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Figure 1: Illustrative Pyfolding outputs for fitting equilibrium and kinetic datasets of: (A) the two-
state folding FKBP12 protein (1) and (B) the 3-state folding thermophilic AR protein (tANK) identified 
in the archaeon Thermoplasma (2). Both show three graphs, the first is the equilibrium chemical 
denaturation, the second is the chevron plot and the third is the residuals for the fit of the chevron 
plot. In (A) the fits shown are to two-state folding models (both equilibrium and kinetic).  In (B) fits 
shown are to three-state folding models (both equilibrium and kinetic - SI Jupyter Notebook 1).  For 
the kinetic three state-model the multiple kinetic phases of the chevron plot are fitted using two 
linked equations describing the slow and fast phases (SI Jupyter Notebook 4). 
 
Figure 2: Illustrative PyFolding outputs for global fitting of GuHCl-induced equilibrium unfolding 
experiments of series of single-helix deletion CTPRn proteins to a heteropolymer Ising model (3). 
Each output shows (A) the parameters obtained with error and correlation coefficient of the fit of 
the data, (B) graphical representation of the topology used to fit the data, (D) the graphs of the 
fitted data, (E) the graph of the first derivative of the fit function for each curve and (F) graph of the 
denaturant dependence of each subunit used. 
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[Abstract] 
 
Our understanding of how proteins find and adopt their functional three-dimensional structure has 

largely arisen through experimental studies of the denaturant- and primary sequence- dependence 

of protein stability and the kinetics of folding.  For many years, curve fitting software packages have 

been heavily utilized to fit simple models to these data. Although such software packages are easy 

to use for simple functions, they are often expensive and provide substantial impediments to 

applying more complex models or for the analysis of large datasets. Moreover, over the past decade, 

increasingly sophisticated analytical models have been generated, but without simple tools to 

enable routine analysis.  Consequently, users have needed to generate their own tools or otherwise 

find willing collaborators. Here we present PyFolding, a free, open source, and extensible Python 

framework for the analysis and modeling of experimental protein folding and thermodynamic data. 

To demonstrate the utility of PyFolding, we provide examples of complex analysis: (i) multi-phase 

kinetic folding data fitted to linked equations and (ii) thermodynamic equilibrium data from 

consensus designed repeat proteins to both homo- and heteropolymer variants of the Ising model.  

Example scripts to perform these and other operations are supplied with the software. Further, we 

show that PyFolding can be used in conjunction with Jupyter notebooks as an easy way to share 

methods and analysis for publication and amongst research teams. 
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[Introduction] 

The last decade has seen a shift in the analysis of experimental protein folding and thermodynamic 

stability data from the fitting of individual datasets using simple models to more and more complex 

models employed using global optimization over multiple large datasets [examples include Refs: (3-

21)]. This shift in focus has required moving from user-friendly, but expensive software packages to 

bespoke solutions developed in computing environments such as MATLAB and Mathematica or by 

using in-house solutions [examples include: (3, 6, 12, 21, 22)]. However, as these methods of analysis 

have become more essential, simple curve fitting software no longer provides sufficient flexibility 

to implement the models. Thus, there is increasingly a need for substantially more computational 

expertise than previously required. In this respect the protein folding field contrasts with other 

fields, for example x-ray crystallography, where free or inexpensive and user-friendly interfaces and 

analysis packages have been developed (23). 

 

Here we present PyFolding, a free, open-source and extensible framework for analysing and 

modelling protein folding kinetics and thermodynamic stability. The software, coupled with the 

supplied models / Jupyter (iPython) notebooks, can be used by researchers with less programming 

expertise to access more complex models/analyses and share their work with others.  Moreover, 

PyFolding also enables researchers to automate the time-consuming process of combinatorial 

calculations, fitting data to multiple models or multiple models to specific data. To demonstrate 

these and other functions we present a number of examples as Jupyter notebooks.  This enables 

novice users to simply replace the data path and rerun for their systems. The Jupyter notebooks 

provided also show how PyFolding provides an easy way to share analysis for publication and 

amongst research teams. 

 

[Results & Discussion] 

PyFolding is distributed as a lightweight, open-source Python library through github and can be 

downloaded with instructions for installation from the authors’ site 1 .  PyFolding has several 

dependencies, requiring Numpy, Scipy and Matplotlib. These are now conveniently packaged in 

several Python frameworks, enabling easy installation of PyFolding even for those who have never 

used Python before (described in the “Setup.md” file of PyFolding).  As part of PyFolding, we have 

                                                      
1 https://github.com/quantumjot/PyFolding 
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provided many commonly used folding models, such as two- and three-state equilibrium folding 

and various equivalent kinetic variations, as standard (S.I Jupyter notebook 1-4). Functions and 

models themselves are open source and are thus available for inspection or modification by both 

reviewers and authors. Moreover, due to the open source nature, users can introduce new 

functionality by adding new models into the library building upon the template classes provided.  

 

Fitting and evaluation of typical folding models within PyFolding: PyFolding uses a hierarchical 

representation of data internally. Proteins exist as objects that can have metadata as well as 

multiple sets of kinetic and thermodynamic data associated with them. Input data such as chevron 

plots or equilibrium denaturation curves can be supplied as comma separated value files (.CSV). 

Once loaded, each dataset is represented in PyFolding as an object, associating the data with 

numerous common calculations. Models are represented as functions that can be associated with 

the data objects you wish to fit. As such, datasets can have multiple models and vice versa enabling 

automated fitting and evaluation (S.I Jupyter notebooks 1-3). Parameter estimation for simple (non-

Ising) models is performed using the Levenberg–Marquardt non-linear least-mean-squares 

optimization algorithm to optimize the objective function [as implemented in SciPy (24)].  The 

output variables (with standard error) and fit of the model to the dataset (with R2 coefficient of 

determination) can be viewed within PyFolding and/or the fit function and parameters written out 

as a CSV file for plotting in your software of choice (Figure 1 & S.I Jupyter notebook 1-3). Importantly, 

by representing proteins as objects, containing both kinetic and equilibrium datasets, PyFolding 

enables users to perform and automate higher-level calculations such as Phi-value analysis (25, 26), 

which can be tedious and time-consuming to perform otherwise (S.I Jupyter notebook 3). Moreover, 

users can define their own calculations so that more complex data analysis can be performed.  For 

example, Figure 1B and S.I Jupyter notebook 4 shows how multiple kinetic phases of a chevron plot 

(fast and slow rate constants of folding) can be fitted to two linked equations describing the slow 

and fast phases of a 3-state folding regime.  We believe that this type of fitting is extremely difficult 

to achieve with the commercial curve fitting software commonly employed for analysing these data, 

owing to the complexity of parameter sharing amongst different models. 

 
More “complex” fitting, evaluation and simulations using the Ising Model: Ising models are 

statistical thermodynamic “nearest-neighbour” models that were initially developed for 

ferromagnetism (27, 28). Subsequently, they have been used with great success in both biological 
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and non-biological systems to describe order-disorder transitions (12). Within the field of protein 

folding and design they have been used in a number of instances to model phenomena such as helix 

to coil transitions, beta-hairpin formation, prediction of protein folding rates/thermodynamics and 

with regards to the postulation of downhill folding (6, 12, 20, 29-34). Most recently two types of 

one-dimensional (1-D) variants have been used to probe the equilibrium and kinetic un/folding of 

repeat proteins (3, 12, 17, 21, 22, 35, 36). The most commonly used, and mathematically less 

complex, has been the 1-D homopolymer model (also called a homozipper). Here, each arrayed 

element of a protein is treated as an identical, equivalent independently folding unit, with 

interactions between units via their interfaces.  Analytical partition functions describing the 

statistical properties of this system can be written. By globally fitting this model to, for example, 

chemical denaturation curves for a series of proteins that differ only by their number of identical 

units, the intrinsic energy of a repeated unit and the interaction energy between the folded units 

can be delineated. However, this simplified model cannot describe the majority of naturally 

occurring proteins where subunits differ in their stabilities, and varying topologies and/or non-

canonical interfaces exist.  In these cases, a more sophisticated and mathematically more complex 

heteropolymer Ising model must be used. Here the partition functions required to fit the data are 

dependent on the topology of interacting units and thus are unique for each analysis.  

 

At present, there is no freely available software that can globally fit multiple folding datasets to a 

heteropolymer Ising model, and only a few that can adequately implement a homopolymer Ising 

model.  Therefore, most research groups have had to develop bespoke solutions to enable analysis 

of their data (3, 21, 22, 35, 36). Significantly, in PyFolding we have implemented methods to enable 

users to easily fit datasets of proteins with different topologies to both the homozipper and 

heteropolymer Ising models. To achieve this goal PyFolding presents a flexible framework for 

defining any non-degenerate 1-D protein topology using a series of primitive protein folding 

“domains/modules”. Users define their proteins’ 1-D topology from these “domains/modules” (S.I 

Jupyter notebook 5-6). PyFolding will then automatically calculate the correct partition function for 

the defined topology, using the matrix formulation of the model [as previously described (12)], and 

globally fit the equations to the data as required (S.I Jupyter notebook 5-6).  The same framework 

also enables users to simulate the effect of changing the topology, a feature that is of great interest 

to those engaged in rational protein design (S.I Jupyter notebook 7).  
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To determine a globally optimal set of parameters that minimises the difference between the 

experimental datasets and the simulated unfolding curves, PyFolding uses the stochastic differential 

evolution optimisation algorithm (37) implemented in SciPy (24). In practice, experimental datasets 

may not adequately constrain parameters during optimisation of the objective function, despite 

yielding an adequate curve fit to the data.  It is therefore essential to estimate the parameter errors 

to verify the validity of any topologies used in the model. In general, estimating errors for the 

parameters in heteropolymer models is a complex problem, owing to the method of optimisation 

used.  Interestingly, Barrick and coworkers used Bootstrap analysis to evaluate parameter 

confidence intervals (12). However, many of the published studies either do not describe how error 

margins were determined or simply list the error between the data and curve fit. In PyFolding we 

have provided estimates of the errors by calculating a covariance matrix of the fitted parameters 

from the numerical approximation of the Jacobian matrix resulting from a final least-squares 

minimisation of the fit. In evaluating the determinant of the Jacobian as well as the estimated errors 

it is possible to assess the quality of the model.  

 

As with the simpler models, PyFolding can be used to visualise the global minimum output variables 

(with standard errors as above) and the fit of the model to the dataset (with R2 coeff. of 

determination) (Figure 2 & S.I Jupyter notebook 5-6). The output can also be exported as a CSV file 

for plotting in your software of choice. In addition, PyFolding outputs a graphical representation of 

the topology used to fit the data and a graph of the denaturant dependence of each subunit used 

(Figure 2). Thus, PyFolding enables non-experts to create and analyse protein folding datasets with 

either a homopolymer or heteropolymer Ising model for any reasonable 1-D protein topology. 

Moreover, once the 1-D topology of your protein has been defined, PyFolding can also be used to 

simulate and thereby predict folding behavior of both the whole protein and the sub-units that it 

has been composed of (S.I Jupyter notebook 7). In principle, this type of approach could be extended 

to higher dimensional topologies, thus providing a framework to enable rational protein design. 

 

 

[Conclusion] 

Here we have shown that PyFolding, in conjunction with Jupyter notebooks, enables researchers 

with minimal programming expertise the ability to fit both “typical” and complex models to their 

thermodynamic and kinetic protein folding data. The software is free and can be used to both 
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analyse and simulate data with models/analyses that expensive commercial user-friendly options 

cannot. In particular, we have incorporated the ability to fit and simulate equilibrium unfolding 

experiments with user defined protein topologies, using a matrix formulation of the 1-D 

heteropolymer Ising model. This aspect of PyFolding will be of particular interest to groups working 

on protein folds composed of repetitive motifs such as Ankyrin repeats and TPRs, given that these 

proteins are increasingly being used as novel antibody therapeutics (38-41) and biomaterials (42-

47). Further, as analysis can be performed in Jupyter notebooks, it enables novice researchers to 

easily use the software and for groups to share data and methods. Finally, due to PyFolding’s 

extensible framework, it could straightforwardly be extended to enable fitting and modelling of 

other systems or phenomena such as protein-protein and other protein- binding interactions.  
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[Figures] 

 

 

Figure 1: Illustrative Pyfolding outputs for fitting equilibrium and kinetic datasets of: (A) the two-
state folding FKBP12 protein (1) and (B) the 3-state folding thermophilic AR protein (tANK) identified 
in the archaeon Thermoplasma (2). Both show three graphs, the first is the equilibrium chemical 
denaturation, the second is the chevron plot and the third is the residuals for the fit of the chevron 
plot. In (A) the fits shown are to two-state folding models (both equilibrium and kinetic).  In (B) fits 
shown are to three-state folding models (both equilibrium and kinetic - SI Jupyter Notebook 1).  For 
the kinetic three state-model the multiple kinetic phases of the chevron plot are fitted using two 
linked equations describing the slow and fast phases (SI Jupyter Notebook 4). 
 

 
 
Figure 2: Illustrative PyFolding outputs for global fitting of GuHCl-induced equilibrium unfolding 
experiments of series of single-helix deletion CTPRn proteins to a heteropolymer Ising model (3). 
Each output shows (A) the parameters obtained with error and correlation coefficient of the fit of 
the data, (B) graphical representation of the topology used to fit the data, (D) the graphs of the 
fitted data, (E) the graph of the first derivative of the fit function for each curve and (F) graph of the 
denaturant dependence of each subunit used. 
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