption that hosts
contact one another at random. Contact
is never random. At best, contact can be
assumed to be locally random. This im-
plies that the probability individuals con-
tact one another over some future period is
inversely related to their current distance
from one another. One way around this
assumption is to extend SEIR models to a
metapopulation setting in which subpopula-
tions are regarded as homogeneous and rates
of exchange of individuals among subpopu-
lations is some inverse function of the dis-
tance among the centers of these subpopu-
lations, as discussed into Section 3 below.

3. The assumption that the transmission rate
per susceptible individual is a relatively sim-
ple function of host population and infec-
tious class densities (or numbers). For ex-
ample, Equation 1 assumes that total trans-
mission has a frequency dependent form. A
more general case that assumes transmis-
sion is essentially i) density dependent when
population density N is small relative to
some function-location parameter L, and ii)
frequency dependent when the population is
much larger than L, takes the form

τ(I,N) =
βI

N + L

More complicated functions have been pro-
posed [12,21], including a negative binomial
expression that accounts for susceptible host
aggregation [38] or the phenomenon of su-
perspreaders [39], however, they are also
limited in adhering to the following assump-
tion.

4. The assumption that the system is memory-
less. This assumption implies that formula-
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Figure 5: The top left panel provides a Numerus Model Builder representation of the discrete stochastic
model with the stochastic chip (Stochastic 0) at its center. This chip contains the code (right top panel)
for generating the multinomial distributions seen in Equations 14. The bottom panel illustrates plots of
incidence from five repeated runs of the stochastic model using the identical set of parameters in each run.
See Video 5 at the supporting website for more details.

tions do not distinguish among individuals
that have essentially spent several time pe-
riods in a particular disease state E, I or
V compared to those that have just entered
one of these states. This assumption can
be obviated by using a discrete time models
that tracks the number of days each individ-
ual has been in a particular disease state,
as seen for example in a model of the 2003
Asian outbreak of SARS [40].

5. The assumption that individuals exit dis-
ease states following exponential (continu-
ous time) or geometric (discrete time) dis-
tributions. We see this clearly in Equation
8 in the context of infectious individuals in
the continuous time model over a single time
period, which leads to the geometric rate of
decay when applied iteratively over several
time periods. This rather severe assumption
(which implies that the highest exit propor-
tions occur closest to entry into the disease
class—or put another way, the mode of the
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exit distribution is at the point of entry into
the given disease class) can be obviated us-
ing a box-car model or distributed-delay ap-
proach. In these formulations, infected in-
dividuals pass through disease class E by
passing through a sequence of disease sub-
classes E1, E2, ..., Er, before passing into the
disease subclass sequence I1, I2, ..., Ik, and
then finally into disease class V [41–44]. In
this case, the exit distributions from E and
I are no longer exponential, but are now Er-
lang (i.e., a subclass of the Gamma distribu-
tion). Further, the mode of the Erlang dis-
tribution becomes increasingly peaked and
approaches the mean as the number of sub-
classes increases.

6. The assumption that the transmission rate
parameter is time independent. Primary
reasons why epidemics subside are that ei-
ther the proportion of susceptible individu-
als in the population is reduced to the point
where the epidemic can no longer be sus-
tained (so-called threshold effect [20, 45])
or the rate at which susceptible individu-
als contact infectious individual during the
course of an epidemic, as in the recent Ebola
outbreak in West Africa [17, 46], precipi-
tously falls due to behavioral reasons as
the epidemic proceeds. One approach is
to assume that β has the exponential form
β(t) = β0e

−εt (e.g. as in [47]). This is a
little extreme because we should not expect
β not to start to decline precipitously at the
start of the epidemic, but only part way into
the epidemic, once public awareness of the
full potential of the epidemic has become
apparent. In this case, a mirror-image, s-
shaped curve of the form

β(t) =
β0

1 +
(
t
tc

)ε (17)

for parameters tc > 0 and ε > 1 is more
appropriate (in a manner analogous to the

onset of density-dependence, as discussed in
[48]).

7. The assumption that pathogen dose can be
ignored. The human immune system
is extremely complex and takes a variable
amount of time to gear up once invaded
by a replicating army of pathogens, as the
gear-up time depends on the condition of
the host, host genetics, and prior host expe-
rience with the same and other pathogens.
Small pathogen armies (i.e., low doses) are
more easily contained by the hosts immune
system—that is, before they can replicate
to reach levels that may overwhelm and kill
the host—than high doses or repeated expo-
sure to lower doses over a short window of
time. Such host-immune-system/pathogen
dynamics can only be understood using
models that are often more complicated
than the SEIR model itself [49, 50]. Fur-
ther, ignoring both single and repeated dose
effects may severely compromise the reliabil-
ity and transferability of SEIR models fitted
to one population and then applied to an-
other population or even to the same popu-
lation at a later date.

8. The assumption that infectious individuals
are equally hazardous. Although this falls
within the ambit of Assumption 1, it is
worth pointing out that the phenomenon
of superspreaders is well-known and that
in some epidemics fewer than twenty of in-
fected individuals may be responsible for
more than 80% of transmission events [39].

3 Metapopulation Formulation

The first step in extending homogeneous SEIR
models to a metapopulation setting is to prepare
the homogeneous models by embedding them in
a background population through the addition
of migration processes (Figure 6A). For example,
for the ith subpopulation we can add local per-
capita emigration rates qXi to Equations 2 for
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X=S, E, I, and R, to account for individuals that
move in and out of the four different age classes.
If we do this for all subpopulations using a set of
subpopulation emigration rates qXi , i = 1, ...,m,
we can then also generate a set of immigration
rates hXi that conserves total movement numbers
within the metapopulation. In this case, we need
to define a movement matrix with elements πXij
such that

hXi (t) =
m∑
j=1

πXijq
X
j Xj(t), (18)

where
∑m

j=1 π
X
ij = 1 for i = 1, ...,m and X=S, E,

I, and V. We can then add this migration process
to Equations 2, applied to the ith subpopulation
in the metapopulation network, to obtain:

dSi
dt

= hSi + λi(t) + νiRi (19)

−
(
τi(Ii, Ni) + µi + qSi

)
Si

dEi
dt

= hEi + τi(Ii, Ni)Si−
(
σi + µi + qEi

)
Ei

dIi
dt

= hIi + σiEi−
(
γi + αi + µi + qIi

)
Ii

dVi
dt

= hVi + γiIi−
(
νi + µi + qVi

)
Vi

We can further assume that the movement el-
ements πj`(t) are derived from a set of connec-
tivity strengths κj`(t) that reflect that relative
ease with which an individual in subpopulation
j can move to subpopulation ` over the time in-
terval [t, t + 1) and a set of relative attractivity
values a`(t) that are characteristics of the nodes
`. These attractivity values a`(t) are assumed
to bias the movement of any individual leaving
subpopulation j to move to subpopulation ` with
probabilities computed using the formula:

πj`(t) =
κj`a`(t)∑m
r=1 κjrar(t)

(20)

We further note that we allow κj` 6= κ`j to hold
in general, though if κj` are constructed using
a symmetric distance matrix with elements εj`
such that

κj` = e−δεj`

for some scaling constant δ > 0, then the relation
κ`j = κj` will hold.

The attractivity factor a`(t) could reflect sev-
eral different aspects of the subpopulations, in-
cluding their size, proportion of infected or im-
mune individuals in the subpopulation, and so
on. We will assume that two factors play a cen-
tral role in determining the relative attractivity
of each subpopulation: a characteristic size pa-
rameter N c

i and the ratio of infectious individu-
als Ii(t)/Ni(t) for the ith population, i = 1, ...,m.
For example, we might assume attractivity falls
off linearly from 1 to 0 with the ratio Ii/Ni

(i.e., use the factor (1 − Ii/Ni)). Similarly, we
might assume that the attractivity falls off as
N(t) ∈ [0,∞) varies on either side of N c

i (e.g.
a factor of the form (1/e)(N/N c

i )e−N/Ni which
ranges between 0 and 1 and back to 0 as N in-
creases from 0 to N c

i and then beyond to infin-
ity). In this case we may define

a`(t) = k

(
1− I`(t)

N`(t)

)
+ (1−k)

(
N`(t)

eN c
`

e−N`(t)/N
c
`

)
where k ∈ [0, 1] switches the emphasis from the
population size factor to the prevalence factor as
k increases in value from 0 to 1.

The inputs hXi (t) and per-capita flow rate out-
puts qXi (X=S, E, I and V) for the focal ith sub-
population, can either be 0, constants, or gener-
ated using probability distributions in stochas-
tic versions of the model. The inputs will, of
course, depend on the density or number of in-
dividuals available in the environment surround-
ing the focal subpopulation i, with population
structure taken into account using network or
nearest neighbor concepts. In the context of
discrete deterministic or stochastic models, we
need to account for the per-capita flow rate out-
puts qX in our competing rates formulations to
obtain the extended probability for the case of
rates assumed to be constant over each interval
of time (though the rates themselves can vary
from one time interval to the next). In this
case, we augment the proportions/probabilities
in Equation 10 to define the following terms for
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Figure 6: A. A homogeneous subpopulation with input and output flows of individuals to and from other
subpopulations in the metapopulation (cf. Figure 1A. B. The flow network quantities and governing equation
for the metapopulation as a whole. C. The Numerus Model Builder submodel of the subpopulation processes
depicted in A, which is basically the Numerus Model Buildermodel illustrated in Figure 2 with input and
output pins added as described in Video 6 at the supporting website. D. The Numerus Model Builder
metapopulation model formulated one hierarchical level above the subpopulation model depicted in C, with
the use of the NetSEIV, Migration and Metapop codechips explained in Video 7 at the supporting website.
The NodePop codechip connected to the yellow “save” event container allows the one-time event of saving
trajectories of all variables from all nodes at the end of the simulation.

constructing the infectious class equation in the
ith subpopulation

pγi|αi+µi+qIi
≡ γiP

I
i

pαi|γi+µi+qIi
≡ αiP

I
i (21)

pµi|γi+αi+qIi
≡ µiP

I
i

pqIi |γi+αi+µi
≡ qIiP

I
i

where

P I
i ≡

(
1− e−(γi+αi+µi+q

I
i)
)

γi + αi + µi + qIi
(22)

and, as before, it follows that

pγi+αi+µi+qIi
≡
(

1− e−(γi+αi+µi+q
I
i)
)

= pγi|αi+µi+qIi
+ pαi|γi+µi+qIi

+pµi|γi+αi+qIi
+ pqIi |γi+αi+µi
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with similar expressions following for the suscep-
tible, the exposed and the immune classes ex-
pressed in terms of PX

i , X=S, E, I, and V follow-
ing the patterns of Equations 21 and 22

These expressions can be used to write down
an extended version of the deterministic discrete

model given by system of Equations 11 or of the
stochastic model given by system of Equations 14
and 15. By way of illustration, using Q̂X to rep-
resent the proportion of individuals leaving class
X=S, E, I, and V due to immigration, Equa-
tions 14 now become (dropping the argument in
t and the subscript i)

(
Ŝ, T̂ , D̂S, Q̂S

)
:= MULTINOMIAL

[
S; 1− pτt+µ+qS , pτt|µ+qS , pµ|τt+qS , pqS|τt+µ

]
(
Ê, ÛE, D̂E, Q̂E

)
:= MULTINOMIAL

[
E; 1− pσ+µ+qE , pσ|µ+qE , pµ|σ+qE , pqE|σ+µ

]
(
Î , Û I, D̂∗, D̂I, Q̂I

)
:= MULTINOMIAL

[
I; 1− pγ+α+µ+q̂I , pγ|α+µ+q̂I , (23)

pα|γ+µ+q̂I , pµ|γ+α+q̂E , pq̂I|γ+α+µ

]
(
V̂ , ÛV, D̂V, Q̂V

)
:= MULTINOMIAL

[
V ; 1− pν+µ+q̂V , pν|µ+q̂V , pµ|ν+q̂V , pq̂V|ν+µ

]

Thus, in the case of the ith subpopulation, the
actual number of individuals leaving the different
disease classes during the time interval [t, t + 1)
(after sampling has been applied) are:

Q̂S
i (t) = pqSi |τt,i+µi

Si(t)

Q̂E
i (t) = pqEi |αi+µi

Ei(t) (24)

Q̂I
i(t) = pqIi |γi+αi+µi

Ii(t)

Q̂V
i (t) = pqVi |αi+µi

Vi(t)

Assume the only source for individuals immi-
grating to a subpopulation during the interval
[t, t + 1) are those emigrating from all of the
other subpopulations. Given this, as in setting
up Equations 18 and 20, we can now express the
emigrants HX

i (t) (i = 1, ...,m) in terms of the
immigrants QX

j (t) (j = 1, ..,m, for each X=S, E,
I, or R), and the parameters πj`:

ĤX
j (t) =

m∑
`=1

ĥX`j(t) X=S, E, I, and V

where the individual ĥX`j(t) are generated from

the drawings

(ĤX
1j(t), · · · , ĤX

mj(t)) = (25)

MULTINOMIAL[QX
j (t);πj1(t), ..., πjm(t)]

With this process completed, we then obtain the
following extended version of Equations 15

Si(t+ 1) = Si(t) + ĤS
i (t) + ÛV

i (t)

−
(
T̂i(t) + M̂S

i (t) + Q̂S
i (t)

)
Ei(t+ 1) = Ei(t) + ĤE

i (t) + T̂i(t)

−
(
ÛE
i (t) + M̂E

i (t) + Q̂E
i (t)

)
(26)

Ii(t+ 1) = Ii(t) + ĤI
i (t) + ÛE

i (t)

−
(
Û I
i (t) + D̂i(t) + M̂ I

i (t) + Q̂I
i(t)
)

Vi(t+ 1) = Vi(t) + ĤV
i (t) + Û I

i (t)

−
(
ÛV
i (t) + M̂V

i (t) + Q̂V
i (t)

)
The recruitment numbers Λ̂t, generated during
each interval (t, t + 1], are drawn from an ap-
propriate discrete stochastic process. The sim-
plest is a Poisson process with expected value
Λt, where the latter is determined by local pop-
ulation birth rates or other processes generating
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Figure 7: Fig: Prevalence plots predicted by a
continuous-time deterministic metapopulation model
when the index case starts out in one of six possible
locations (each with S(0) = 20, 000 and other classes
at 0, except for the location that has I(0) = 1 and
S(0) = 19, 999), where the locations numbered from 0
to 5 are strung out in a straight line in the order 0, 1,
2, 3, 4, 5, and individuals flow only to subpopulations
that are their immediate neighbors. Subpopulation
prevalence rates are plotted in A. (index case in sub-
population 0) and B. (index case in subpopulation
2) with the subpopulation containing the index case
clearly leading the outbreaks in closest and the next
closest neighboring populations. Total prevalence is
plotted in C. for outbreaks with two index cases that
are either the end two (red plot) or center two (blue
plot) subpopulations.

new individuals. Illustrative simulations of the
metapopulation model depicted in Figure 6 for
the case of 6 locations strung out in a row, where
individuals can only move between neighboring
locations are provided in Figure 7.

4 Fitting Models to Data

Methods for fitting epidemiological and other
types of dynamical systems models to data is a
vast topic that requires mathematicians, statis-
ticians, and engineers around the world working
on the problem full time. Here we only touch the
surface of the topic and discuss how Numerus
Model Builder can be used to address the issue
under relatively straightforward and manageable
situations (i.e., not too many equations and with
a few parameters at most free to vary during the
fitting procedure). A gentle introduction to the
field of fitting population models to data is pro-
vided by Hilborn and Mangel [51]. We will avoid
the issue of model selection itself [52, 53]—i.e.,
if one fits various models to data with different
numbers of parameters, then how does one de-
cide which of these models best fits the data in
an information theoretic sense—since this is also
a research topic that attracts considerable atten-
tion.

Fitting dynamic models to a set of observa-
tions Y = {Y1, ..., Yn}, where the index i in
Yi refers to time t = i, i = 1, .., n, typically
involves generating a set of comparable values
y(θ̂) = {y1(θ̂), ..., yn(θ̂)} from a model that has
a set of m parameters θ = {θ1, ..., θm}, where
yi(θ̂) is the value of some variable in the model
at time t = i when the parameter values are
θ = θ̂.

The two dominant approaches to fitting mod-
els to data are least-squares estimation (LSE),
which has been largely supplanted by the max-
imum likelihood estimation (MLE) [54]. The
latter is typically embedded in a Markov Chain
Monte Carlo (MCMC) algorithm that constructs
a probability distribution for θ using Bayes the-
orem [55–58]. MCMC requires the likelihood
function to be known. This can be obviated,
though, by assuming the distribution of model
outcomes to be Poisson (as we do below), us-
ing likelihood-function-free methods [59], or us-
ing approximate Bayesian approaches [60].

LSE methods involve minimizing the sum-of-
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squares residuals (or error) measure

RSS(θ̂) =
m∑
i=1

(
yi(θ̂)− Yi

)2
(27)

On the other hand, MLE methods that assume
model outcomes are Poisson, but with a dif-
ferent Poisson mean yi(θ̂) for each data point
Yi, i = 1, ..., t, involves maximizing the log-
likelihood function

lnL(Y |θ̂) =
t∑
i=1

ln

(
yi(θ̂)Yie−yi(θ̂)

Yi!

)

or minimizing its negative, which can be written
for ŷi = yi(θ̂) as

− lnL(Y |θ̂) =
t∑
i=1

(
ŷi +

Yi(Yi + 1)

2
− Yi ln ŷi

)
(28)

Here, for purposes of illustration, we fit our
deterministic SEIV model to the Sierra Leone
Ebola weekly incidence data [61] using both LSE
and MLE approaches (Figure 8: cf. fits obtained
in [47]). When fitting such data the appropriate
initial conditions are generally uncertain because
detection of the putative index case does not gen-
erally pin down the start of the epidemic: the
actual index case may often go undetected and
the number of individuals in class E at the time
of the first case is also unknown. Thus, as part of
the fitting procedure, we allow the initial values
E(0), I(0) in the model to be fitted to the data.
To keep the dimensions of the fitting problem
down, however, we set

E(0) = I(0) = Z

and the search for the best fitting value of Z.
Another imponderable is the actual number of
individuals N(0) at risk at the start of the epi-
demic. Thus we also treat N(0) = N0 to be an
optimization parameter, though we set V (0) = 0
under the assumption that if some individuals
in the population were immune to Ebola at the
start of the epidemic, this would be reflected in

Figure 8: The SEIV discrete time model given by
Equations 11 with fixed parameters ν = 0, µ = 0.001,
α = 0.05 and Λt = 0 (cf. Figure 4) has been fit-
ted to Ebola data from the Sierra Leone 2014 out-
break in which more than 10,000 cases occurred dur-
ing the course of an approximately one-year period
[61]. A. The blue and red curves are the best fit LSE
(cf. Equation27 and MLE (cf. Equation 28 obtained
with the optimal parameter sets given in the text. B.
The black dotted line is the MLE fit, as in Panel A,
with the red, orange, purple and blue plots, simula-
tions obtained after obtaining the best MLE fits to
the first 10, 20, 30 and 40 weeks of incidence respec-
tively. See Video 9 at the supporting website for more
information on how to set up and run optimizations
on this model using Numerus Model Builder.

a lower-valued estimate of N0. Thus N0 should
be interpreted as the “initial population at risk”
rather than actual popultion size. Also, in pre-
liminary runs of our optimization algorithm (i.e.
when fixing diffent combinations of parameters
and solving reduced parameter set problems),
the difference between optimal values for σ and
γ under variety of settings always lead to opti-
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mal values that differ by less than a few percent.
Thus to further reduce the dimension of the opti-
mization problem, we set σ = γ during the opti-
mization procedure. Further, we also fixed µ and
γ (which in problems like this can be estimated
outside of the incidence data) to 0.001 and 0.05
respectively, as well as setting λ = ν = 0. A more
rigorous fitting of the Sierra Leone data would
need these parameters to be properly estimated
ahead of time, but our purpose here is to demon-
strate different aspects of the fitting procedure,
rather than undertaking an in depth analysis of
the epidemic itself.

With the above parameter and model settings,
the best-fitting remaining parameter values, de-
noted by asterisk and obtained using a Nelder-
Mead minimization algorithm, were

LSE:

(N∗
0 , E

∗
0 = I∗0 , σ

∗ = γ∗) = (409387, 6.3, 0.43)

β∗(t) =
1.70

1 +
(

t
18.1

)2.56
MLE:

(N∗
0 , E

∗
0 = I∗0 , σ

∗ = γ∗) = (477435, 19.7, 0.37)

β∗(t) =
1.49

1 +
(

t
16.8

)2.24
In Figure 8A we see that the LSE and MLE

provide similar fits, though both provided rela-
tively poor fits to the first third of data: these
data reflect a more linear than the exponential
initial phase which is uncharacteristic of homo-
geneous SEIR models, particular those that have
no spatial structure. In general, we should not
expect and SEIR model to fit the data particu-
larly well because many of the assumptions in-
herent in the SEIR model, as discussed in the
previous section, are violated to some often-
unknown and likely-large degree.

Though the fits are similar—both, for exam-
ple predict an initially β around 1.5 that drops
to half that level in just over two weeks after

the first cases have been detected—the LSE fit
predicts an 14% smaller initial population at
risk than the MLE fit. Thus the errors associ-
ated with this estimation can be quite large, and
require a Bayesian type Markov Chain Monte
Carlo (MCMC) approach to estimate them. Fur-
ther, as is evident from our plots in Figure 8B, if
we use the first T weeks of data, T = 10, 20, 30,
and 40,to fit the model, we see that fitting the
first 10 weeks (red curve) greatly overestimates
the final size of the epidemic, while fitting the
first 20 weeks somewhat underestimates the final
number of cases. Before leaving this example, we
note that in several runs of the optimization algo-
rithm, different starting conditions converged to
different solutions, thereby indicating that some
of these solutions are local rather than global
minimum. When this happened, we selected the
solution that gave the lowest log-likelihood value,
but our searches were not sufficiently exhaustive
for us to be sure that we had found the global
minimum for each case.

5 Discussion and Conclusion

What is the value of building SEIR models in
anticipation of, during, or after an epidemic out-
break, given the level of accuracy that can be
expected from such models? As with all models
of complex biological systems centered around
organisms, populations or communities, the an-
swer is the same: models provide a framework
for obtaining insights into dynamic population
processes that could not be obtained without
them. Further, they provide a means for ex-
ploring and assessing the efficacy of interven-
tions and other types of management actions de-
signed to protect, conserve, or exploit the pop-
ulations under consideration. In the context of
epidemics this has certainly been true with re-
gard to implementing vaccination [17,62,63] and
quarantine programs [64], assessing the effects
of behavior [65], case detection [66], and treat-
ment rates [67,68], managing the logistics of set-
ting up treatment facilities during the course of
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epidemics, evaluating the efficacy of educational
[69] and prophylactic campaigns [70], as well as
drug-delivery programs that reduce the risk of
producing drug-resistance pathogen strains [71].

Models are also the best tools for guiding
our response to an outbreak once it has be-
gun. Although, after 10 weeks, a fit to the
Sierra Leone data set would have substantially
underestimated the problem at hand, the fit at
20 weeks provided a much better ball park as-
sessment of the final size of the Sierra Leone
outbreak than could have been obtained with
non dynamic modeling efforts. This remained
somewhat true at 30 weeks and certainly so at
40 weeks, despite all the known serious viola-
tions of an SEIR model applied to an inhomo-
geneous, spatially-structured population. Thus
SEIR models remain an important tool for man-
aging epidemics, provided we treat predictions
from such models with circumspection.
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[65] Funk S, Salathé M, Jansen VA. Modelling
the influence of human behaviour on the

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 13, 2017. ; https://doi.org/10.1101/191601doi: bioRxiv preprint 

https://doi.org/10.1101/191601


Getz et al., Epidemic Modeling Primer Confidential, do not cite, December 13, 2017 21

spread of infectious diseases: a review. Jour-
nal of the Royal Society Interface. 2010;p.
rsif20100142.

[66] Dye C, Gay N. Modeling the SARS epi-
demic. Science. 2003;300(5627):1884–1885.

[67] Castillo-Chavez C, Song B. Dynamical
models of tuberculosis and their applica-
tions. Mathematical biosciences and engi-
neering. 2004;1(2):361–404.

[68] Salomon JA, Lloyd-Smith JO, Getz WM,
Resch S, Sánchez MS, Porco TC, et al.
Prospects for advancing tuberculosis con-
trol efforts through novel therapies. PLoS
medicine. 2006;3(8):e273.

[69] Hadeler KP, Castillo-Chávez C. A core
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List of supporting online material

To enable the reader to run all our mod-
els, we have provided the 6 models we
used to generate the results presented in
our paper: they are available at https:

//www.dropbox.com/sh/i5bh700pbfijrcq/

AAB2HBEs7MA4ir4CRJyDhb4Ia?dl=0. These
models are listed below together with the videos
(which can be downloaded at YouTube using the
url links provided) that explain some of the de-
tails on how the models where built using the Nu-
merus Model Builder (NMB) Platform. A free
Mac version of NMB Light is available at https:
//www.dropbox.com/s/6kyli8zqz0yl8vs/

NumerusMBL-0.056.dmg?dl=0, and a free Win-
dows version of NMB Light is available at https:
//www.dropbox.com/s/wbn06fvubt9ovs7/

NumerusMBL.056_setup.exe?dl=0. NMB
allows users to build their own models or to
modify the structure of the models listed below.
It also allows users to run the models, input
data as a comma separated string (Model 6, see
Video 9 for details) and set different parameter
values in each run using sliders.

Video 1 and Model 1: Building and running
a logistic differential equation model. Model
used is model1 logistic.nmd. Video link
is: https://www.youtube.com/watch?v=

bUTvWWqVzUY.

Video 2 and Model 2: Building and running
a continuous time SEIR model. Model
used is model2 SEIR cont.nmd. Video link
is: https://www.youtube.com/watch?v=

v6EIvPrE5Dk.

Video 3 and Model 2: Demonstrating how
to make batch runs to generate the simu-
lations plotted in Figure 3A. Model used
is model2 SEIR cont.nmd. Video link
is: https://www.youtube.com/watch?v=

-YywvTp_scs.

Video 4 and Model 3: Setting up a dis-
crete SEIV model. Model used is
model3 SEIR disc.nmd. Video link is:
Video link is: https://www.youtube.com/

watch?v=_wpHNl_acEQ.

Video 5 and Model 4: Setting up a
stochastic SEIV model. Model used is
model4 SEIR stoch.nmd. Video link is:
https://www.youtube.com/watch?v=

VAGtIvq_YCo

Video 6 and Model 5: Adding pins to the
continuous SEIV model and implement
model as a chip at a higher hierar-
chical modeling level. Model used is
model5 SEIR metapop cont.nmd. Video
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link is: https://www.youtube.com/watch?
v=bZLH8HAF2LQ.

Video 7 and Model 5: Using the SEIV model
in Video 6 as a submodel in a metapop-
ulation network setting. Model used is
model5 SEIR metapop cont.nmd. Video
link is: https://www.youtube.com/watch?
v=k8IEfIQCM9o.

Video 8 and Model 5: Setting up a net-
work model using the Numerus Model
Builder mapping tool. Model used is
model5 SEIR metapop cont.nmd. Video
link is: https://www.youtube.com/watch?
v=CIvoDM6a-HE.

Video 9 and Model 6: Demonstrating how
to use the least-square fitting tools and
finding the parameter β in the SEIV dis-
crete model the best fits the Sierra Leone
2014 Ebola incidence data. Model used is
model6 SEIR disc datafit.nmd. Video link
is: https://www.youtube.com/watch?v=

7gLMpzb-R7Q.
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