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ABSTRACT 

Circadian rhythms are cell-autonomous biological oscillations with a period of about 24 hours. 

Current models propose that transcriptional feedback loops are the principal mechanism for 

the generation of circadian oscillations. In these models, Drosophila S2 cells are generally 

regarded as ‘non-rhythmic’ cells, as they do not express several canonical circadian 

components. Using an unbiased multi-omics approach, we made the surprising discovery that 

Drosophila S2 cells do in fact display widespread daily rhythms. Transcriptomics and 

proteomics analyses revealed that hundreds of genes and their products are rhythmically 

expressed in a 24-hour cycle. Metabolomics analyses extended these findings and illustrated that 

central carbon metabolism and amino acid metabolism are the main pathways regulated in a 

rhythmic fashion. We thus demonstrate that daily genome-wide oscillations, coupled to 

metabolic cycles, take place in eukaryotic cells without the contribution of known circadian 

regulators. 

Introduction 
Circadian rhythms are ~24-hour oscillations found in virtually all aerobic life forms (1). In multi-

cellular organisms, such timing mechanisms enable the temporal organisation of body physiology and 

behaviour, in synchrony with the alternation of day and night (2). In the fruit fly Drosophila 

Melanogaster, the recognized models of the circadian clock centre on the transcription factors 

CYCLE (CYC) and CLOCK (CLK), the homologs of BMAL1 and CLOCK in mammals. These 

control the transcription of several clock genes including period (per) and timeless (tim) (3). Only a 

subset of cells in Drosophila express these ‘clock’ components and are regarded as the principal 

pacemakers that drive daily activity rhythms. All other cells are not thought to have the capacity to 

generate 24-hour rhythms autonomously. This extends to Drosophila S2 cells, which are regarded as 

‘non-rhythmic’ because they do not express several canonical circadian components, including PER, 

TIM or CLK (4, 5). 

 

Several lines of evidence suggest that current models are not able to fully explain the extraordinary 

plasticity of circadian oscillations (6). Residual oscillations persist in several animal models with 

clock genes mutated (7-9) or constitutively expressed (10), suggesting that the canonical mechanisms 

are not sufficient to explain the emergence of circadian oscillations. In addition, circadian oscillations 

precede the expression of canonical circadian genes during embryonic differentiation (11, 12), 

suggesting that oscillatory behaviour is not fully dependent on clock genes. Moreover, the resilience 

of circadian oscillations to the reduction of RNA transcription (13) and the persistence of metabolic 

oscillations in complete absence of gene expression (14) further highlight that current models do not 

encompass the full range of oscillatory modes on the circadian time scale. 
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Therefore, we set out to investigate if a “clock-less” system such as Drosophila S2 cells could exhibit 

circadian oscillations and would provide a novel paradigm to study fundamental mechanisms of 

circadian oscillations. To this end, we combined multiple “omics” technologies, including 

transcriptomics, proteomics and metabolomics, which identified several hundred transcripts and 

proteins rhythmically expressed in these cells. Importantly, metabolic processes were the main 

cellular function controlled by these non-canonical circadian oscillations in both transcriptomics and 

proteomics datasets. Metabolomics analyses extended these findings by showing that central carbon 

metabolism and amino acid metabolism were regulated in a rhythmic fashion, while integration of 

proteomics and metabolomics data revealed a strong coupling between protein and metabolite 

accumulation. 

Results 

Defining the daily transcriptome in Drosophila S2 cells 

We first explored gene expression patterns in S2 cells using RNA Sequencing (RNA-Seq). To ensure 

that the cells were synchronized (‘entrained’), we employed 24-hour temperature cycles. These have 

been shown to be efficient synchronisation signals for circadian oscillations (15). Following 

synchronization for a week, we sampled cells at 3-hour intervals in constant conditions (i.e. in the 

absence of any external temporal cues) (Figure 1A), and measured their circadian transcriptome by 

RNA-Seq (Figure S1A). Using a mixture model to define the sets of low and highly expressed 

transcripts (Figure S1B), we established that several clock genes including clk, per and tim were not 

expressed in S2 cells (Figure 1B), consistent with previous studies (4, 5). Moreover, four canonical 

clock genes that are expressed in S2 cells – clockwork orange (cwo), cyc, par domain protein 1 

(pdp1) and vrille (vri) – did not exhibit circadian rhythmicity (Figure S1C). This verified that any 

known circadian components were either absent or arrhythmic in this cell line.  

 

In contrast, the JTK-Cycle algorithm (16) detected more than 500 rhythmic transcripts with a period 

of approximately 24 h (Figure 1C-D; JTK-Cycle, adjusted p-value < 0.05), with peak phases at CT0 

and CT12 (Figure 1D).  Furthermore, we found a similar number of rhythmic transcripts using two 

alternative detection methods (RAIN (17) and ARSER (18)), with a highly significant overlap 

between the groups (Figure S1D; Fisher test on contingency table, p < 10-16 for every pairwise 

comparison). Thus, without any known ‘clock genes’ being rhythmic, 24-hour gene expression cycles 

were readily apparent in these cells.  

 

Gene Ontology (GO) analyses revealed that rhythmic genes were enriched for protein biosynthesis 

and metabolic processes and, in particular, the glycolytic pathway (Figure 1E). To validate this 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 20, 2017. ; https://doi.org/10.1101/191338doi: bioRxiv preprint 

https://doi.org/10.1101/191338
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

finding, we measured the mRNA accumulation of three glycolytic genes – lactate dehydrogenase 

(ImpL3), enolase (eno) and Glyceraldehyde 3-phosphate dehydrogenase 2 (Gapdh2) – using 

quantitative PCR (qPCR) and found strong agreement with our RNA-Seq data (Figure 1F).  

 

Since S2 cells were actively dividing in culture, we investigated whether the cell cycle could be 

contributing to the rhythmic transcription that we observed. We therefore performed flow cytometry 

using DAPI staining to determine the cell cycle status of temperature-synchronized cells over two 

days. We did not see circadian variation in the proportion of cells in G1, S and G2 phases during our 

time course (Figure 1G-H), indicating that the phasing of the circadian and cell cycles is not 

significantly correlated. These results thus suggest that an uncharacterised mechanism, independent of 

canonical circadian genes or the cell cycle, is involved in the generation of 24-hour transcriptional 

oscillations in S2 cells. 

 

The daily proteome is enriched for abundant proteins with low amplitude oscillations 

In addition to metabolic processes, we observed an overrepresentation of transcripts from protein 

translation and protein metabolic processes (Figure 1E). We therefore hypothesized that large-scale 

changes in protein levels may be occurring on a 24-hour timescale. We first quantified the total 

protein content over a time course and found that it displayed a circadian pattern (Figure S2A). Given 

this, we proceeded to determine whether specific proteins were rhythmically regulated using a 

proteomics protocol based on isobaric labelling of peptides using tandem mass tags (TMTs) (Figure 

2A). Using this approach, we were able to reliably quantify 4759 proteins over 18 time points and 

found that 342 proteins were rhythmically expressed in this system (Figure 2B; JTK-Cycle, adjusted 

p-value < 0.05). We again cross-validated our rhythmicity analysis using two other detection methods 

and found a similar number of rhythmic proteins (Figure S2B; Fisher test, p < 10-16 for every pairwise 

comparison). As was the case for RNA transcripts, the distribution of phases displayed a biphasic 

pattern (Figure 2C). However, most proteins peaked at CT0, while the peak phase for transcripts was 

CT12 (Figure 1C-D). Together these results indicate that S2 cells generate 24-hour gene expression 

cycles in tandem with rhythmic regulation of protein translation of specific proteins. 

 

We next assessed the reliability of our protein quantification using an alternative labelling strategy 

(Figure S2C). Correlation analysis between the temporal profiles generated by the two labelling 

strategies showed that our TMT-based protocol yields reproducible temporal profiles (Figure S2D). 

Examples of this included ImpL3, Pyruvate carboxylase (PCB) and fat-spondin, which displayed 

almost identical profiles using both quantification methods (Figure 2D). Moreover, the set of 342 

circadian proteins showed similar profiles in the validation set (Figure S2E) and the overlap between 

circadian proteins in the quantification and validation sets was highly significant (Figure S2F) (Fisher 
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test, p < 5x10-4). Similarly to previous studies in mammals (19, 20), the amplitude of protein 

oscillations was relatively low (Figure 2E). In addition, we observed that rhythmic proteins were 

enriched among the abundant proteins (Figure 2F). Since the latter tend to be more stable than less 

abundant ones (21), the low amplitude oscillations of rhythmic proteins may be caused by the 

enrichment of highly expressed proteins. Interestingly, GO analysis revealed that metabolic processes 

were particularly enriched among rhythmic proteins (Figure 2G), in a similar manner to our 

transcriptomics analyses (Figure 1E). Together, these results show that the circadian proteome in S2 

cells is enriched for abundant proteins, likely due to the overrepresentation of metabolic enzymes, and 

identify cellular metabolism as a key process regulated in a circadian pattern. 

Different contributions of transcriptional and post-transcriptional mechanisms to the circadian 

proteome 

Having determined the circadian transcriptome and proteome in S2 cells, we set out to understand 

how circadian transcription may contribute to rhythmic protein accumulation. First, we observed that 

the abundance of transcripts and proteins were highly correlated (Figure 3A), whereas there was little 

overlap of rhythmic transcripts and proteins (Figure 3B), suggesting that post-transcriptional 

mechanisms play an important role in shaping the circadian proteome. These results are in agreement 

with previous studies in mammalian systems (19, 20, 22). Nevertheless, we observed significant 

temporal correlations among RNA-protein pairs. Interestingly, the correlation between transcript and 

protein was indeed significantly higher for RNA-protein pairs when either the transcript or the protein 

(or both) was rhythmic (Figure 3C). This indicates that, even if RNA-protein pairs are rarely detected 

as both rhythmic, they nevertheless exhibit correlated temporal profiles.  

 

We reached similar conclusions when looking at the temporal cross-correlation between transcripts 

and proteins (Figure S3A). In particular, we found that the set of RNA-protein pairs with rhythmic 

transcripts had a wide distribution of phase lags between RNA and protein, suggesting that the phase 

of transcripts is a poor predictor of protein accumulation (Figure 3D-E). In contrast, rhythmic proteins 

tended to be expressed in phase with their transcripts, or with a phase delay of about 12 h (Figure 3F-

G). This phase delay is likely related to the fact that most transcripts are expressed around CT12 

(Figure 1D), while most proteins peak around CT0 (Figure 2C). We further explored the global 

temporal patterns of our transcriptome and proteome datasets using principal component analysis 

(PCA). Interestingly, ordered temporal transitions between four different transcriptional states were 

mostly captured by the first two PCA components (Figure S3B). When considering matching protein 

profiles, we observed similar clustering of time points, but this time with three states showing a cyclic 

relationship (Figure S3C). Together, these results highlight the combination of transcriptional and 

post-transcriptional mechanisms in the regulation of the circadian proteome. 
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Central carbon metabolism and amino acid metabolism exhibit daily oscillations 

Our analysis of the circadian transcriptome and proteome highlighted metabolism as a key cellular 

function regulated in a circadian manner. We therefore considered that it would be informative to 

determine which metabolites might exhibit 24-hour oscillation. First, we performed untargeted liquid 

chromatography-mass spectrometry (LC-MS) and detected 1339 features, among which 466 were 

rhythmic (Figure 4A and Figure S4A-B; JTK-Cycle, adjusted p-value < 0.05; FDR = 14.5%). In 

keeping with our gene expression data, we found that rhythmic features clustered into two phases 

(Figure 4B-C), indicating a high degree of temporal organisation. Using tandem MS (MS2), we were 

able to identify 54 metabolites and performed pathway enrichment analysis (Figure 4D, Figure S4C 

and Table S1; Metabolite Set Enrichment Analysis, raw p-value < 0.05) (23). Importantly, central 

carbon metabolism and pathways associated with amino acid metabolism were enriched among 

rhythmic metabolites. Given this, we further investigated the temporal regulation of central carbon 

metabolism by performing targeted LC-MS analysis of glycolysis, pentose phosphate pathway and 

citric acid cycle metabolites. This revealed that key metabolites including ATP, glutathione and citric 

acid cycle intermediates exhibited rhythmic accumulation over time (Figure 4E-F and Table S2).  

 

In order to infer relationships between rhythmic protein expression and metabolic oscillations, we 

integrated our proteomics dataset with the tandem MS-annotated metabolite data, and performed 

correlation analyses. When considering all possible protein to metabolite associations, the distribution 

of correlation coefficients displayed a non-uniform profile with an overrepresentation of highly 

correlated and anti-correlated profiles (Figure S4D). When only the best match between each 

metabolites and associated proteins was kept, the effect was much more pronounced, since most 

protein-metabolite pairs had an absolute correlation coefficient greater than 0.5 (Figure S4E). For 

example, lactate dehydrogenase (ImpL3) and NAD displayed strongly correlated profiles (Figure 4G; 

Pearson’s correlation = 0.97), while glutamate accumulation was anti-correlated to the levels of the 

phosphoribosylamidotransferase (Prat), an essential enzyme in the pathway for de novo purine 

synthesis (Pearson’s correlation = -0.82). Using a similar strategy, we analysed the correlation 

patterns between proteins and targeted metabolites from central carbon metabolism (Figure 4H). This 

revealed that most protein-metabolite pairs were correlated, especially those found in the same sub-

pathway. For example, proteins and metabolites of the pentose phosphate pathway formed a small 

cluster that exhibited correlated profiles, as exemplified by sedoheptulose 7-phosphate and 

transaldolase (Taldo) (Figure S4F). Together, these results imply that there is a robust link between 

protein rhythmicity and downstream metabolite oscillations in key metabolic pathways.  
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Discussion 

Current models of circadian oscillations rely on transcription-translation feedback loops, in which the 

core transcription factors CLK and CYC (CLOCK and BMAL1 in mammals) occupy a central role. 

Here we show that Drosophila S2 cells do not express the core components of the canonical 

transcriptional loops, but nevertheless exhibit genome-wide oscillations at the level of transcripts, 

proteins and metabolites. Therefore, this novel system extends the notion of circadian oscillations 

beyond the classical framework and thus opens new avenues to explore the fundamental 

underpinnings of circadian oscillations in a genetically-tractable system. 

 

Studies in mammalian system have suggested that canonical circadian genes may not be necessary for 

the generation of circadian oscillations. Indeed, human red blood cells, which lack a nucleus and thus 

transcription, display self-sustained redox oscillations on the circadian time scale (14). Moreover, the 

study of circadian oscillations during embryonic differentiation has led to the surprising observation 

that circadian rhythmicity precedes the normal expression of clock genes, for example circadian 

glucose uptake in mouse undifferentiated stem cells (11) and rhythmic gene expression in human 

embryonic stem cell-derived cardiomyocytes (12). 

 

Together, these results indicate that the canonical circadian network may not be primarily involved in 

time keeping itself, but rather involved in the coordination of cellular oscillation (Figure 5). The fact 

that CLK/CYC are transcription factors with a PAS domain, which allow molecular sensing of the 

intracellular environment, is consistent with a role as an important cog between metabolic and gene 

expression programs. In this interpretation, Drosophila S2 cells are thus a novel model of cellular 

time keeping that encompasses the metabolic and gene expression components, but not the circadian 

network. Understanding the relative role of each part in this model will surely enhance greatly our 

understanding of fundamental properties of circadian oscillations. 

 

In unicellular organisms such as yeast and cyanobacteria, gene expression cycles coupled to metabolic 

oscillations have been described with a period of oscillation in the hour range (24, 25). These short-

period metabolic oscillations are considered by some as a prototype of circadian oscillations (26). Of 

particular interest, a recent study showed that such metabolic oscillations constitute a single-cell 

phenomenon, since they have been reported in single yeast cells recorded in a microfluidic device 

(27). Importantly, such metabolic oscillations are not driven by the cell cycle, but rather they gate the 

progression of the latter. Accordingly, we did not observe a significant variation in the proportion of 

cell cycle phases over time, indicating that a similar relationship between circadian oscillations and 

cell cycle may take place in S2 cells. 
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The finding that energy metabolism and protein translation are regulated in a circadian fashion in 

Drosophila S2 cells suggests that the two processes are intimately linked, even in absence of a 

functional circadian network. Therefore, we put forward the hypothesis that gene expression cycles 

are coupled to metabolic oscillations in order to synchronise energetically costly protein biosynthesis 

with energy metabolism. In this context, a recent study has proposed that rhythmic gene expression 

optimizes the metabolic cost of global gene expression and that highly expressed genes have been 

selected to be downregulated in a cyclic manner for energy conservation (28). Therefore, bioenergetic 

constraints are likely to play an important role in Drosophila cells and may be an important driver of 

circadian oscillations in this, and other, eukaryotic models. 
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Materials and Methods 

Cell culture 

Drosophila S2 cells were purchased from Thermo Fisher Scientific and were grown in Schneider's 

Drosophila Media (Thermo Fisher Scientific), supplemented with 10% Heat-inactivated FBS, 1% 

Pen-Strep and 1/500 MycoZap Plus-CL. For circadian entrainment protocol, S2 cells were subjected 

to temperature cycles (12 h at 23ºC, 12 h at 28ºC) for at least one week, with media changes occurring 

every 3-4 days at the transition between 23 to 28ºC. The last medium change was performed at t = 0 h 

and cells were plated into 6-well plates. Cells were kept at 25ºC for the remaining of the experiment, 

with sample collection occurring at 3 h intervals between 24 h and 81 h. 

 

RNA isolation and RNA-Sequencing 

At the time points indicated in the main text, cells were lysed in triplicate in TRI-Reagent, flash-

frozen and stored at -80ºC until extraction. Extraction and purification were performed with the 

Direct-zol RNA MiniPrep kit (Zymo Research). RNA-seq libraries were prepared as described 

previously (29). Sequencing using a HiSeq platform with single-end 50 bp reads and subsequent 

quality filtering of reads was performed according to manufacturer’s instructions (Illumina).  

RNA-Seq data analysis 

Sequencing reads were aligned to the UCSC Drosophila reference genome (dm3) using TopHat 

v2.1.0 (30). Reads were assembled into transcripts using RefSeq genes as reference and their 

abundance estimated using Cufflinks/Cuffmerge/Cuffquant/Cuffnorm v2.2.1 (31). To estimate the 

threshold to define the set of expressed transcripts, we modeled the distribution of transcript mRNA 

expression using a Gaussian mixture model using the R package “mixtools”. We chose a threshold of 

0.9 FPKM, which corresponds to the 0.95 percentile of the distribution of lowly expressed transcripts, 

to define a set of 6944 expressed transcripts. 

 

Temporal profiles were linearly detrended and the JTK-Cycle algorithm was used to detect rhythmic 

transcripts using the following parameters: minimal period = 21, maximal period = 27, adjusted p-

value = 0.05. As validation, two alternative algorithms, RAIN (period = 24, period.delta = 3, method 

= longitudinal, and p-value = 0.01) and ARSER (minimal period = 21, maximal period = 27, default 

period = 24 and p-value = 0.01) were used to detect circadian transcripts. GO analyses were 

performed using the Gene List Analysis Tool from the PANTHER database using all D. 

Melanogaster genes as reference set (32). 
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Quantitative PCR 

Triplicate RNA samples were reverse-transcribed into cDNA using the High Capacity cDNA Reverse 

Transcription Kit (Life Technologies), following the manufacturer’s instructions, using 0.3-1µg total 

RNA per reaction. The resulting cDNAs were used in duplicate 7 µL PCR reactions, set up as follows: 

3.5 µL TaqMan Gene Expression Master Mix (Life Technologies), 0.35 µL validated Taqman Gene 

Expression Assay (Life Technologies), 1.15 µL nuclease-free water and 2 µL cDNA. Real-time PCR 

was performed with an ABI 7900HT (Applied Biosystems) system. The following Taqman Gene 

Expression Assays were used: Eno (Dm01844953), Gapdh2 (Dm01843776), ImpL3 (Dm01841229) 

and Act5C (Dm02361909). The relative levels of each mRNA were calculated by the 2-ΔCt method 

and normalized to the corresponding Act5C levels. 

 

Flow cytometry 

At the time points mentioned in the main text, cells were washed twice in PBS and resuspended in 

ice-cold 70% Ethanol. Cells were kept at 4ºC until staining. For staining DNA, cells were first washed 

twice with PBS, resuspended in DAPI solution (1 mg/mL in PBS + 0.1% Triton) and kept overnight 

at 4ºC. Flow cytometry was performed on a LSRFortessa™ cell analyzer (BD Biosciences) using 

standard methods. 

 

Proteomics sample preparation 

At the time points indicated in the main text, cells were spun down and the pellets were flash-frozen 

and stored at -80ºC until protein extraction. To extract protein, pellets were lysed on ice with 500 µL 

of Lysis Buffer (100 mM Triethylammonium bicarbonate (TEAB), 1% SDS, 1% NP-40, 10 mM 

diethylenetriaminepentaacetic acid (DTPA),1/100 Halt protease inhibitors (Thermo Fisher 

Scientific)). Cells were vortexed and incubated for 30 min on ice. Samples were sonicated using a 

Bioruptor Standard (Diagenode) for 5 min (30 s On, 30 s Off) on medium power. Samples were spun 

at max speed at 4ºC for 10min to remove debris and transferred to fresh tubes. BCA assay (Thermo 

Fisher Scientific) was used to quantify protein levels for tandem-mass tag (TMT) labelling (Thermo 

Fisher Scientific). 

 

TMT labelling was performed according to manufacturer’s instructions. 200 µg per condition was 

transferred into a new tube and the volume was adjusted to 200 µL with 100 mM TEAB. 10 µL of 

200 mM TCEP was added to each sample to reduce cysteine residues and samples were incubated at 

55°C for 1 h. To alkylate cysteines, 10 µL of 375 mM iodoacetamide was added to each sample and 

samples were incubated for 30 min protected from light at room temperature. Samples were split in 

two and acetone precipitation was performed by adding 6 volumes (~600 µL) of pre-chilled (-20°C) 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 20, 2017. ; https://doi.org/10.1101/191338doi: bioRxiv preprint 

https://doi.org/10.1101/191338
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

acetone. The precipitation was allowed to proceed overnight at -20°C. The samples were centrifuged 

at 8000 × g for 10 min at 4°C, before decanting the acetone. 

 

Acetone-precipitated (or lyophilized) protein pellets were resuspended with 100 µL of 100 mM 

TEAB. 2.5 µg of trypsin per 100 µg of protein was added to the proteins for proteolytic digestion. 

Samples were incubated overnight at 37°C to complete the digestion. TMT Label Reagents were 

resuspended in anhydrous acetonitrile and 0.4 mg of each label was added to the corresponding 

peptide sample. The reaction was allowed to proceed for 1 h at room temperature. 8 µL of 5% 

hydroxylamine was added to each sample and incubated for 15 min to quench the labelling reaction. 

Samples were combined in a new microcentrifuge tube at equal amounts and store at -80°C until mass 

spectrometry analyses. 

 

Proteomics mass spectrometry 

TMT-labelled tryptic peptides were subjected to HpRP-HPLC fractionation using a Dionex Ultimate 

3000 powered by an ICS-3000 SP pump with an Agilent ZORBAX Extend-C18 column (4.6 

mm × 250 mm, 5 µm particle size). Mobile phases (H20, 0.1% NH4OH or MeCN, 0.1% NH4OH) were 

adjusted to pH10.5 with the addition of formic acid and peptides were resolved using a linear 40 min 

0.1–40 % MeCN gradient over 40 min at a 400 µL/min flow rate and a column temperature of 15°C. 

Eluting peptides were collected in 15 s fractions. 120 fractions covering the peptide-rich region were 

re-combined to give 12 samples for analysis. To preserve orthogonality, fractions were combined 

across the gradient. Re-combined fractions were dried down using an Eppendorf 

Concentrator (Eppendorf, UK) and resuspended in 15 µL MS solvent (3% MeCN, 0.1% TFA). 

 

Data for TMT labelled samples were generated using an Orbitrap Fusion Tribrid Lumos mass 

spectrometer (Thermo Scientific). Peptides were fractionated using an RSLCnano 3000 (Thermo 

Scientific) with solvent A comprising 0.1% formic acid and solvent B comprising 80% MeCN, 20% 

H2O, 0.1% formic acid. Peptides were loaded onto a 75 cm Acclaim PepMap C18 column (Thermo 

Scientific) and eluted using a gradient rising from 7 to 37 % solvent B by 180 min at a flow rate of 

250 nL/min. MS data were acquired in the Orbitrap at 120,000 fwhm between 380–1500 m/z. Spectra 

were acquired in profile with AGC 2 × 105. Ions with a charge state between 2+ and 7+ were isolated 

for fragmentation using the quadrupole with a 0.7 m/z isolation window. CID fragmentation was 

performed at 35% collision energy with fragments detected in the ion trap between 400–1200 m/z. 

AGC was set to 1 × 104 and MS2 spectra were acquired in centroid mode. TMT reporter ions were 

isolated for quantitation in MS3 using synchronous precursor selection. Ten fragment ions were 

selected for MS3 using HCD at 65% collision energy. Fragments were scanned in the Orbitrap at 
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60,000 fwhm between 120–500 m/z with AGC set to 1 × 105. MS3 spectra were acquired in profile 

mode. 

 

Proteomics data analysis 

MaxQuant v1.5.5.1 (33) was used to process the raw TMT proteomics data using the following 

parameters: Fixed modifications = carbamidomethylation, FDR for protein and peptide identification 

= 0.01, sequence database=UniprotKB proteome for Drosophila melanogaster (downloaded on 13 

January 2017), variable modifications= oxidation of methionine, protein N-terminal acetylation. TMT 

10plex data were normalised using linear regression in logarithmic space to normalise for global 

abundance variations between each TMT channel. For the quantification TMT sets, samples were 

TMT-labelled as shown in Figure 2A (set1: pooled sample, CT30, CT33, CT36, CT39, CT42, CT45, 

CT48, CT51, CT54; set2: pooled sample, CT57, CT60, CT63, CT66, CT69, CT72, CT75, CT78, 

CT81). For each protein, the quantification TMT set1 and set2 were assembled together after taking 

the log ratio between each channel and the reference channel (pooled sample of all time points). For 

the validation TMT sets, samples were TMT-labelled as shown in Figure S2C (set1: CT24, CT30, 

CT36, CT42, CT48, CT54, CT60, CT66, CT72, CT78; set2: CT27, CT33, CT39, CT45, CT51, CT57, 

CT63, CT69, CT75, CT81). For each protein, the validation TMT set1 and set2 were assembled 

together after taking the log ratio between each channel and the mean across all channels for this 

protein (mean centering). Protein temporal profiles were linearly detrended and the JTK-Cycle 

algorithm (16) together with the RAIN and ARSER methods for validation were used to detect 

rhythmic transcripts with same parameters used for the RNA-Seq analysis. GO analyses were 

performed using the Gene List Analysis Tool from the PANTHER database using all D. 

Melanogaster genes as reference set (32). In order to integrate transcriptomics and proteomics data, 

we used the Uniprot ID converter tools to generate a mapping between Uniprot accession numbers 

and RefSeq annotations. We performed a protein-centric integration, where each protein was 

associated with at most one transcript. If there were more than one transcript, the most rhythmic 

mRNA transcript was kept. Using this strategy, we were able to assemble 4658 protein-RNA pairs 

from 4758 proteins and 6944 transcripts. For each RNA-protein pair, the Pearson correlation 

coefficient was computed using the respective temporal profiles from CT30 to CT81. 

 

Metabolite sample preparation 

At the time points indicated in the main text, triplicate cell samples were spun down and pellets were 

washed with room-temperature PBS. Cells were resuspended in 1 mL of methanol:water (80:20) at -

75°C for quenching and samples were stored at -80ºC. To extract metabolites, samples were thawed 

on ice and then vortexed for 2 min at room temperature. Samples were sonicated for 5 min in the cold 

room (30 s ON, 30 s OFF, medium power). Samples were centrifuged the mixture for 10 min at 
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10,000 rpm at 4ºC and the supernatants were transferred to fresh 1.5 mL Eppendorf tubes. The 

extraction was repeated a second time with 500 µL methanol:water (80:20). For the third extraction, 

500 µL methanol:water (80:20) supplemented with 13C5,
15N1-valine was used downstream quality 

control. The three extractions were pooled and lyophilized to dryness. Samples were resuspended in 

350 µL of chloroform:methanol:water (1:3:3 v/v) and the polar (upper) phase was collected for 

analysis. Quality control samples were prepared by pooling equal volumes from all samples included 

in this study.  

 

Metabolomics mass spectrometry 

LC-MS method was adapted from a published protocol (34). Samples were injected onto a Dionex 

UltiMate LC system (Thermo Scientific) with a ZIC-pHILIC (150 mm x 4.6 mm, 5 µm 

particle) column (Merck Sequant). A 15 min elution gradient of 80% to 20% Solvent B was used, 

followed by a 5 min wash of 5% Solvent B and 5 min re-equilibration, where Solvent B was 

acetonitrile (Optima HPLC grade, Sigma Aldrich) and Solvent A was 20 mM ammonium carbonate in 

water (Optima HPLC grade, Sigma Aldrich). Other parameters were as follows: flow rate 300 

µL/min; column temperature 25°C; injection volume 10 µL; autosampler temperature 4°C.  

MS was performed with positive/negative polarity switching using an Q Exactive Orbitrap (Thermo 

Scientific) with a HESI II probe. MS parameters were as follows:  spray voltage 3.5 kV and 3.2 

kV for positive and negative modes, respectively; probe temperature 320°C; sheath and auxiliary 

gases were 30 and 5 arbitrary units, respectively; full scan range: 70 to 1050 m/z with settings of AGC 

target and resolution as Balanced and High (3 × 106 and 70,000) respectively. Data was recorded 

using Xcalibur 3.0.63 software (Thermo Scientific). Mass calibration was performed for both ESI 

polarities before analysis using the standard Thermo Scientific Calmix solution. To enhance 

calibration stability, lock-mass correction was also applied to each analytical run using ubiquitous 

low-mass contaminants. Parallel reaction monitoring (PRM) acquisition parameters: resolution 

17,500; collision energies were set individually in HCD (high-energy collisional dissociation) mode. 

 

Metabolomics data analysis 

Qualitative analyses were performed using Xcalibur Qual Browser (Thermo Fisher Scientifc) and 

mzCloud (HighChem). Untargeted metabolomics data analyses were performed with Progenesis QI 

(Nonlinear Dynamics) using the following parameters: feature detection = high resolution, peak 

processing = centroided data with resolution at 70000 (FWHM). In positive mode, the following 

adducts were used: M+NH4, M+H, M+Na and M+2H. In negative mode, the following adducts were 

used: M-H, M+Na-H, M-2H. Normalisation was performed using the log-ratio method over all 

features. Features having a coefficient of variation (CV) lower than 30% among quality control 

samples were selected for downstream analyses (n = 722 and 616 for positive and negative mode, 
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respectively). PCA of all samples (including features with CV < 30% from positive and negative 

modes) shows very good clustering, indicating system stability, performance, and reproducibility 

(Figure S4A). Similar conclusions were reached using correlation analysis (Figure S4B). Features in 

the retention time window between 19.15 and 19.35 min were excluded from subsequent analyses, 

due to artefactual profiles in this time window. Temporal profiles were linearly detrended and the 

JTK-Cycle algorithm was used to detect circadian rhythmicity using the following parameters: 

minimal period = 21, maximal period = 27, adjusted p-value = 0.05, number of replicates = 2-3. From 

the 466 rhythmic features, 145 with at least one hit in spectral databases were selected for MS2 

annotation. Out of these, we were able to annotate 70 features with MS2 data (Table S1), which 

correspond to 54 metabolites. Metabolic pathway enrichment analysis was performed using 

Metabolite Set Enrichment Analysis (MSEA) (23). For targeted LC-MS data analysis, a set of 20 

metabolites (Table S2) was chosen from carbon metabolism and redox pathways. Retention time and 

MS/MS spectra from samples were compared to metabolite standards to validate identification. 

Quantification was performed manually using TraceFinder v4.1 (Thermo Fisher Scientific). 

Normalisation across samples was performed using the normalisation ratio calculated with Progenesis 

QI. In order to integrate metabolomics and proteomics datasets, we used the Kyoto Encyclopedia of 

Genes and Genomes (KEGG) annotation. Briefly, Uniprot accession numbers were annotated with 

Enzyme Commission (EC) numbers, which were used to fetch all interacting metabolites in the 

KEGG database. Each metabolite was annotated with all possible proteins based on the described 

annotation and correlation analysis was performed between metabolite-protein pairs. 

 

Data deposition 

The RNA-seq data set produced in this study has been deposited in the Gene Expression Omnibus 

(accession number GSE102495). The mass spectrometry proteomics data have been deposited to the 

ProteomeXchange Consortium via the PRIDE (35) partner repository with the dataset 

identifier PXD007669. 
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Figures Legends 

Figure 1. Transcriptional oscillations in Drosophila S2 cells. (A) Schematic showing the 

entrainment protocol used to synchronize Drosophila S2 cells. (B) Histogram showing the 

distribution of mean expression levels. The dashed vertical line represents the cut-off chosen to define 

the set of expressed transcripts. FPKM, Fragments Per Kilobase of transcript per Million mapped 

reads. (C) Heatmap showing the expression profiles of the 511 rhythmic transcripts (JTK-Cycle, p < 

0.05 (D) Distribution of phase of the circadian transcripts shown in (C). (E) Scatterplot representation 

of Gene Ontology (GO) analysis of the rhythmic transcripts. (F) Validation of selected transcripts by 

quantitative PCR (qPCR) (n = 3, mean ± SEM). (G) Cell cycle analysis using flow cytometry showing 

the fraction of cells in G1, S and G2 phases along the time course experiment (n = 3, mean ± SEM). 

(H) Representative histograms of the DAPI signal at selected time points, with the curve fitting of cell 

cycle phases. 
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Figure 2. Proteome oscillations in Drosophila S2 cells. (A) Scheme showing the sample collection 

procedure and the labelling scheme. (B) Heatmap representation of the 342 rhythmic proteins (JTK-

Cycle, p < 0.05). (C) Distribution of phase of the circadian proteins shown in (B). (D) Validation of 

TMT quantitation using an alternative method to label samples. (E) Distribution of amplitudes of the 

342 circadian proteins. (F) Cumulative density of protein abundances of circadian proteins vs. all 

proteins (n = 4759 proteins quantified; Wilcoxon sum rank test, p < 10-4). (G) Scatterplot 

representation of the GO analysis of the rhythmic proteins. 
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Figure 3. Integration of transcriptomics and proteomics data. (A) Scatter plot of RNA and protein 

expression. (B) Venn diagram showing the overlap of rhythmic RNA and proteins. (C) Cumulative 

distributions for Pearson correlation coefficients for the indicated groups of RNA-protein pairs. RNA-

Prot-, neither circadian; RNA+Prot+, both circadian; RNA-Prot+, RNA not circadian and protein 

circadian; RNA+Prot-, RNA circadian and protein not circadian (Wilcoxon sum rank test). (D and F) 

Heatmap representations of transcripts and protein accumulations for the RNA-protein pairs with 

rhythmic transcripts (D) or proteins (F). (E and G) Distribution of phase difference between RNA-

protein pairs for those with rhythmic transcripts (E) or proteins (G). 
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Figure 4. The circadian metabolome of S2 cells. (A) Heatmap representation of the 466 LC-MS 

features detected as rhythmic (JTK-Cycle; P<0.05, FDR=14.5%). (B) Individual traces of rhythmic 

features from cluster 1 and 2 from (A). (C) Distribution of phases from (A). (D) Metabolite Set 

Enrichment Analysis of the 54 identified rhythmic metabolites. (E) Targeted LC-MS analysis of 

metabolites from glycolysis, pentose phosphate pathway (PPP) and tricarboxylic acid (TCA) cycle. 

The colour of each node represents the p-value for daily rhythmicity (JTK Cycle). See Table S2 for 

list of abbreviations. (F) Selected metabolite temporal profiles are shown together with their 

associated p-value. (G) Two examples of protein-metabolite pairs are shown with their respective 

Pearson correlation coefficients. (H) Heatmap showing the Pearson’s correlation between each profile 

from targeted metabolomics (carbon metabolism) and proteomics data. 
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Figure 5. Coupled gene expression and metabolic cycles in Drosophila S2 cells. (A) Schematic 

showing the difference between a clock cell where the circadian network is active and Drosophila S2 

cells, which exhibit gene expression and metabolic cycles in its absence. 
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Supplemental Information  
 
Figure S1. 
(A) Heatmap showing the Pearson’s correlation coefficient between each pair of time points from the 
RNA-Seq time course. (B) Histogram showing the distribution of mean expression levels measured 
by RNA-Seq. The distribution was modelled with a mixture model to define the sets of lowly (red) 
and highly (green) expressed transcripts. The dashed vertical line represents the cut-off chosen to 
define the set of expressed transcripts. FPKM, Fragments Per Kilobase of transcript per Million 
mapped reads. (C) Validation of the JTK-Cycle algorithm with two other methods to detect rhythmic 
transcripts. A table giving the number of rhythmic transcripts is given (left), together with a Venn 
diagram showing the overlap between methods (right). (D) mRNA expression of four canonical 
circadian expressed in S2 cells. 
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Figure S2. 
 (A) Validation of the JTK-Cycle algorithm with two other methods to detect rhythmic transcripts. A 
table giving the number of rhythmic transcripts is given (left), together with a Venn diagram showing 
the overlap between methods (right). (B) The protein concentration in cell extracts was measured 
using BCA method (mean ± SEM, n = 2-3). (C) Cartoon representing the labelling scheme for the 
validation protocol. Samples were labelled using interspersed time points (Set 1: CT24, CT30, CT36, 
…; Set 2: CT27, CT33, CT39, …) and the two 10plex TMTs were then combined to produce 20 time 
point quantification profiles. (D) Distributions of Spearman’s correlation coefficient between the 
quantification and validation sets of quantitative proteomics data. Random permutations of the data 
are shown as control (n = 100). (E) Heatmap representation of the proteins detected as rhythmic in the 
quantification set (342 proteins) for the quantification set (left) and validation set (right). (F) Heatmap 
representation of the proteins detected as rhythmic in both the quantification and validation sets (58 
proteins) for the quantification set (left) and validation set (right). 
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 20, 2017. ; https://doi.org/10.1101/191338doi: bioRxiv preprint 

https://doi.org/10.1101/191338
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure S2

A B

C

E

D

Time after medium change (h)

Te
m

p 
(º

C
)

23

28

Sampling

TMT Validation  Set1
TMT Validation Set2

30 36 60544842 72 78 846624

A:
Quantification

B:
Validation

JTK (p<0.05)

RAIN (p<0.01)

ARSER (p<0.01)

Common

Rhythmic
proteins

342

487

377

173

−1.0 −0.5 0.0 0.5 1.0

0.
00

0.
02

0.
04

0.
06

Spearman’s Correlation

D
en

si
ty

Quantification vs. Validation
Random permutations

24 48 7236 6048 7236 60

Time (h)

34
2 

R
hy

th
m

ic
 p

ro
te

in
s 

in
 A

24 48 7236 6048 7236 60

Time (h)

A:
Quantification

B:
Validation

58
 R

hy
th

m
ic

 p
ro

te
in

s 
in

 A
 &

 B

F

24 48 72

1

2

3

Time (h)

P
ro

te
in

 c
on

ce
nt

ra
tio

n 
(u

g/
ul

)

342 466

58
Quantification Validation

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 20, 2017. ; https://doi.org/10.1101/191338doi: bioRxiv preprint 

https://doi.org/10.1101/191338
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Figure S3. 
 (A) Temporal cross-correlation for RNA-proteins pairs as described in Figure 3. (B-C) PCA plot of 
RNA and protein data for all RNA-proteins pairs. Clustering of time points is performed with 
Partitioning Around Medoids (PAM) method. 
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Figure S4. 
 (A) PCA plot of the 59 samples and 11 quality control (QC) samples analysed in this study. (B) 
Heatmap showing the Spearman’s correlation between all samples. (C) Workflow of untargeted 
metabolomics data analysis. (D) Distribution of Pearson’s correlation coefficients for all possible 
protein-metabolite pairs. (E) Distribution of Pearson’s correlation coefficients for the best protein-
metabolite pairs. For each metabolite, the correlation coefficients for all possible interacting proteins 
were computed and the protein with the highest absolute correlation coefficient was retained. (F) An 
examples of correlated protein-metabolites are shown with Pearson correlation coefficient (top). 
SH7P, sedoheptulose 7-phosphate; Taldo, Transaldolase. 
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Table S1. 
Table of the 70 MS2-annotated features with m/z, retention time and fragments used for annotation. 
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m/z Retention	time	(min) Charge Polarity MS2	Annotation CAS KEGG Fragments
132.07 12.17 1 Positive 3-Hydroxy-L-proline 4298-08-2 C19706 90.06,	132.08
136.05 9.78 1 Positive Adenine 73-24-5 C00147 119.04,	92.02,	136.06
508.00 12.85 1 Positive Adenosine	triphosphate 56-65-5 C00002 136.06,	410.03,	428.04
118.09 10.80 1 Positive Betaine 107-43-7 C00719 118.09
332.14 8.15 1 Positive Ciprofloxacin 85721-33-1 C05349 231.06,	332.14
489.11 12.79 1 Positive Citicoline 987-78-0 C00307 264.04,	184.07
223.07 13.56 1 Positive Cystathionine 535-34-2 C00542 134.08,	223.08
244.09 11.22 1 Positive Cytidine 65-46-3 C00475 95.02,	112.05
324.06 13.27 1 Positive cytidine	5-monophosphate 63-37-6 C00055 112.05,	324.06
112.05 13.27 1 Positive Cytosine 71-30-7 C00380 95.02,	112.05
112.05 11.22 1 Positive Cytosine 71-30-7 C00380 95.02,	112.05
148.06 12.68 1 Positive Glutamic	acid 56-86-0 C00025 84.04,	102.06,	130.05
156.08 16.29 1 Positive Histidine 71-00-1 C00135 110.07,	113.11,156.08
127.07 11.18 1 Positive Imizadoleacetic	acid 645-65-8 81.04,	85.05
88.11 10.29 1 Positive Isoamylamine 107-85-7 C02640 88.08,	70.07
170.09 7.42 1 Positive Methyl-L-histidinate 1499-46-3 110.07,	170.09
174.11 7.10 1 Positive N-Acetyl-L-leucine 1188-21-2 C02710 174.06
664.12 12.27 1 Positive NAD 53-84-9 C00003 428.04,	136.06,	524.06
124.04 8.08 1 Positive Niacin 59-67-6 C00253 124.04,	80.05,	96.04
166.09 10.11 1 Positive Phenylalanine 63-91-2 C00079 120.08,	166.09
166.07 9.82 1 Positive Phenylalanine 63-91-2 C00079 120.08
130.09 11.47 1 Positive Pipecolic	Acid 3105-95-1 C00408 84.08,	130.09
218.14 9.86 1 Positive propionylcarnitine 17298-37-2 C03017 85.03,	218.14,	159.07
377.15 8.81 1 Positive Riboflavin 83-88-5 C00255 243.09
399.14 12.95 1 Positive S-Adenosyl-L-methionine 29908-03-0 C00019 250.09,	298.10,	136.06
106.05 13.17 1 Positive Serine 56-45-1 C00065 60.04
203.15 14.66 1 Positive Symmetric	Dimethylarginine 30344-00-4 203.15,	116.07,	70.07,	89.09
150.11 8.86 1 Positive Triethanolamine 102-71-6 C06771 70.07,	88.08,	132.10
183.09 12.33 1 Positive Triethyl	phosphate 78-40-0 98.98,	127.02
182.08 11.89 1 Positive Tyrosine 60-18-4 C00082 136.08,	123.04,	119.05,	91.05
296.08 7.13 1 Negative 5	-S-	methyl	-5-	thioadenosine 2457-80-9 C00170 134.05
130.05 11.24 1 Negative 5-aminolevulinic	acid 106-60-5 C00430 130.09
173.01 13.68 1 Negative Aconitic	Acid 585-84-2 C00417 85.03,	111.01
505.99 12.85 1 Negative Adenosine	triphosphate 56-65-5 C00002 505.99,	158.92,	408.01,	176.93
88.04 12.70 1 Negative Alanine 302-72-7 C01401 88.04
289.12 13.45 1 Negative Argininosuccinic	acid 2387-71-5 C03406 131.08,	132.03,	173.1
132.03 12.85 1 Negative Aspartic	acid 56-84-8 C00049 88.04,	71.01,	72.01
191.02 13.75 1 Negative Citric	acid 77-92-9 C00158 87.01,	111.01,	85.03
221.06 13.56 1 Negative Cystathionine 535-34-2 C00542 134.03,	120.01,	221.06
147.03 12.76 1 Negative D-alpha-Hydroxyglutaric	acid 2889-31-8 C01087 85.03,	101.02,	57.03,	103.04,	129.02
195.05 12.41 1 Negative D-Gluconic	acid 526-95-4 C00257 75.01,	195.05,	129.02
171.10 7.09 1 Negative Decanoic	acid 334-48-5 C01571 171.14
171.10 4.44 1 Negative Decanoic	acid 334-48-5 C01571 171.14
171.14 4.16 1 Negative Decanoic	acid 334-48-5 C01571 171.14
121.05 11.20 1 Negative Erythritol 149-32-6 C00503 71.01,	121.03,	89.02
259.02 13.43 1 Negative Glucose	6-phosphate 56-73-5 C00092 96.97,	78.96
129.02 12.76 1 Negative Glutaconic	acid 1724-02-3 C02214 85.03,	101.02
146.05 12.70 1 Negative Glutamic	acid 56-86-0 C00025 102.06,	128.03,	146.05
145.06 12.78 1 Negative Glutamine 5959-95-5 C00819 101.02,	145.06,	127.05
152.53 12.46 2 Negative Glutathione 70-18-8 C00051 74.02,	128.03,	152.87,	86.02
171.01 12.68 1 Negative Glycerol	3-phosphate 57-03-4 C03189 78.96,	96.97
171.08 11.65 1 Negative Glycylproline 704-15-4 171.14,	96.96	
521.98 13.97 1 Negative Guanosine	triphosphate 86-01-1 C00044 521.98,	424.00
154.06 16.03 1 Negative Histidine 150-35-6 C00135 154.06,	137.03,	93.04
103.00 13.03 1 Negative Malonic	acid 141-82-2 C00383 59.01,	73.03
181.07 13.89 1 Negative Mannitol 69-65-8 C00392 181.07,	101.02,	71.01
181.07 12.93 1 Negative Mannitol 69-65-8 C00392 181.07,	101.02,	71.01
181.07 14.25 1 Negative Mannitol 69-65-8 C00392 181.07,	101.02,	71.01
172.10 4.67 1 Negative N-Acetyl-L-leucine 1188-21-2 C02710 172.14,	130.09
190.05 4.93 1 Negative N-Acetyl-L-methionine 65-82-7 C02712 84.04
190.05 7.13 1 Negative N-Acetyl-L-methionine 65-82-8 C02713 84.04
122.02 8.09 1 Negative Nicotinic	acid 59-67-6 C00253 94.03,	122.02,	78.03
164.07 10.12 1 Negative Phenylalanine 63-91-2 C00079 147.04,	164.07,	72.01
166.97 13.49 1 Negative Phosphoenolpyruvic	acid 138-38-9 C00074 78.96
128.07 11.50 1 Negative Pipecolic	acid 535-75-1 C00408 128.03
117.02 12.76 1 Negative Succinic	acid 110-15-6 C00042 73.03,	117.02,	99.01
203.08 11.08 1 Negative Tryptophan 54-12-6 C00806 203.08,	116.05,	159.09
180.07 11.87 1 Negative Tyrosine 60-18-4 C00082 180.07,	163.04,	119.05
167.02 11.87 1 Negative Uric	Acid 13154-20-6 C00366 69.01,	124.01,	96.02
151.03 11.20 1 Negative Xanthine 69-89-6 C00385 151.03,	108.02,	136.02
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Table S2. 
Table of the 20 metabolites selected for targeted LC-MS analysis. 
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m/z Polarity RT	Start	(min) RT	End	(min) Name Abbreviation
261.037 Positive 12.8 13.8 Glucose	6-phosphate G6P
308.0911 Positive 11.8 12.8 Glutathione	reduced GSH
348.07036 Positive 11.5 12.5 Adenosine	monophosphate AMP
428.0367 Positive 11.9 12.9 Adenosine	diphosphate ADP
508.00304 Positive 12.4 13.4 Adenosine	triphosphate ATP
613.1593 Positive 12.8 13.8 Glutathione	oxidized GSSG
664.11641 Positive 11.1 12.1 Nicotinamide	adenine	dinucleotide NAD
744.08272 Positive 12.4 13.4 Nicotinamide	adenine	dinucleotide	phosphate NADP
89.02441 Negative 9.5 10.5 Lactic	acid Lac
115.0037 Negative 12.5 13.5 Fumaric	acid Fum
117.01933 Negative 12.2 13.2 Succinic	acid Succ
133.0143 Negative 12.5 13.5 Malic	acid Mal
145.0143 Negative 12.1 13.1 Alphaketoglutaric	acid a-KG
166.9751 Negative 12.9 13.9 Phosphoenolpyruvic	acid PEP
168.9908 Negative 12.2 13.2 DHAP DHAP
191.0197 Negative 13.1 14.1 (Iso)citrate (Iso)cit
229.0119 Negative 12.4 13.4 Ribose	5-phosphate/Ribulose	5-phosphate R5P/Ru5P
259.0224 Negative 12.8 13.8 Fructose	6-phosphate F6P
289.033 Negative 12.5 13.5 Sedoheptulose	7-phosphsate SH7P
338.9888 Negative 13 14 Fructose	1,6-biphosphate FBP
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