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Abstract 29 

This work describes the set up of a small scale fermentation methodology for measuring quantitative traits of 30 

hundreds of samples in an enological context. By using standardized screw cap vessels, the alcoholic 31 

fermentation kinetics of Saccharomyces cerevisiae strains were measured by following the weight loss over 32 

time. Preliminary results showed that the kinetic parameters measured are in agreement with those observed 33 

in larger scale vats. The small volume used did not impair any analysis of the strain performance. Indeed, 34 

this fermentation system was coupled with robotized enzymatic assays and 8 end-point metabolites of 35 

enological interest were measured accurately. Moreover, the vessel used offers the possibility to assay 32 36 

volatiles compounds using a headspace solid-phase microextraction coupled to gas chromatography-mass 37 

spectrometry approach. Data presented demonstrates that the shaking conditions significantly impacted the 38 

mean and the variance of kinetic parameters, primary metabolites, and the production of volatile compounds. 39 

This effect was likely due to an enhanced transfer of dissolved oxygen during the first hours of the alcoholic 40 

fermentation. To test the efficiency of this experimental design, the phenotypic response of 35 wine 41 

industrial starters was measured in five grape juices from the Bordeaux area. A multivariate analysis 42 

illustrated that strains were better discriminated by some grape must, than others. The technological 43 

performances as well as the phenotypic robustness of these strains was measured and discussed. The 44 

optimized methodology developed allows investigating multiple fermentation traits for numerous yeast 45 

strains and conditions and greatly contributes in achieving quantitative genetics studies as well as yeast 46 

selection programs. 47 

Introduction  48 

In the last decade, the emergence of NGS (Next Generation Sequencing) has opened perspectives for 49 

studying the genetic adaptation of microbial species in their environments [1]. This is the case for the wine 50 

microbiome [2,3], which is subjected to a complex and evolving environment from grape must to wine. 51 

Thanks to the reduction in the genome sequencing costs, large comparative genomic studies were carried out 52 

at the intraspecific level for lactic bacteria (Oenococcus oeni) [4] and various yeast species, including S. 53 

uvarum [2,3], B. bruxellensis [5,6] and S. cerevisiae [7]. The bioinformatics analysis of such genomes shed 54 

light on genomic adaptation mechanisms such as chromosomal introgression [5], chromosomal 55 

translocations [8,9], horizontal transfer [10,11], polyploidy [5,6]; for an extensive review see [12]. Moreover, 56 
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since most of those species are found in other environments, population structure studies based on SNP 57 

analysis clearly demonstrated the wine microbial domestication in link with its environmental origin 58 

[4,5,13,14].  59 

To bridge the gap existing between all this diversity and the molecular mechanisms of phenotypic 60 

adaptation, functional genetics studies have to be achieved. In order to decipher the molecular basis of 61 

phenotypic diversity, quantitative genetics approaches such Quantitative Trait Loci (QTL) mapping or 62 

Genome Wide Association Studies (GWAS) can be used [15]. QTL mapping turns out to be particularly 63 

efficient for identifying natural genetic variations controlling relevant traits in enology [8,16–21].  64 

One of the main limitations of this approach is the requirement of intensive genotyping and phenotyping 65 

work. While the genotyping task can be easily achieved with NGS strategies [22,23], the measurement of 66 

complex phenotypes for several hundreds of individuals is not yet an easy task. Recently, various methods 67 

for measuring yeast phenotypes in a high troughtput way has been reviewed and reffered to as phenomics 68 

[24]. Although very efficient and standardized, these methods are mostly used for measuring yeast fitness 69 

(growth) but partially fail to measure the fermentation performance. Indeed, physiological studies showed 70 

that during the stationary growth phase, huge phenotypic discrepancies can be measured among strains 71 

having similar growth parameters [25]. Moreover, individuals showing the best growth are not always the 72 

most efficient during the fermentation [11,26]. Beyond the fermentation rate, the measurement of other 73 

phenotypes is critical. In fact, during fermentation, yeasts produce and/or consumes compounds, that affect 74 

the organoleptic qualities of the resulting wine [17,27,28]. Therefore, standardized methods for measuring 75 

wine fermentation phenotypes are required. 76 

In this work, we set up a methodology for phenotyping several enological traits in 10 mL-vials with a good 77 

reliability. The effect of shaking was particularly investigated and strongly impacted the phenotypic response 78 

of yeast. The phenotypic characterization of 35 industrial starters was measured in 5 different grape musts, 79 

highlighting some interesting genetics x environmental interactions. 80 

Materials and Methods  81 

Yeast strains and culture media used 82 

All the yeast strains used belong to the Saccharomyces cerevisiae species. Four strains are monosporic 83 

clones derived from industrial wine starters that have been previously described [18,20]. The strains SB, GN 84 
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and F15 are derived from Zymaflore VL1, Actiflore BO213, Zymaflore F15 (Laffort, Bordeaux, France), 85 

respectively, while M2 is derived from Oenoferm M2 (Lallemand, Blagnac, France). The remaining 31 86 

strains used are commercial starters obtained from different companies. To avoid any conflict of interest 87 

there were encoded C1 to C31 and are available and deposited on the CRB collection of ISVV, S1Table. 88 

Yeasts were propagated on YPD (Yeast extract 1 % Peptone 1 % Dextrose 2 %) supplemented with agar (2 89 

%) when required. The strains were long-term stored in YPD with 50 % of glycerol at -80 °C. 90 

Grape musts and vessels used and fermentation monitoring 91 

The five grape musts used, i.e. Merlot 2014 (M14), Merlot 2015 (M15), Cabernet Sauvignon 2014 (CS14), 92 

Sauvignon Blanc 2014 (SB14) and Sauvignon Blanc 2015 (SB15), were provided by Vignobles Ducourt 93 

(Ladaux, France) and stored at -20 °C. Before fermentation, grape musts were sterilized by membrane 94 

filtration (cellulose acetate 0.45 µm Sartorius Stedim Biotech, Aubagne, France). Their main enological 95 

characteristics are given in Table 1. Sugar content, assimilable nitrogen, pH, total and free SO2 have been 96 

assayed by the enological analysis laboratory (SARCO, Floirac, France). Malic acid has been assayed by 97 

enzymatic essay as described in the enzymatic assay section. Initial active SO2 concentration was estimated 98 

using the protocol given at http://www.vignevin-sudouest.com/services-professionnels/formulaires-99 

calcul/so2-actif.php. Input parameters used: pH and free SO2 concentration of the grape must, fermentation 100 

temperature (24 °C), and 0.1 % of alcohol by volume to simulate the beginning of the fermentation. 101 

Table 1 - Grape musts composition 102 

Grape must Code 

Sugar 

content 

(g.L
-1

 ) 

Assimilable 

Nitrogen (mg N.L
-1

) 

Malic acid 

(g.L
-1

) pH 

total SO2 

(mg.L
-1

) 

free SO2 

(mg.L
-1

) 

active SO2 

(mg.L
-1

) 

Sauvignon Blanc 2014 SB14 194 157 5.6 3.19 34 7 0.32 

Sauvignon Blanc 2015 SB15 203 158 2.9 3.25 67 23 0.91 

Merlot 2014 M14 207 111 2.1 3.58 37 29 0.54 

Merlot 2015 M15 219 99 1.9 3.53 46 33 0.68 

Cabernet Sauvignon 2015 CS15 220 132 2.4 3.57 35 25 0.47 

 103 
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To carry out the fermentations, 10 mL screwed vials (Fisher Scientific, Hampton, New Hampshire, USA) 104 

were used in order to ferment 3 mL or 5 mL of grape must in a standardized way. The Screwed Vials (here 105 

after named SV) were tightly closed with 18mm screw cap-magnetic- 3mm HT silicone/PTFE (Fisher 106 

Scientific, Hampton, New Hampshire, USA). Hypodermic needles (G 26 – 0.45 x 13 mm, Terumo, Shibuya, 107 

Tokyo, Japan) were inserted into the septum for CO2 release.  108 

Fermentations were initiated by inoculating 2.106 viable cell.mL-1 of 24h-liquid culture (YPD) carried out in 109 

1 mL deepwell microplates (Fisher Scientific, Hampton, New Hampshire, USA). The concentration of viable 110 

cells was estimated by flow cytometry using a Cell Lab Quanta apparatus (Beckman Coulter, Brea, 111 

California, USA) according to the method described by Zimmer et al. [8]. 112 

The fermentation temperature was maintained at 24°C by an incubator (Binder GmbH, Tuttlingen, 113 

Germany). When specified, the SV were shaken at 175 rpm during the overall fermentation using an orbital 114 

shaker (SSL1, Stuart, Vernon Hills, Illinois, USA). In order to compare this new vessel type with already 115 

published conditions, 125 mL-glass bioreactors (GB) were also used according to the specification described 116 

by da Silva et al. [29].  117 

The fermentation kinetics were estimated by monitoring regularly the weight loss caused by CO2 release 118 

using a precision balance (AB104, Mettler Toledo, Greifensee, Switzerland). Theoretical maximum CO2 119 

release (tCO2max) was calculated according to the formula: 0.482*[Sugar] [29], where [Sugar] is the sugar 120 

concentration (g.L-1) of the must. The amount of CO2 released according to time was modeled by local 121 

polynomial regression fitting with the R-loess function setting the span parameter to 0.45. Six kinetic 122 

parameters were extracted from the model:  123 

- lp (h): lag phase time observed before to release the first 2 g.L-1 of CO2 ;  124 

- t35, t50 and t80 (h): time to release 35, 50 and 80 % of the tCO2max after subtracting lp ; 125 

- V50_80 (g.L-1.h-1): average CO2 production rate between 50 % and 80 % of tCO2max ; 126 

- CO2max: maximal amount of CO2 released (g.L-1). 127 

Enzymatic assays 128 

At the end of the fermentation, a sample volume of 800 µL was stored at -20 °C and analyzed at the 129 

metabolomics platform of Bordeaux by semi-automatized enzymatic assays (http://metabolome.cgfb.u-130 

bordeaux.fr/). The concentrations of the following organic metabolites were measured: acetic acid, glycerol, 131 

malic acid, pyruvate, acetaldehyde and total SO2 using the respective enzymatic kits: K-ACETGK, K-132 
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GCROLGK, K-LMAL-116A, K-PYRUV, K-ACHYD, K-TSULPH (Megazyme, Bray, Ireland) following 133 

the instructions of the manufacturer. Dilution level and volume of sample used are described in S2 Table. 134 

Glucose and fructose were assayed by using the enzymatic method described by Stitt et al. [30], however in 135 

the presented data, all the fermentations were completed containing less than 1.5 g.L-1 of residual sugars. 136 

Apolar esters analysis  137 

Samples were analyzed after thawing. Concentration of 32 esters (ethyl fatty acid esters, acetates of higher 138 

alcohol, ethyl branched acid esters, isoamyl esters of fatty acid, methyl fatty acid esters, cinnamates and 139 

minor esters) (S3 Table). Concentration was determined using a head space solid phase microextraction (HS-140 

SPME) followed by gas chromatography–mass spectrometry (GC–MS) as described by Antalick et al. [31]. 141 

Dissolved oxygen measurement 142 

To control the initial oxygen concentration, oxygen was removed by bubbling nitrogen inside SV for 20 min. 143 

Non-intrusive measurement of the concentration of dissolved oxygen in the grape juice was done by using 144 

NomaSense O2 P300 sensor (Nomacorc, Narbonnes, France) bonded on the inner surface of the SV.  145 

Statistical analyses 146 

All the statistical and graphical analyses were carried out using R software [32]. The variation of each trait 147 

was estimated by the analysis of variance (ANOVA) using the aovp function of the lmPerm package in 148 

which significance of the results was evaluated by permutation tests instead of normal theory tests. Tukey's 149 

honest significant difference test was used on aovp results to determine which group of means differ 150 

significantly using the HSD.test function (agricolae package) [33]. 151 

The LM1 model estimated the effect of strain, of grape must of micro-oxygenation of the strain-by-must 152 

interaction and of the strain-by-micro-oxygenation interaction on fermentation traits according to the 153 

following formula: 154 

���� � � � �� � ��� �  �	
� � �� � ���� � �� � �	
�� � ���� 

 155 

where ���� was the value of the trait for strain i (i = 1, …, 4) in grape must j (j = 1, 2) and with micro-156 

oxygenation level k (k = 1, 2), � was the overall mean, ��  was the strain effect, ��� the grape must effect, 157 
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 �	
� the micro-oxygenation effect, �� � ����  was the interaction effect between strain and grape must, 158 

�� � �	
�� was the interaction effect between strain and micro-oxygenation level and ���� the residual error. 159 

Correlations between traits were computed with the Spearman method using the cor function and the 160 

significance of the results was assessed by the cor.test function at 0.95 of confidence level. Results were 161 

displayed with the corrplot function (corrplot package).  162 

Principal Component Analysis (PCA) was calculated using the ade4 package and heatmaps were generated 163 

with the heatmap.2 function. When necessary non-parametric comparison of samples were carried out using 164 

the Wilcoxon-Mann-Withney test (α = 0.05).  165 

Results 166 

Optimization of the fermentation protocol in screw capped vials 167 

The first aim of this study was to develop a fermentation method for measuring in a reliable manner 168 

numerous strains in a small volume (<10 mL). We used 10 mL-screwed vials (SV) filled with 3 or 5 mL of 169 

grape must. Their small and standard size can be conveniently exploited to run in parallel more than 300 170 

fermentations at the same time in a small space (S1 Fig). In preliminary experiments (not shown), we 171 

observed that the volume of grape juice used influences the success of the fermentation. To evaluate this 172 

effect on enological parameters, the fermentation behavior of four yeast strains (M2, F15, SB, GN) was 173 

evaluated in the SB14 grape must in 6 replicates. Three conditions were tested: 3 mL with shaking 174 

(Sk.3_SV), 5 mL with shaking (Sk.5_SV) and 5 mL without shaking (noSk.5_SV). In order to validate the 175 

SV, the same juice was also fermented in 125 mL glass-bioreactors (Sk.125_GB) that had been previously 176 

used for measuring the fermentation behavior of numerous Saccharomyces strains and hybrids [29]. For all 177 

assays, fermentations were completed (no residual sugars detected); the overall results are given in the S4 178 

Table for the 12 parameters measured for each strain in the 4 assays.  179 

To compare the reliability of trait values, the coefficient of variation (CV %, for 6 replicates) was computed 180 

for each strain and the average CV was shown in Table 2. The fermentation kinetic traits are very reliable 181 

confirming the efficiency of weight loss measurement for monitoring ongoing alcoholic fermentations [34], 182 

even in very small volumes (Fig 1, panel A). For some metabolic traits, high CVs (>25 %) were measured 183 

showing that some conditions are not reliable enough. This is the case for acetaldehyde, pyruvate or acetic 184 

acid for which the CVs are particularly high in shaken conditions. The Sk.3_SV trial was the less reliable 185 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 20, 2017. ; https://doi.org/10.1101/191353doi: bioRxiv preprint 

https://doi.org/10.1101/191353


 8

and the cumulated CV for metabolic compounds is much higher than for the other 3 conditions (Fig 1, panel 186 

B). In this condition, the kinetics parameters are also less reproducible (CV>10 %). In contrast, noSk.5_SV 187 

offers the most reliable condition for both metabolic compounds and kinetic parameters. Except for the lag 188 

phase, the Sk.5_SV condition had an intermediate reliability level, similar to the 125 mL glass-bioreactors 189 

used here as a control. 190 

 191 

Table 2 - Average coefficient of variation for the different traits 192 

Condition CO2max Lp t35 t50 t80 V50_80 SO2 

Acetic 

acid Glycerol 

Malic 

acid Pyruvate Acetaldehyde 

noSk.5_SV 
2.0 11.5 6.8 7.4 7.3 7.3 9.1 11.3 6.4 5.4 17.8 17.4 

Sk.125_GB 
2.0 9.8 6.4 5.0 5.3 6.8 9.8 13.8 11.8 19.0 45.8 32.1 

Sk.3_SV 0.8 21.4 8.6 8.4 9.2 13.6 6.0 61.1 17.0 14.8 63.2 46.2 

Sk.5_SV 
2.3 41.2 8.0 7.3 6.1 6.7 6.2 25.0 12.1 19.1 27.4 26.2 

 193 

The data presented are the average coefficients of variation (CV in %) calculated from the CV values obtained for each 194 

strain with 6 replicates 195 

 196 

Fig 1. Trait measurement reliability for both kinetics and metabolite concentrations 197 

according to vessel modalities 198 
The average CV for each trait was calculated from the CV values obtained for each strain (M2, F15, SB, 199 

GN) with 6 replicates. Panel A. The bar chart presents the cumulated CV for each kinetic parameter, the 200 

stacking is ordered from the least variable (CO2max) to the most variable (lp) trait. Panel B. The bar chart 201 

presents the cumulated CV for each metabolic end-product, the stacking is ordered from the least variable 202 

(SO2) to the most variable (Acetic acid). 203 

 204 

Despite important changes according to the conditions, the overall differences between the four strains were 205 

maintained and the genetic differences within the strains were broadly conserved (see below). Strikingly, the 206 

shaking conditions impacted the fermentation kinetics for all the strain. This is illustrated for example with 207 

the CO2 kinetics of the GN strain, Fig 2, panel A. The CO2 production rate was dramatically impacted by 208 

shaking, which significantly reduced (by around 20 %) the t50 and t80 (Wilcoxon test α = 0.01). In contrast, 209 

the fermentation volume (3, 5 and 125 mL) did not affect the fermentation kinetics in shaken conditions, 210 
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suggesting that scaling down in SV did not influence the fermentation behavior of yeast cell. The metabolic 211 

end-products were also affected by the shaking conditions, as shown in Fig 2, panel B for glycerol. As 212 

observed for kinetic parameters, the fermentation volume had a minor impact on the primary metabolites 213 

composition (such as glycerol) whereas shaking appeared as the main source of phenotypic variation. This 214 

result, observed for all strains, could be due to the higher oxidative conditions met in shaken cultures.  215 

 216 

Fig 2 Impact of agitation on fermentation kinetics and metabolic compounds according to the 217 

vessel modalities. 218 
Panel A. CO2 production kinetics of the GN strain fermenting SB14 grape must in four vessel modalities 219 

(Sk.3_SV, Sk.5_SV, noSk.5_SV, Sk.125_GB). The lines are the average CO2 produced for 6 replicates; the 220 

shaded areas represent the standard error. Panel B. Glycerol production of GN strain according the vessel 221 

modalities. The values shown are the means of 6 replicates and the error bars represent standard error. 222 

 223 

A second experiment was performed in 5 mL SV as they represent the most reproducible conditions for 224 

measuring all the traits investigated (Fig 3). The micro-oxygenation effect was estimated by comparing 225 

modalities with or without shaking during the fermentation. The O2 concentration was monitored during 20 226 

hours in non-inoculated SB14 grape juice degassed by nitrogen bubbling. During this period, corresponding 227 

to the fermentation lag phase, oxygen can be efficiently transferred since CO2 stripping is not active. 228 

Although this measurement did not correspond to real conditions since no yeast cells were present, the effect 229 

of agitation on the oxygen transfer could be estimated. Indeed, when yeast cells are present, all the dissolved 230 

oxygen is consumed in less than 20 hours due to the strong reductive conditions generated by yeast biomass 231 

(data not shown). In the shaken condition, the grape juice was immediately enriched with dissolved oxygen 232 

that reached a concentration of 3.7 mg.L-1 after 20 h (Fig 3, panel A). In contrast, without shaking, there was 233 

only 2.4 mg.L-1 of dissolved oxygen after 20 h. A maximum difference in oxygenation rate was found after 3 234 

hours of incubation (Fig 3, panel B). Although the total amount of oxygen transferred during the overall 235 

fermentation cannot be measured, these data suggest that agitation in 5 mL-SV significantly impacts the 236 

micro-oxygenation level. These small, but significant differences may explain the kinetic and metabolic 237 

differences described in Fig 2. 238 

In order to have a broader idea of the impact of micro-oxygenation on secondary metabolism, we next 239 

measured the production of volatile compounds. At the end of the alcoholic fermentation, the headspace 240 
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volume of SV was analyzed using a targeted GC-MS analysis. 32 esters were quantified for the fours strains 241 

in shaken or not conditions (S5 Table). A Principal Component Analysis (PCA) (75.5 % of total variance for 242 

axes 1 and 2) was carried out for exploring this multivariate dataset (Fig 3, panel C). The first component 243 

clearly discriminates shaken from non-shaken conditions while the second axis mainly discriminates strains. 244 

Indeed, the production of esters was greatly impacted by shaking. Up to 27 of the 32 esters were significantly 245 

impacted (ANOVA, pval<0.05), 14 with a decreased and 13 with an increased production in the shaken 246 

condition (S5 Table). The compounds, for which shaking decreased their production, were mainly acetates of 247 

higher alcohols, methyl and ethyl fatty acid esters while those for which the production was increased were 248 

mainly ethyl branched acid esters, ethyl acid esters with odd carbon numbers, cinnamates and minor esters. 249 

The proportion of PhC2C2 to C2PhC2 was 6 fold decreased in shaken condition (S2 Fig). This could be 250 

caused by a higher oxygenation of the media. 251 

Fig 3 Measure and effect of micro-oxygenation in 5 mL SV   252 
Panel A. Kinetics of dissolved oxygen concentration in SB14 grape must. The kinetic curves represent the 253 

mean of 6 replicates and the shadows around the lines illustrated the standard errors. Panel B. Concentration 254 

of the dissolved oxygen in SB14 after 4 hours. The data shown are the means of 6 replicates and the error 255 

bars represent the standard deviations. Different letters indicate significant differences between groups 256 

(Tukey's honest significant difference test, significance level, α = 0.05). Panel C. PCA performed for the 32 257 

esters measured. Each point represents one of the four the strains in noSk.5_SV or in Sk.5_SV. 258 

Panel D. Correlation of the variables to the PCA1 axis. The variables that were significantly correlated to the 259 

first axis of the PCA were shown (α = 0.05), the bar plot indicated the pval of the correlation (Pearson's 260 

product moment correlation coefficient). 261 

Assessment of genetics x environmental effects 262 

In order to demonstrate the efficiency of our SV fermentation setup, we explored phenotypic response of 263 

strains to relevant environment parameters in enology. On the basis of the results shown in Fig 2-3, shaken 264 

fermentations could be considered as micro-oxygenated modalities transferring moderate amounts (2-4 mg.L-265 

1 per day) of oxygen in a reproducible way. The possibility to control oxygenation in small volumes is an 266 

opportunity to study the reaction of yeast strains against this technological parameter which has a significant 267 

impact on winemaking [35–37]. Assuming this statement, a second experiment was carried out in 5-SV, by 268 

fermenting the two grape juices SB14 and M15 with four strains (M2, GN, F15 and SB) and with or without 269 
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shaking. This set of 160 fermentations (S6 Table) ran at the same time allowed to estimate the effects of 270 

three main factors: (i) strain, (ii) micro-oxygenation, and (iii) grape must. The proposed model for the 271 

analysis of variance also estimated the primary interaction within strain and grape must or micro-272 

oxygenation (model LM1 described in material and methods). Thanks to the small volume used, 10 273 

biological replicates were carried out for each strain and condition, thus increasing the statistical power of 274 

the analysis. For most of the traits, the phenotypic variance was first explained by the grape juice type, then 275 

by the yeast strain used (Table 3). The effect of micro-oxygenation mainly influenced kinetic parameters 276 

(t50, t80) and metabolic end-product such as SO2 and Glycerol. For this last trait, the micro-oxygenation 277 

increased the production by 15 % (Fig 4, panel A) for all the strain, as previously reported by others [38–40]. 278 

Few strain x environment interactions were detected and accounted only for a small part of the total variance 279 

explained. The most striking interaction pertained to the lag phase duration (lp) being differentially affected 280 

by the micro-oxygenation and the grape must, respectively. The panel B of Fig 4 shows that the strains SB 281 

and M2 had a longer lag phase in the SB14 grape must than in M15 (+ 6 h). Moreover, shaking resulted in a 282 

reduced lag phase for M2 in the SB14 grape must. In contrast, F15 and GN were not affected neither by the 283 

grape must nor by the agitation. In the same way, the acetic acid production of GN showed a complex GxE 284 

interaction (Fig 4, panel C). Globally, as previously described [41], micro-oxygenated conditions tended to 285 

reduce the production of this compound, which is undesirable in enology. Interestingly, in the M15 grape 286 

must, GN showed the lowest acetic acid production even in a non-agitated fermentation, suggesting that it is 287 

an interesting lower producer whatever the conditions. This second experiment confirms the reliability of SV 288 

for assessing wine fermentation traits in various environmental conditions and paves the way for larger 289 

phenotypic investigations. 290 

Table 3 Analysis of variance for the 11 phenotypes with 4 strains, 2 musts and 2 micro-oxygenation conditions  291 

CO2max lp t35 t50 t80 V50_80 SO2 Acetic acid  Malic acid Pyruvate Glycerol 

Must 
37.9 *** 15.8 *** 38.6 *** 36.8 *** 35.2 *** 21.5 *** 15.4 *** 10.7 *** 81.2 *** 4.9 ** 0.3 

Strain 
2.3 . 41.5 *** 10.3 *** 16.7 *** 27.3 *** 43.8 *** 4.3 *** 3.7 * 8.1 *** 9 *** 17.2 *** 

Micro-

Oxygenation 

7.4 *** 2.8 *** 37.2 *** 32.1 *** 22 *** 20.2 *** 40.3 ***  39.1 *** 0 5.2 *** 49.4 *** 

Strain:Must 
0.3 10 *** 2.1 *** 2.5 *** 2.7 *** 0.5 2.8 ** 0.4 0.2 6.8 *** 0.1 
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 292 

Percentage of variance explained by the LM1 model. Signifiance codes: pval < 0.001 = ***, 293 

pval < 0.01 = **, pval < 0.05 = *, pval < 0.1 = . 294 

 295 

Fig 4 Effect of micro-oxygenation level and grape must on technological properties of wine 296 

yeast strains 297 
The data shown are the mean of 10 replicates, the error bars representing the standard error. Different letters 298 

indicate significant differences between groups (Tukey's honest significant difference test, significance level, 299 

α = 0.05). Panel A. Glycerol (g.L-1) according to strain and fermentation conditions. Panel B. lp (h) 300 

according to strain and fermentation conditions. Panel C. Acetic acid (g.L-1) according to strain and 301 

fermentation conditions. 302 

Evaluation of technological properties of 35 wine yeast strains in 5 303 

grape juices. 304 

The SV fermentation setup coupled with robotic assisted enzymatic assays offers the opportunity to measure 305 

in parallel the fermentation behavior of numerous strains in various conditions. As a matter of proof, we 306 

evaluated in a unique experiment the fermentation properties (kinetics and end by-products) of 35 strains in 5 307 

grape juices and two repetitions (350 SV) without shaking. In this experiment, we used three red grape musts 308 

(M14, M15 and CS14) and two white grape musts (SB14 and SB15) from the Bordeaux area. As all the 309 

fermentations were completed (less than 1.5 g.L-1 of residual sugars), the final concentrations of glucose and 310 

fructose were very low and thus removed from the data (not shown). Acetaldehyde concentrations were also 311 

removed, as they were very low in red wines and thus impacted data normality (not shown). The 312 

measurement of the 11 quantitative variables for 175 modalities is given in S7 Table. For all the traits 313 

analyzed, except pyruvate, the average CV per trait (n = 175) was less than 18 %.  314 

A PCA (58 % of total variance for axes 1 and 2) was carried out for exploring this large dataset. The first 315 

component (42 % of total variance) clearly discriminates red and white juices and was correlated with Malic 316 

acid, SO2, Acetic acid concentrations and kinetic parameters (t50, t80, V50_80) (Fig 5, panel A). Indeed the 317 

Strain:Micro-

Oxygenation 

0.6 3.7 *** 0.7 * 0.3 1.6 *** 0.1 1.8 . 2.6 * 1.1 *** 4 . 1.8 * 

Residuals 
51.4 26.2 11.1 11.6 11.3 13.9 35.5 43.5 9.4 70 31.3 
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white grape juices used were more acidic and more sulphited than red ones. The second axis (16 % of total 318 

variance); mainly discriminates the CS15 must from the others by its higher production of glycerol and 319 

CO2max. These results are consistent with the biochemical composition of grape juices. Moreover the CS15 320 

juice contained 20 g.L-1 more sugar than the other grape musts.  321 

The PCA also illustrates the phenotypic variability of the 35 industrial strains tested. Globally, the analysis 322 

showed that some grape musts are more suitable than others for between strains. Indeed, the projected cloud 323 

of the 35 strains in SB14 is more compact than in M15. In order to evaluate the discriminating properties of 324 

each grape must, we computed the average Euclidian distance within all the strains for both kinetic and 325 

metabolic parameters and according to the grape must. The panel B of Fig 5 summarizes the phenotypic 326 

distance observed within each grape must and parameter class. For example, SB15 emphasized strain 327 

discrepancy for kinetic traits and metabolic end-products. To better visualize particular strain properties, the 328 

positions of the four strains SB, GN, M2 and F15 were labeled on the projection. These strains have some 329 

phenotypic specificities; for example SB and GN are often more distant from the remaining set of 330 

commercial strains than M2 and F15. This is in particular due to the high glycerol production of SB and the 331 

slow fermentation rate (V50_80) of GN in all the conditions tested (Fig 5, panel C). 332 

 333 

Fig 5 PCA of winemaking properties of 35 strains in 5 grape juices 334 
Panel A. The first two axes of the PCA performed from the average of two replicates for 11 phenotypes 335 

measured in the 5 grape juices and 35 strains. Axes 1 and 2 explain 41.8 % and 15.8 % of total variation, 336 

respectively. Each point represents the fermentation of one strain and is colored according to the grape juice 337 

used. Points are connected to their group gravity centers that are labeled with the grape juice name M14, 338 

M15, SB14, SB15, CS14. Ellipses diameter corresponds to the standard deviations of the projection 339 

coordinates on the axes. The correlation circle indicates the correlation of the variables for axes 1 and 2. 340 

Panel B. Euclidian distances within all the strains for each grape must. The bar plot represents the Euclidian 341 

distances within the 35 strains according to kinetics (high density colored bar) and metabolic parameters 342 

(low density colored bar) for each grape juice. Panel C. Comparison of the trait value of GN and SB respect 343 

to the 34 others strains for V50_80 and the glycerol produced, respectively. A boxplot was generated from 344 

the 10 phenotypic values measured in the 5 grape juices with two replicates for GN and SB, and from the 345 

340 values of the 34 other strains. Significant differences were estimated by applying the Wilcoxon-Mann-346 

Withney test (α = 0.05). 347 
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 348 

As shown on the PCA, the nature of the juice strongly impacted the phenotypic values. In order to overcome 349 

this effect and perform more accurate comparative analyses between strains, we normalized the response of 350 

each strain according to the grape juice (S8 Table). First, the relations between the 11 traits were investigated 351 

by using the average of normalized values of each strain for the five conditions. A correlation matrix with 352 

non-parametric tests was computed with the 35 strain values in order to observe phenotype-phenotype 353 

relations (Fig 6, panel A). Obvious correlations between kinetic traits were found confirming that the strains 354 

that rapidly reached 35 % of the fermentation (lowest t35 values) had also low t80 values (S3 Fig). 355 

Interestingly, we detected less trivial correlations suggesting metabolic link. For example, a correlation 356 

between kinetic parameters and Malic acid was found (Fig 6, panel B). The strains with the fastest 357 

fermentation rates were also the ones that consumed the most of malic acid. This link has already been 358 

reported [42] and could be explained by a greater deacidification capacity for strains that consume more 359 

malic acid, resulting in easier fermentation. Negative correlations were found between kinetic parameters 360 

(t35, t50, t80) and SO2. These negative relations could be explained by the toxic effect of SO2 that reduces 361 

yeast growth [43,44] and may indirectly impact the fermentation activity. Other correlations were found for 362 

lp with V50_80 (Fig 6, panel C) and glycerol and will be discussed further. 363 

 364 

Fig 6 Correlation between traits 365 
Panel A. A correlation matrix is shown. The size and the colour of the circles correspond to the correlation 366 

coefficients calculated by the Spearman method. Only significant correlations are shown 367 

(confidence = 0.95). Panel B and C. Two examples of scatter plots showing correlation of t80 with Malic 368 

acid and V50_80 with lp. Each dot represents the average phenotypic values of a strain across the 5 grape 369 

musts from the normalized dataset. The blue line represents the linear regression line and the shaded area 370 

represents the confidence interval of the regression (0.95). 371 

 372 

The normalized dataset was also used for evaluating the performance of the strains. The rank of each strain 373 

with respect to the others was calculated and can be visualized on a heatmap plot (Fig 7). As each column of 374 

the heatmap plot represents a rank value (1 to 35), each trait has the same weight in the clustering. Because 375 

most of the kinetic parameters are strongly correlated (Fig 6, panel A), only three of them (poorly correlated) 376 

were included in the analysis (CO2max, lp and V50_80). The intensive green tones indicate lowest ranks 377 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 20, 2017. ; https://doi.org/10.1101/191353doi: bioRxiv preprint 

https://doi.org/10.1101/191353


 15

while intensive red tones indicated the highest ranks for each parameter. For example, the commercial strains 378 

C11, C4 and C18 were among the fastest strains and consumed more malic acid than the others. Rapid 379 

identification of strains having outlier levels compared to a representative commercial set can be made with 380 

this figure. For example, the strains C6, C17 and C20 produced high quantities of acetic acid while the 381 

strains C5, C8 and C16 released an important quantity of SO2 at the end of the alcoholic fermentation. 382 

As displayed by the dendrogram on the left of the heatmap, a hierarchical clustering ordered the strains 383 

according to their overall profiles. Four main groups were computed. The group A contained slow 384 

fermenting strains, which leave high amounts of malic acid at the end of the fermentation and produce low 385 

SO2. Group B contained strains with the shortest lp. Moreover, most of the strains of this group had a slow 386 

fermentation rate, produced low amounts of glycerol and released high level of SO2. The strains of group C 387 

were the fastest fermenting ones, produced more glycerol and SO2 than the average. This group also 388 

consumed more malic acid. Finally, the strains of group D fermented rapidly but in contrast with those of 389 

group C they produced low amounts of glycerol and SO2. 390 

 391 

Fig 7 Relative ranking of 35 strains in 5 grape juices 392 
Ascending order ranked of the average phenotypic values of each strain across the 5 grape juices. Only a 393 

subset of the representative phenotypes is represented here. A color palette shows each rank from green 394 

(lowest ranks) to red (highest rank) as displayed by the color key. The rank of each cell is also displayed by a 395 

black bar plot and the vertical dashed black line represents the average rank. The dendrogram on the left 396 

represents strain ordered by hierarchical clustering. 397 

  398 

Finally, we investigated the strain phenotypic variability according to the environmental conditions. This 399 

characteristic is very important in enology since industrial strains might be used in different grape musts with 400 

contrasted physicochemical properties. Therefore, the assessment of phenotypic robustness of industrial 401 

starters is crucial for optimizing their use in a wine making process. We computed the phenotypic variance 402 

of the 35 strains by using the non-normalized dataset. The overall results are shown on Fig 8, panel A. 403 

Strains showing a low variance value (green tones) had similar phenotypic behavior in the 5 grape musts. On 404 

the contrary, high variance (red tones) values indicated a contrasted phenotypic response according to the 405 

must. Some industrial strains such as C23, C10 or C12 showed a strong robustness to environmental change. 406 

In contrast, the monosporic clones SB, GN and M2, as well as some commercial strains (C22, C7, C18) 407 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 20, 2017. ; https://doi.org/10.1101/191353doi: bioRxiv preprint 

https://doi.org/10.1101/191353


 16

appeared to be quite sensitive to environmental changes (high phenotypic variability indicated by red tones). 408 

The source of the lack of robustness was investigated by splitting the 35 strains in two groups according to 409 

their phenotypic robustness (variance). The less robust quartile was compared to the 75 % more robust 410 

strains in the 5 grape juices. Thus the conditions that generate a lack of robustness could be identified. For 411 

example, lp was only significantly different for the two groups only in SB15 (3.2 time longer for the non-412 

robust group) (Fig 8, panel B). In this example, identified grape must had the strongest initial SO2 413 

concentration (67 mg.L-1), which is known to strongly affect the lag phase [8]. All the strains of the non-414 

robust group (C1, C11, F15, C15, M2, C22, SB, C31) are therefore not suitable for running fermentations in 415 

highly sulphited grape musts. This is also the case for another group of strains (C4, C7, C17, GN, C18, C21, 416 

C24, C25, C27), which only produced high concentrations of SO2 at the end of the fermentation in 417 

SB15 (Fig 8, panel B). The two Merlot grape musts (M14 and M15), which are harsh to ferment, were those 418 

that best discriminated the strains for the t80 and pyruvate robustness (S4 Fig). For acetic acid, SB14 mainly 419 

increased the variance of the less robust strains. For example, the strains C18 and C24 produced high levels 420 

of acetic acid in white grape musts but they showed a moderate production in the three red grape musts. This 421 

result suggests that these two strains are not suitable for white grape musts. Finally, due to its higher sugar 422 

concentration, CS15 promoted high glycerol production and exacerbated differences between 423 

strains (S4 Fig). 424 

 425 

Fig 8 Phenotypic variance of 35 strains in 5 grape juices 426 
Panel A. For each strain, the variance was computed for the 5 average phenotypic values in the 5 grape 427 

musts. Variance is scaled by column and its level is represented by a color palette from green (lowest 428 

variance) to red (highest variance) as displayed by the color key. The value of each cell is also displayed by 429 

black bar plots and the vertical dashed black lines represents the average variance. Strains are ordered by 430 

hierarchical clustering that is represented by the dendrogram on the left. Panel B. Comparison of lp and SO2 431 

between robust and non-robust strains according to grape musts. The data shown are the mean of 8 strains 432 

(non-robust group) or 27 strains (robust group), the error bars represent the standard error. Different letters 433 

indicate significant differences between groups (Tukey's honest significant difference test, significance level, 434 

α = 0.05). 435 
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Discussion 436 

A new platform for measuring quantitative traits related to wine 437 

fermentation  438 

The wide development of NGS technologies gives the opportunity to collect large sets of genomic data that 439 

could be used for dissecting the genetic architecture of complex traits using both QTL mapping and GWAS 440 

approaches [15]. In order to implement genetic studies efficiently, this genomic data must be completed with 441 

massive sets of phenotypic data. The high throughput measurement of phenotypes is therefore a crucial point 442 

for finding out new genetic determinisms. In the last decade, the term of “phenomics” has been used to 443 

describe methods aiming at measuring phenotype at a large-scale [24]. Mostly based on the measurement of 444 

OD [45] or plate growth [46], the parallel measurement of basic growth parameters in numerous media can 445 

be performed. Although this approach is very useful for screening growth-related phenotypes, other complex 446 

traits of industrial interest, such as fermentation kinetics and end-product metabolites can neither be 447 

measured in micro-plates nor in agar plates. 448 

In this study, we set up a standardized method for assessing alcoholic fermentation experiments at a 449 

relatively large scale (>300 samples per batch). By reducing the fermentation volume to 5 mL in standard 450 

SV, we conserved a very accurate estimation of fermentation kinetics that matches well with the methods 451 

previously used [47]. Here, the fermentation time course was followed manually by weighing each SV two 452 

times per day with a precision balance. However, robotic solutions for an automatic handling of the SV could 453 

easily be implemented thanks to the standardized format of the vials used. In order to face the large sample 454 

analysis set required, we successfully coupled our fermentation setup with a robotized enzymatic platform 455 

for measuring eight enological metabolites in 1 mL samples. Unfortunately, we failed to efficiently measure 456 

ethanol, since the enzymatic kit used was not sufficiently accurate for high ethanol concentrations. 457 

Alternatively, the estimation of total CO2 loss was very precise (average CV<3 %) and perfectly matched 458 

with the production of ethanol during the alcoholic fermentation [34]. During this study, we also 459 

demonstrated that at the end of the alcoholic fermentation, many volatile compounds produced by yeast 460 

metabolism could be readily analyzed by GC-MS after an automated solid-phase micro-extraction [31]. 461 

Coupling analytical facilities and developing robotic handling of SV will be the next steps for developing 462 

large screening programs.  463 
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Assessment of some GxE interactions relevant in enology 464 

Although the volume fermented is far from representing those of vats used during industrial wine production, 465 

our setup was close as possible to the enological conditions. The effects of some parameters that are relevant 466 

for enology (grape must, strain, micro-oxygenation level) could be tested. First of all, we used natural grape 467 

musts rather than synthetic media that might be less pertinent for assessing quantitative traits due to their 468 

incomplete composition [20,48]. As previously demonstrated, frozen grape juices conserved their 469 

fermentation properties and can be kept for long periods [29]. Moreover, in this work we only tested a panel 470 

of commercial starters that are used in various geographic areas for the production of red, white, rosé and 471 

sparkling wines. This contrasts with previous studies that also included S. cerevisiae strains from other 472 

origins [49,50]. By using only commercial starters, we captured here a phenotypic variability having an 473 

industrial relevance and reflecting those proposed to the winemaker. Finally, the shaking of SV was able to 474 

mimic micro-oxygenation in a reproducible manner. The amount of oxygen transferred during the 20 first 475 

hours (2-4 mg/L-1 of O2) is close to that occured in red winemaking practices [37]. Although the micro-476 

oxygenation is provided by several pumping-over operations in the cellar, we were able to reproduce this 477 

effect in our small design vessels with similar scale values. This was confirmed by observing effects that are 478 

similar to those already known in enological practices. Indeed, a higher level of micro-oxygenation 479 

accelerates the fermentation rate [37,51,52], decreases the production of acetic acid [41,51], and increases 480 

the production of glycerol [38,39,51,53]. The shaking conditions also had an impact on the stripping of 481 

volatile molecules such as SO2.  482 

Interestingly, by assaying 32 volatile compounds using a GC-MS approach we demonstrated that shaken 483 

conditions do not impact all the volatile molecules in the same way suggesting that the oxygen transfer could 484 

influences the production of aromatic compounds and in particular esters. Unravelling the impact of oxygen 485 

on esters production during the alcoholic fermentation is not trivial. According to the quantity and the 486 

addition moment, the oxygen effect may indeed be drastically different. The oxygen supplementation of 487 

grape must in winemaking conditions resulted in an increase of the concentration of higher alcohol acetates 488 

and branched chain ethyl esters, and in a decrease of fatty acid ethyl esters [51,54]. Aside higher alcohol 489 

acetates that were 2 times higher in non-shaken conditions, our findings are broadly in agreement with 490 

previous data measured in a cellar [51,54]. The similar response between 5 mL SV and vats of several liters 491 

is very encouraging and demonstrates that our setup could be relevant for assessing the aromatic production 492 
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of a large set of strains/conditions. The change in proportion of 2-phenylethyl acetate to ethyl-phenylacetate 493 

could be a signature of micro-oxygenation, as the proportion of the most oxidized ester (ethyl-phenylacetate) 494 

is greater with agitation. Moreover, the relative higher production of acetate of higher alcohols in non-shaken 495 

conditions could be explained by the fact that the moment of oxygen addition and metabolizing is drastically 496 

different between the yeast growth and stationary phase [35,55]. For example, in a brewing context, when 497 

oxygen is added during the fermentation, a decreased production of higher alcohol acetates can be observed 498 

[55,56], thus supporting our observations (S5 Table). Conversely, oxygen addition has been reported to 499 

increase the concentration of ethyl esters and to reduce the concentration of acetate esters and higher 500 

alcohols [57]. These seemingly contradictory results can be also due to strain-by-oxygenation interactions. 501 

Indeed 16 of the 32 compounds assayed showed strain x environment interactions. This setup thus could be 502 

useful in the future to better investigate the physiological and enological consequences of micro-oxygenation 503 

for up to very large panels of yeast strains. 504 

Thanks to this setup, we gained insight on other GxE interactions between wine strains and environmental 505 

conditions. For example, GN maintained a constant level of acetic acid in M15, regardless of the level of 506 

micro-oxygenation. This particular feature, which is a relevant trait in enology, suggests that acetic acid 507 

metabolism is poorly impacted by hypoxia in this strain. Another interaction was observed for the strain M2, 508 

for which the long lag phase observed in sulphited grape must (SB14) is reduced by the micro-oxygenation. 509 

Those preliminary observations open perspectives for studying the phenotypic response of yeast strains to 510 

micro-oxygenation at a large scale. 511 

Survey of the fermentation performances of 35 enological strains in 5 512 

grape musts 513 

As a matter of proof, we measured the phenotypic performances of 35 strains including 31 industrial starters. 514 

After 3 weeks of fermentation, we measured in the same batch 11 traits in 5 different grape juices (350 515 

fermentations), supporting the efficiency of the method for high throughput phenotyping. We have observed 516 

an important grape must effect on the phenotypes (Table 3). This effect was generated by the basic 517 

physicochemical characteristics of the grape musts (concentration of sugar, malic acid and SO2 etc.). In order 518 

to go beyond this effect, the response of each strain was normalized according to the grape juice. Therefore 519 

the principal effect of the media was eliminated allowing the comparison of each strain’s response measured 520 

in five grape juices. With the normalized dataset, we first investigated the relations between the quantitative 521 
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traits measured for 35 strains. The large panel of commercial strains and the measurement of each trait in 5 522 

conditions reinforces the robustness of these links and ensures the generalization of the conclusions that can 523 

be drawn. Omitting the obvious correlations found between kinetic parameters, we shed light on other 524 

correlations that can reflect important metabolic trade-offs. A strong correlation was identified between 525 

malic acid and kinetic parameters (T35, T50 and T80). Thus, we found that fast fermenting strains were also 526 

those consuming more malic acid. This link had already been observed for the ML01 strain, which has been 527 

genetically modified to carry out the malolactic fermentation [42]. ML01 has a higher fermentation rate than 528 

the parental strain. This can be explained by the deacidification of the media caused by the malic acid 529 

consumption that can provide more permissive pH conditions. However, it is important to note that this 530 

effect appears to occur in low pH conditions. Therefore, as the pH of the grape musts used in our study 531 

ranged from 3.19 to 3.58, other mechanisms were probably involved. For example it is known that malic acid 532 

plays an important role in carbon metabolism. During fermentation its decarboxylation provides pyruvate 533 

which could play an anaplerotic effect on biomass and/or on ethanol synthesis [58,59]. A second positive 534 

correlation was found between the duration of the lag phase (lp) and the glycerol production, suggesting that 535 

strains starting the fermentation later produce more glycerol. The production of glycerol at the beginning of 536 

fermentation helps resoring the redox balance by regenerating the NAD+ consumed via the reaction catalyzed 537 

by glyceraldehyde-3-phosphate dehydrogenase at the beginning of the glycolysis [60]. Indeed, at that stage, 538 

the regeneration of NAD+ by alcohol dehydrogenase is subject to inhibition by the formation of complexes 539 

between acetaldehyde and bisulfites ions. Thus, strains that are able to rapidly start the alcoholic 540 

fermentation do not need to produce high glycerol amounts to compensate for this NAD + deficiency. 541 

Moreover, glycerol production is a well-known response to osmotic stress, which results from the high sugar 542 

concentration found in grape juice [61]. As osmotic shock affects cell growth and the lag phase [62], the high 543 

producer strains could be more adapted to initiate the alcoholic fermentation promptly after inoculation.  544 

 545 

This dataset was also used to evaluate and compare the performance of the strains. This comparison revealed 546 

groups of strains with distinct phenotypic profiles. This disparity shows that despite the high specialization 547 

level of wine starters [63], the completion of the fermentation takes place over a wide range of production or 548 

consumption of important end-products. For example, groups C and D defined in Fig 7 mainly discriminate 549 

the strains having the highest fermentation rate by their glycerol and SO2 production levels. This suggests 550 

that high performing (commercial) strains adapted to winemaking conditions have undergone different 551 
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adaptive strategies that have modelled their central metabolism in order to accomplish the alcoholic 552 

fermentation. Strain robustness against the grape must parameter was evaluated, leading to the identification 553 

of the most robust commercial starters. Robustness is a critical factor for the wine industry, as it ensures 554 

successful fermentations in a wide range of grape musts. Some grape musts with extreme characteristics 555 

(SO2 or sugar concentrations) highlighted the weakness of the less robust ones leading to the identification of 556 

the type of grape must for which they are the most suited. The setup developed in the present study could 557 

help to identify the physicochemical factors (amino acids, vitamins, cofactors or polyphenols) that could be a 558 

source of inappropriate phenotypic responses. The identification of enological factors that affect the 559 

performance of strains is of great interest. It has already been shown for example that the effect of 560 

temperature during fermentation was dependent on the strain used [25]. The fermentation system 561 

implemented here is well adapted to push forward the identification of new factors of this type. 562 
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Supporting information 725 

S1 Fig SV setup 726 
On the left, a SV filled with 5 mL of grape juice (SB14) and with a hypodermic needle to allow the CO2 727 

release. On the right 70 vials on a rack illustrating the possibility of managing hundreds of fermentations in 728 

parallel. 729 

S2 Fig Oxygen impact on ester production 730 
Panel A. The data shown are the mean proportion of PhC2C2 to C2PhC2 of the 4 strains in 2 replicates, the 731 

error bars represent the standard error. Different letters indicate significant differences between groups 732 

(Tukey's honest significant difference test, significance level, α = 0.05).Panel B. The data shown are mean of 733 

2 replicates, the error bars represent the standard error. Different letters indicate significant differences 734 

between groups (Tukey's honest significant difference test, significance level, α = 0.05). Table represents 735 

ANOVA results (pval, and % of variance explained). 736 

S3 Fig Correlations between traits 737 
Scatter plots of correlated traits. Each dot represent the average phenotypic values of a strain across the 5 738 

grape must from the normalized dataset. The blue line represents the linear regression line and the shaded 739 

area represents the confidence interval of the regression (0.95). 740 
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S4 Fig Comparison of the phenotypic values between robust and non-robust strains according 741 

to grape musts. 742 
The data shown are the mean of 8 strains (non-robust group) or 27 strains (robust group), the error bars 743 

represent the standard error. Different letters indicate significant differences between groups (Tukey's honest 744 

significant difference test, significance level, α = 0.05). 745 

S1 Table yeast strains used 746 
 747 

S2 Table Dilution and volume of sample used for robotic enzymatic assay 748 
 749 

S3 Table List of the 32 esters analyzed 750 
 751 

S4 Table SB14 dataset 752 
Data presented are the mean of six fermentation replicates of SB 14 grape must.  The residual sugars (glucose + 753 

fructose) at the end of the fermentation was not shown and was always lower than 1.5 g.L-1. Statistical differences 754 

within strains and modalities was assayed by Tukey's honest significant difference test, significance level, α = 0.05, the 755 

different groups were shown by a letter code: groups sharing the same letter are non-significantly different.  756 

S5 Table Esters dataset 757 

S6 Table Micro-oxygenation and grape must interaction dataset 758 

S7 Table phenotypic data of 35 commercial strains in 5 grape juices (raw data) 759 

S8 Table phenotypic data of 35 commercial strains in 5 grape juices (centered reduced data) 760 
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