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Abstract—Functional brain network (FBN) has been becoming 

an increasingly important measurement for exploring the cerebral 

working mechanism and mining informative biomarkers for 

assisting diagnosis of some neurodegenerative disorders. Despite 

its potential performance in discovering the valuable patterns 

hidden in the brains, the estimated FBNs are often heavily 

influenced by the quality of the observed data (e.g., BOLD signal 

series). In practice, a preprocessing pipeline is usually employed 

for improving the data quality prior to the FBN estimation; but, 

even so, some data points in the time series are still not clean 

enough, possibly including original artifacts (e.g., micro head 

motion), non-resting functional disturbing (e.g., mind-wandering), 

and new “noises” caused by the preprocessing pipeline per se. 

Therefore, not all data points in the time series can contribute to 

the subsequent FBN estimation. To address this issue, in this paper, 

we propose a novel FBN estimation method by introducing a latent 

variable as an indicator of the data quality, and develop an 

alternating optimization algorithm for scrubbing the data and 

estimating FBN simultaneously in a single framework. As a result, 

we can obtain more accurate FBNs with the self-scrubbing data. 

To illustrate the effectiveness of the proposed method, we conduct 

experiments on two publicly available datasets to identify mild 

cognitive impairment (MCI) patients from normal control (NC) 

subjects based on the estimated FBNs. Experimental results show 

that the proposed FBN modelling method can achieve higher 

classification accuracy, significantly outperforming the baseline 

methods. 

 
Index Terms—Functional Brain Network; Resting-state 

Functional Magnetic Resonance Imaging (fMRI); Mild Cognitive 

Impairment (MCI) 

 

I. INTRODUCTION 

UNCTIONAL brain network (FBN) provides an increasingly 

important way to explore the brain integration mechanism 

[1], discover potential brain activities [2], and mine sensitive 

biomarkers for neural disease diagnosis [3,4] (such as autism 

spectrum disorder [5-7], Alzheimer’s disease [8,9] and 

Parkinson’s disease [10]). All these rely heavily on the quality 

of the final FBNs, and thus it becomes essential to estimate an 

accurate FBN [11]. 
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Currently, researchers have proposed many different 

methods towards better FBN estimation, and most of them can 

be explained under a regularized framework that requires an 

accurate FBN estimation model to not only fit the data, but also 

effectively encode the priors of brain organization [12]. In 

practice, the commonly-used priors include sparsity [13-16], 

group-sparsity [17,18], low-rank [19], and modularity [12], 

which can be transformed into their corresponding 

regularization terms in the FBN estimation models and can 

often improve the performance of the obtained FBNs. 

Besides the regularizers, the data-fitting terms (see Eq. (5) 

and related comments for details) also have a high influence on 

FBN estimation. However, the artifacts or noises involved in 

the observed data (or time series) usually lead to a poor fitting 

result. Therefore, in practice, a preprocessing pipeline, 

including motion correction, spatial smoothing and temporal 

filtering, is generally employed to improve the quality of the 

data before FBN estimation [20]. Even so, it is hard to eliminate 

all the artifacts/noises in the data due to the weak fMRI signals 

and complex disturbing sources. Moreover, some preprocessing 

steps (e.g., spatial normalization) in the pipeline may also cause 

new “dirty” points in the time series. 

As a recently developed preprocessing step, the scrubbing 

operation has been investigated to further clean the data by 

removing some potentially “dirty” time points from the fMRI 

series [21]. Despite its seeming appeal, there are also some 

debates on such a scheme [21-25]. Moreover, this scheme 

mainly focuses on specific physical artifacts (e.g., micro head 

motion) that can only cover a limited range of problematic time 

points. In fact, a large number of factors may introduce “dirty” 

data points into the fMRI series. For example, the “resting-state” 

fMRI data tend to involve many different functional processes, 

e.g., mind-wandering [26], thus resulting in non-resting-state 

time points in the fMRI data that cannot be detected by the 

traditional scrubbing technique. More notably, the scrubbing 

operation is independent of the FBN estimation model used, 

and thus cannot guarantee that the preserved data points can 

necessarily benefit for the subsequent FBN estimation, while 

the removed data points are not necessarily helpful. In addition, 

Lishan Qiao is with the School of Mathematics Science, Liaocheng 

University, Liaocheng 252000, China (e-mail: qiaolishan@lcu.edu.cn). 
Zhengxia Wang is with the College of Information Science and Engineering, 

Chongqing Jiaotong University, Chongqing 400074, China (e-mail: 

zxiawang@163.com).  
Dinggang Shen is with the Department of Radiology and BRIC, University 

of North Carolina at Chapel Hill, NC 27599, USA and with Department of 

Brain and Cognitive Engineering, Korea University, Seoul 02841, Republic of 
Korea. (e-mail: dgshen@med.unc.edu). 

Functional Brain Network Estimation with 

Time Series Self-scrubbing  

Weikai Li, Lishan Qiao*, Zhengxia Wang, and Dinggang Shen  

F 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 20, 2017. ; https://doi.org/10.1101/191262doi: bioRxiv preprint 

https://doi.org/10.1101/191262
http://creativecommons.org/licenses/by-nc-nd/4.0/


 2 

it is hard for the common scrubbing method to control the 

length of the remaining time series [21], and thus the final series 

sometimes cannot contain enough time points (samples) for 

estimating a reliable FBN [12]. 

To address these issues, in this paper, we propose a novel 

FBN estimation strategy by introducing a latent indicator 

variable into the FBN optimization model. The latent variable 

indicates the quality or state of each time point in the fMRI 

series, and can be learned automatically with the FBN together 

from the data. Based on the latent variable model [27,28], we 

then develop an alternating optimization algorithm to 

simultaneously estimate the indicator variable and FBN in a 

single framework. Consequently, our proposed method will be 

able to automatically identify and remove the “dirty” time 

points from the fMRI series; that is, it can make a self-scrubbing 

operation at the FBN estimation procedure. In the following, 

the contributions and the main advantages of our proposed 

framework are summarized. 

1) Different from traditional methods that often conduct the 

data scrubbing and FBN estimation in two separate sequential 

steps, our proposed framework combines data scrubbing and 

FBN estimation into a single model. By joint optimization, we 

can obtain FBNs with potentially higher accuracy and 

efficiency. 

 2) Technically, we introduce a latent variable into the FBN 

estimation model as an indicator of the data quality, and design 

an alternating approach to estimate the optimal indicator, by 

which we can scrub the time points that are potentially not 

helpful for FBN estimation. Moreover, compared with the 

traditional scrubbing operation that often removes too many 

data points, our proposed framework can control the size of 

scrubbed data by a hyper-parameter. 

 3) Finally, it is worth emphasizing that our proposed 

framework is not competitive to the original scrubbing strategy, 

since it can also work on the data that have been already 

scrubbed by the traditional methods. Therefore, the proposed 

method is more flexible and adaptive for the FBN estimation 

than the traditional scrubbing scheme. 

To verify the effectiveness of the proposed method, we apply 

it to estimate FBNs based on the resting-state functional 

magnetic resonance imaging (R-fMRI), and then identify mild 

cognitive impairment (MCI) patients from normal control (NC) 

subjects via the estimated FBNs. Experiments are conducted on 

two publicly available datasets, and the experimental results 

illustrate that our proposed method works well on both 

scrubbed and non-scrubbed R-fMRI data. For facilitating 

efforts to replicate our results, we have also shared both pre-

processed data and codes in https://github.com/Cavin-Lee/self-

scrubbing/. 

The rest of this paper is organized as follows. In Section II, 

we review the main-stream FBN estimation methods. In Section 

III, we propose a novel FBN estimation framework, including 

motivation, modeling, and algorithm. In Section IV, we conduct 

experiments on a simulated data and two real-world datasets. In 

Section V, we conclude the paper with a brief discussion. 

 

II.  RELATED WORKS 

In this paper, we mainly focus on the correlation-based 

methods, which are currently the most popular ways of FBN 

estimation and have been empirically demonstrated to be more 

sensitive than the complex or higher-order methods [11]. In the 

following, we review several representative correlation-based 

methods that, in fact, provides a platform for developing our 

model. 

 

A. Pearson’s Correlation 

According to a recent review [1], Pearson’s Correlation (PC) 

is the simplest method for estimating FBNs. We suppose that 

each brain has been parcellated into N regions of interest (ROIs) 

based on a certain atlas, and the fMRI time series associated 

with the ith ROI is represented by 𝐱𝑖 ∈ 𝑅𝑇 , 𝑖 = 1, ⋯ , 𝑁, where 

T is the number of time points in each series. Then, the edge 

weights of the FBN based on PC can be calculated as follows: 

𝑊𝑖𝑗 =
(𝐱𝑖−�̅�𝑖)𝑇(𝐱𝑗−�̅�𝑗)

√(𝐱𝑖−�̅�𝑖)𝑇(𝐱𝑖−�̅�𝑖)√(𝐱𝑗−�̅�𝑗)
𝑇

(𝐱𝑗−�̅�𝑗)

              (1) 

By defining a new 𝐱𝑖 ≜ (𝐱𝑖 − �̅�𝑖) √(𝐱𝑖 − �̅�𝑖)𝑇(𝐱𝑖 − �̅�𝑖)⁄ , a 

centralized and normalized counterpart of the original 𝐱𝑖 , we 

can simplify the PC as  𝑊𝑖𝑗 = 𝐱𝑖
𝑇𝐱𝑗 , which corresponds to the 

solution of the following optimization problem: 

𝑚𝑖𝑛𝐖‖𝐖 − 𝐗𝑇𝐗‖𝐹
2                            (2) 

Here, 𝐗 = [𝐱1 , 𝐱2 , ⋯ , 𝐱𝑁] ∈ 𝑅𝑇×𝑁 is the data matrix, W is the 

edge weight matrix, and ‖∙‖𝐹 denotes the F-norm of a matrix. 

Since the BOLD signals commonly contain noises, the original 

PC tends to result in a FBN with dense connections [29]. In 

practice, a threshold scheme is generally used to sparsify the 

PC-based FBN by filtering out the noisy or weak connections. 

For detailed discussion on the thresholding strategy, please 

refer to Section 3.2.1 in [29]. 

 

B. Partial Correlation 

Partial correlation is used in FBN estimation for treating the 

confounding problem involved in the full correlation methods 

such as PC [30]. A general approach to calculate partial 

correlation is based on the estimation of inverse covariance 

matrix [31]. However, this approach may be ill-posed due to the 

singularity of the estimated sample covariance matrix 𝚺 = 𝐗𝑇𝐗. 

To alleviate this issue, a regularization term 𝑅(𝐖) is generally 

introduced into the FBN estimation model as follows. 

𝑚𝑖𝑛𝐖 ∑ ‖𝐱𝑖 − 𝑊𝑖𝑗 𝐱𝑗 ‖
2

+ 𝜆𝑅(𝐖)𝑛
𝑖,𝑗=1               (3) 

Equivalently, it can be further simplified to the following 

matrix form: 

𝑚𝑖𝑛𝐖‖𝐗 − 𝐗𝐖‖𝐹
2 + 𝜆𝑅(𝐖)                   (4) 

In Eq. (3) or (4), the first term implies to invert the covariance 

matrix 𝚺 [31], and 𝜆 is a regularized parameter to control the 

balance between the first (data-fitting) term and the second 

(regularization) term. The most popular regularizer is l1-norm, 

i.e., 𝑅(𝐖) = ‖𝐖‖1 = ∑ |𝑊𝑖𝑗 |𝑛
𝑖,𝑗=1 , which corresponds to the 

sparsity prior of FBN, and leads to the LASSO or sparse 

representation (SR) model [15,32,33]. As discussed previously, 
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some other regularizers have been investigated in recent years 

to encode different priors, which, however, is beyond our main 

focus of this paper. 

 

C. A Regularized FBN Estimation Framework 

According to a recent study [12], a large family of FBN 

estimation models can be summarized by the following 

regularized framework: 

min𝐖𝑓(𝐗, 𝐖) + 𝜆𝑅(𝐖), s. t. 𝐖 ∈ ∆                  (5) 

where 𝑓(𝐗, 𝐖) is a data-fitting term, aiming to capture some 

statistics of the data (e.g., the covariance or inverse covariance 

structure), and 𝑅(𝐖)  is the regularization term, aiming to 

encode the biological/physical priors of the FBN. Sometimes, 

specific constraints (e.g., symmetry or positive semi-definite) 

are included in ∆ for shrinking the search space of 𝐖 towards 

better FBNs. 

Such a regularized framework can not only stabilize the 

statistical estimation, but also, more importantly, provide a 

general platform for designing the new FBN estimation method 

in this paper. 

 

III. THE PROPOSED METHOD 

As mentioned earlier, both prior information and data quality 

have a significant influence on the performance of the estimated 

FBNs. The priors can be generally encoded by the 

regularization terms. In contrast, however, the quality of time 

points in the fMRI series cannot be easily measured without the 

guidance of a specific learning/estimation task. Therefore, in 

this section, we propose a novel solution for identifying the 

quality of time points with the FBN estimation (task) together, 

by which we expect to get cleaner data, and, in turn, more 

accurate FBNs. 

 

A. Motivation 

Before presenting the novel FBN estimation model, we first 

introduce the motivation and the basic idea behind it by a toy 

example. As shown in Fig. 1, we have a set of fMRI series from 

N=5 ROIs, each of which includes T=30 time points. According 

to the previous discussion, even a sophisticated preprocessing 

pipeline cannot guarantee all the T time points in the fMRI 

series are clean. To illustrate this more clearly, some data points 

in Fig. 1 are labelled as “clean”, while the others are labelled as 

“dirty”. Equivalently, a binary indicator can also be used to 

denote the quality of the data, with 0 corresponding to “dirty”, 

and 1 to “clean”. 

 
1 In Section C, we will find that such a relaxation is tight, thus resulting in a 

binary solution for 𝑣𝑡 . 

However, the indicator cannot be observed directly in the 

real-world applications. Traditionally, a data-scrubbing 

operation is used to identify the quality of the data points (or, 

equivalently, determine the value of the indicator) by detecting 

the micro head motion [21]. Despite its potential effectiveness 

(also with some debates [23-25]), such a scheme 1) cannot 

remove all the “dirty” data points caused by different factors; 2) 

tends to scrub too many time points due to the lack of a control 

mechanism [12,21]; 3) is independent on the specific task, and 

thus will not necessarily benefit the ensuing FBN estimation. 

 

B. Model 

To address the above problems, in this section, we propose a 

task-dependent data scrubbing scheme for FBN estimation. In 

particular, we consider the binary indicator as a variable 𝑣𝑡 for 

denoting the quality of the tth time point (𝑣𝑡 = 0 for “dirty”, 

and 𝑣𝑡 = 1  for “clean”), and thus the regularized FBN 

estimation framework in Eq. (5) can be extended to the 

following form with an indicator variable. 

𝑚𝑖𝑛𝐖,𝑣𝑡∈{0,1}  ∑ ∑ 𝑣𝑡𝑓(𝐗(𝑡), 𝐖)𝑇
𝑡=1

𝑁
𝑖=1 + 𝜆𝑅(𝐖),         (6) 

where 𝐗(𝑡) is the tth row of the data matrix 𝐗. Note that, when 

the indicator variable 𝑣𝑡 = 0, the tth time point in the fMRI 

series will be removed, meaning that it has no contribution to 

the FBN estimation; when 𝑣𝑡 = 1 for all 𝑡 = 1, 2, ⋯ , 𝑇, Eq. (6) 

will reduce to the original FBN estimation framework given in 

Eq. (5). 

However, in practice, Eq. (6) will always get a trivial solution 

(i.e., 𝑣𝑡 = 0 for all 𝑡 = 1, 2, ⋯ , 𝑇), since it can really minimize 

the objective function. Therefore, we introduce a negative l1-

norm regularization term, −𝛾 ∑ |𝑣𝑡|𝑇
𝑡=1 , into Eq. (6). 

Additionally, we relax1 the binary indicator variable 𝑣𝑡 ∈ {0,1} 

to a real range [0,1] , for simplifying the solving of the 

optimization problem. Then, we get the following model: 

𝑚𝑖𝑛𝐖,𝑣𝑡∈[0,1]  ∑ ∑ 𝑣𝑡𝑓(𝐗(𝑡), 𝐖)𝑇
𝑡=1

𝑁
𝑖=1 + 𝜆𝑅(𝐖) − 𝛾 ∑ |𝑣𝑡|𝑇

𝑡=1 ,  

(7) 

where 𝜆 and 𝛾 are two regularized parameters for controlling 

the balance among the three terms in the objective function. 

Especially for 𝛾 , it plays a role to determine the number of 

removed time points from the whole series. When 𝛾 has a small 

value close to 0, most of the time points will be removed. On 

the other hand, when 𝛾 has a large value, all the time points in 

the series will be kept for FBN estimation. In other words, the 

proposed model can scrub the data adaptively in the process of 

the FBN estimation, by controlling the hyper-parameter 𝛾 and 

learning the indicator variable 𝑣𝑡 from the data. Therefore, we 

name our proposed scheme as FBN estimation with self-

scrubbing (SS model for short). 

In principle, any data-fitting term can be used to realize the 

SS model, but, in this paper, we adopt the partial correlation 

strategy shown in Eq. (3) or (4), since it overcomes the 

confounding effect and is empirically verified to be more 

effective [11] than the full correlation. Consequently, the partial 

correlation based self-scrubbing FBN estimation model is given 
 

Fig. 1. A toy example for illustrating the motivation of the proposed method.  
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as follows: 

𝑚𝑖𝑛𝐖,𝑣𝑡∈[0,1]  ∑ ∑ 𝑣𝑡(𝑥𝑖
(𝑡)

− ∑ 𝑊𝑖𝑗 𝑥𝑗
(𝑡)𝑛

𝑗≠𝑖 )
2

𝑇
𝑡=1

𝑁
𝑖=1    

+𝜆𝑅(𝐖) − 𝛾 ∑ |𝑣𝑡|𝑇
𝑡=1 ,                           (8) 

where 𝑥𝑖

(𝑡)
 is the tth time point of the series associated with the 

ith node (ROI). For simplicity, we rewrite Eq. (8) into the 

following matrix form: 

𝑚𝑖𝑛𝐖,𝐕 ‖𝐕𝐗 − 𝐕𝐗𝐖‖2 + 𝜆𝑅(𝐖) − 𝛾‖𝐕‖1 

𝑠. 𝑡. 𝑊𝑖𝑖 = 0, 0 ≤ 𝑣𝑡 ≤ 1, ∀𝑖, 𝑡                                   (9) 

where 𝐕 = diag(𝑣1, 𝑣2, ⋯ , 𝑣𝑇) ∈ 𝑅𝑇×𝑇  is a diagonal matrix 

containing the indicator variables on its principal diagonal. The 

constraint, 𝑊𝑖𝑖 = 0 , is employed only to avoid the trivial 

solution that leads to 𝐖 being an identity matrix. For 𝑅(𝐖), we 

can, in principle, use any off-the-shelf regularizers, such as l1-

norm, l2,1-norm [18,36], trace norm and their combination. 

However, this problem goes beyond our main focus in this 

paper. Therefore, we only attempt the l1-norm (sparsity prior) 

due to its simplicity and effectiveness [32], and get the specific 

FBN estimation model (named SR+SS) as follows. 

𝑚𝑖𝑛𝐖,𝐕 ‖𝐕𝐗 − 𝐕𝐗𝐖‖2 + 𝜆‖𝐖‖1 − 𝛾‖𝐕‖1 

 𝑠. 𝑡.  𝑊𝑖𝑖 = 0, 0 ≤ 𝑣𝑡 ≤ 1, ∀𝑖, 𝑡                                (10) 

 

C. Optimization Algorithm 

Considering that there are two variables V and W involved 

in Eq. (10), in this paper we employ the alternative convex 

search (ACS) [37] method to solve them alternately by the two 

following steps. Before that, we first initialize the indicator V 

as an identity matrix, meaning that we select all time points in 

the first iteration. 

Step 1: With a fixed V, Eq. (10) reduces to a traditional FBN 

estimation problem that can be solved by many convex 

optimization methods. Here, we use the proximal method [38] 

due to its efficiency and simplicity. Two main steps are 

involved in the proximal method, including gradient descent 

and proximal operation. First, for the data-fitting term 

𝑓(𝐗, 𝐖) = ‖𝐕𝐗 − 𝐕𝐗𝐖‖𝐹
2  whose gradient w.r.t 𝐖  is 

∇𝐖𝑓(𝐗, 𝐖) = 2𝐗𝑇 𝐕𝑇𝐕𝐗𝐖 − 𝐗𝑇 𝐕𝑇𝐕𝐗, we have the following 

update formula according to the gradient descent criterion: 

𝐖𝑘 = 𝐖𝑘−1 − 𝛼𝑘∇𝐖𝑓(𝐗, 𝐖𝑘−1),              (11) 

where 𝛼𝑘 denotes the step size of the gradient descent. Then, the 

proximal operator is imposed on the current 𝐖. For the sparsity 

regularizer 𝜆‖𝐖‖1 , the proximal operator is defined [38] as 

follows. 

proxλ‖∙‖1
(𝐖) = [𝑠𝑔𝑛(𝑊𝑖𝑗 ) × max (𝑎𝑏𝑠(𝑊𝑖𝑗 ) − 𝜆, 0)]𝑁×𝑁  

(12) 

where 𝑠𝑔𝑛(𝑊𝑖𝑗 )  and 𝑎𝑏𝑠(𝑊𝑖𝑗 )  return the sign and absolute 

value of 𝑊𝑖𝑗 , respectively. 

Step 2: With a fixed W, we update V. Now, Eq. (10) reduces to 

the following optimization problem, 

𝑚𝑖𝑛𝐕 ‖𝐕𝐗 − 𝐕𝐗𝐖‖2 − 𝛾‖𝐕‖1, 𝑠. 𝑡. 0 ≤ 𝑣𝑡 ≤ 1, ∀𝑡 (13) 

or 

𝑚𝑖𝑛𝑣𝑡∈[0,1]  ∑ ∑ 𝑣𝑡(𝑥𝑖
(𝑡)

− ∑ 𝑊𝑖𝑗 𝑥𝑗
(𝑡)𝑛

𝑗≠𝑖 )
2

− 𝛾 ∑ |𝑣𝑡| 𝑇
𝑡=1

𝑇
𝑡=1

𝑁
𝑖=1   

                                     (14) 

Eq. (14) can be further simplified to the following problem. 

𝑚𝑖𝑛𝑣𝑡∈[0,1]  ∑ (𝑐𝑡 − 𝛾)𝑣𝑡
𝑇
𝑡=1 ,               (15) 

where 𝑐𝑡 = ∑ (𝑥𝑖

(𝑡)
− ∑ 𝑊𝑖𝑗 𝑥𝑗

(𝑡)𝑛
𝑗≠𝑖 )

2
𝑁
𝑖=1 = ‖𝐗(𝑡) − 𝐗(𝑡)𝐖‖

2
 is 

a constant. We note that Eq. (15) is a linear programming 

problem, and thus can easily get its optimal solution as follows. 

𝑣𝑡 = {1, 𝑐𝑡 = ‖𝐗(𝑡) − 𝐗(𝑡)𝐖‖
2

< 𝛾

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                (16) 

This means that 1) if ‖𝐗(𝑡) − 𝐗(𝑡)𝐖‖
2

> 𝛾, the tth time point 

is more likely to be removed by labelling it with 0; on the 

contrary, 2) if ‖𝐗(𝑡) − 𝐗(𝑡)𝐖‖
2

< 𝛾, the tth time point will be 

kept by labelling it with 1. Such a formula for updating 𝑣𝑡 

coincides well with the intuition that the “dirty” time points 

(labelled as 0) can cause a poor fitting with high bias/residual 

(i.e., ‖𝐗(𝑡) − 𝐗(𝑡)𝐖‖
2

> 𝛾). In fact, in the experimental section, 

we will further illustrate this problem based on a simulated 

dataset, and empirically verify that the proposed method can 

automatically detect the “dirty” time points. Finally, we 

summarize the algorithm for solving Eq. (10) in ALGORITHM 

I. 

 

IV. EXPERIMENTS 

In this section, we first illustrate how the proposed method 

works by an experiment on simulated data in Section A, and 

then verify its effectiveness by identifying Mild Cognitive 

Impairment (MCI) from Normal Control (NC) based on the 

estimated FBNs in Section B. 

 

A. An Illustrative Experiment on Simulated Data  

For the convenience of interpretation and visualization, in 

this example, we only consider the simplest case that N=2. Thus, 

we have two time series, 𝑥1 and 𝑥2, associated with ROI1 and 

ROI2, respectively. Without loss of generality, we suppose that 

there is a strong connection between ROI1 and ROI2. For 

simulating the strong connection (i.e., correlation), we generate 

the data by an approximately linear relationship that 𝑥1 ≈
5 × 𝑥2, as shown in Fig. 2(a) and (b). Based on the generated 

data, we can easily calculate the correlation coefficient between 

ROI1 and ROI2, and the result is 0.985. 

However, as discussed previously, the correlation can be 

significantly affected by the data quality. To illustrate this, we 

change several time points randomly in the generated data for 

simulating the artifacts or noises. In particular, as shown in Fig. 

2(c) and (d), we 1) introduce a large-amplitude shake in the first 

ALGORITHM I 

ESTIMATING FBN WITH SELF-SCRUBBING  

Input: 𝐗, 𝜆, 𝛾 

Output: 𝐖, 𝐕  

Initialize 𝐕; 

while not converged 

     while not converged 

          𝐖𝑘+1 = 𝐖𝑘 − 2𝛼(𝐗𝑇𝐕𝑇𝐕𝐗𝐖𝑘 − 𝐗𝑇𝐕𝑇𝐕𝐗); 
          𝐖𝑘+1 = prox(𝐖𝑘+1); // based on Eq. (12). 

end 

     update 𝐕 by Eq. (16); 

end 
return  𝐖, 𝐕; 
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three “dirty” points to simulate the physical noises, since the 

physical noises (e.g., motion artifacts) have a high relation with 

the large-amplitude changes in signals [34,35]; 2) introduce 

four “dirty” points to simulate the possible functional noises, by 

setting them off the main direction (i.e., 𝑥1 = 5 × 𝑥2). Here, we 

simply consider the functional noises as non-resting-state 

signals that lie in the normal range, but deviate from the resting-

state signals, according to a recent study [39]. 

Now, the correlation between ROI1 and ROI2 is －0.399, 

meaning that even limited change of data points can have a big 

influence on estimation of the functional connection. Based on 

the simulated data with “dirty” time points, we run the proposed 

algorithm, and find that it can remove the “dirty” points 

gradually with the iterations, as shown in Fig. 2(e) - (h). 

 

B. MCI Identification 

 

1) Data Acquisition and Preprocessing 

In this study, we validate the proposed method by MCI and 

NC classification on two publicly available datasets. One is 

from Alzheimer’s Disease Neuroimaging Initiative (ADNI) 2, 

and the other is from Neuroimaging Informatics Tools and 

Resources Clearinghouse (NITRC)3 shared by a recent study 

 
2 http://adni.loni.ucla.edu 
3 http://www.nitrc.org/projects/modularbrain/ 

[12]. 

For ADNI dataset, 110 participants, including 51 MCIs and 

59 NCs, are adopted in this experiment. The fMRIs are obtained 

by 3.0T Philips scanners with the following parameters: TR/TE 

= 3000/30mm, flip angle = 80, imaging matrix=64×64, 48 slices, 

140 volumes, and voxel thickness = 3.3mm. SPM8 toolbox4 

and DPARSFA (version 2.2) [40] are used to preprocess the 

fMRI data according to the well accepted pipeline. The first 10 

R-fMRI volumes of each subject are discarded to avoid signal 

shaking. The remaining images are first corrected for different 

slice acquisition timing and head motion [41]. Then, regression 

of ventricular and WM signals as well as six head-motion 

profiles are conducted to further reduce the effects of nuisance 

signals. Mean fMRI series of each ROI is band-pass filtered 

(0.01-0.08Hz). Depending on the automated anatomical 

labeling (AAL) atlas [42], the pre-processed BOLD time series 

signals are partitioned into 116 ROIs. At last, we put these time 

series into a data matrix 𝐗 ∈ 𝑅137×116 . 

For NITRC dataset, it includes 46 MCIs and 45 NCs that 

come from the participants recruited via advertisements in local 

newspapers and media. A similar preprocessing pipeline [12] 

are employed as in the ADNI dataset, except that a scrubbing 

operation is applied, for NITRC dataset, to remove the time 

4 http://www.fil.ion.ucl.ac.uk.spm 

   
(a)                                                                                                (b) 

 
(c)                                                                                                (d) 

    
(e)                                                           (f)                                                            (g)                                                         (h) 

 

Fig. 2.  A toy example for illustrating how the proposed method works. (a) Original ideal signals simulated without noises; (b) scatter plot corresponding to (a); 
(c) observed signals simulated by introducing 7 noisy points into the original signals in (a); (d) scatter plot corresponding to (b); (e)-(h) the iterative results of the 

proposed algorithm. Note that the proposed method can effectively remove the noisy points gradually with the iterations. 
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points with frame-wise displacement larger than 0.5 [21]. We 

mainly use these two datasets for verifying that our proposed 

method can work well, whether the fMRI series are scrubbed or 

not. 

 

2) FBN estimation 

After obtaining the preprocessed fMRI data, we estimate 

FBNs based on three different methods, PC, SR, and the 

proposed SR+SS. In Fig. 3, we visualize the adjacency 

matrices5 of the FBN estimated by these methods. For SR, we 

simply set the regularized parameter λ = 1, and for SR+SS, 

λ = 1 and γ = 0.5. 

As shown in Fig. 3, the FBN estimated by PC has a topology 

highly different from that of the partial correlation-based 

methods (i.e., SR and SR+SS), since they use different data 

fitting term. In contrast, SR and SR+SS lead to a similar FBN 

structure by using the same kind of data fitting term. The 

differences of the FBNs estimated by SR and SR+SS methods 

lie mainly in several specific brain regions. In order to examine 

which brain regions have changed the connections following 

the self-scrubbing, we simply sum up the connection weights of 

all the subjects for each region. The result is shown in Fig. 4, 

where the height of each bar represents the sum of connection 

weights changing across different brain regions. 

As we can see in Fig. 4, by scrubbing the “noisy” time points, 

a large number of changes happen in cerebellum regions, which 

 
5 The elements of the adjacency matrix indicate the connection strengths of 

the node pairs in the network. Here, for the convenience of comparison among 

different methods, all the weights are normalized to the interval [−1 1]. 

is possibly related to the head motion or some other tiny 

movements. Also, the changes take place in hippocampus and 

frontal brain regions, which may be related to the psychological 

phenomena such as mind-wandering. 

 

3) Feature selection and Classification 

Once we obtain the FBNs of all subjects, the subsequent task 

is to classify the MCI and NC based on the estimated FBNs. 

Then, the problem turns to determine which features and 

classifiers should be used for classification. Considering the big 

influence of different steps in the classification pipeline on the 

final accuracy [18], it is difficult to conclude whether the FBN 

estimation methods or the ensuing feature selection and 

classification methods contribute to the ultimate result. 

Therefore, we only adopt the simplest feature selection method 

(t-test with p<0.01) and the most popular SVM [43] classifier 

(linear SVM with default parameter C=1) in our experiment. 

Due to limited samples, we test the involved methods using 

the leave-one-out cross validation (LOOCV) strategy, in which 

only one subject is left for testing while the others are used to 

train the models and get the optimal parameters. For the choice 

of the optimal parameters, an inner LOOCV is further 

conducted on the training data by a grid-search. For the 

regularized parameter  𝜆 , the candidate values range in 

[2−5, 2−4, ⋯ , 20, ⋯ , 24, 25] ; for the regularized parameter  𝛾 , 

the candidate values range in [0.1,0.2, ⋯ ,0.9,1] ; for the 

threshold in PC, we use 20 sparsity levels from 

[5%, 10%, ⋯ ,95%, 100%], where, for example, 90% means 

that 10% of the weak edges are filtered out from the FBN. 

A set of quantitative measurements, including accuracy, 

sensitivity and specificity, are used to evaluate the classification 

performance of different methods. The classification results 

corresponding to these methods on ADNI and NITRC datasets 

are given in Fig. 5. Based on the results, we observe that the 

proposed SR+SS method achieves the best performance in 

accuracy, sensitivity and specificity on both ADNI and NITRC 

datasets. This illustrates that the self-scrubbing strategy can 

    
(a) PC                                                    (b) SR                                                  (c) SR+SS 

 

Fig. 3.  The FBN adjacency matrices of a subject estimated by 3 different methods. The rectangles in (b) and (c) help for distinguishing the differences between 

the two figures. 

  

 
Fig. 4.  The connection weight change of FBN on each node (brain region) 

between SR and SR+SS. We first calculate the absolute value of the difference 
between the connections estimated by SR and SR+SS respectively. Then, we 

sum up the different weight values of the subjects for each brain region. 
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improve the performance of SR method in both scrubbed and 

non-scrubbed datasets. 

 

V.  CONCLUSION 

The observed fMRI time series commonly contain various 

artifacts or noises, thus leading to a poor estimation of the FBN. 

In this paper, we propose a novel FBN estimation method by 

incorporating a latent variable into the regularized FBN 

estimation model as an indicator of the data quality. Then, we 

design an alternating optimization algorithm to solve the new 

model. As a consequence, the proposed method can estimate 

FBN and scrub the fMRI series adaptively in a single 

framework. In particular, we adopt the SR as a simple test 

platform in this paper for developing our method that is then 

validated on simulated and real-world (both scrubbed and non-

scrubbed) datasets. The experimental results show that our 

proposed method significantly outperforms the baseline 

methods. Also, in order to examine how FBN changes 

following the self-scrubbing, we compare the FBNs estimated 

by SR and SR+SS methods. The result shows that changes 

mainly happen in the high-order brain regions (e.g., 

hippocampus and frontal brain region) and cerebellum region, 

which illustrates that “dirty” points may be highly related to 

motion artifacts and functional processes. 

The proposed method still has several shortcomings that need 

to be improved. For example, we select all time points in the 

first iteration, which may lead to a bad regression result (local 

minimum) when a large number of “dirty” points exists. In 

addition, the possibly useful information from the removed 

points can be lost, since the proposed method simply discards 

them based on the hard indicator. In the future, we plan to 

develop a soft (or probabilistic) version of the proposed method 

for higher flexibility. It is also worth pointing out that the 

proposed self-scrubbing strategy can be easily transferred into 

the other FBN estimation models with any combination of data-

fitting and regularization terms. Therefore, we will try more 

combinations towards better accuracy in the future. 

 

 

REFERENCES 

 

[1] S. M. Smith, D. Vidaurre, C. F. Beckmann, M. F. Glasser, M. 

Jenkinson, K. L. Miller, T. E. Nichols, E. C. Robinson, G. Salimi-

Khorshidi, and M. W. Woolrich, “Functional connectomics from 
resting-state fMRI,” Trends in Cognitive Sciences, vol. 17, no. 12, pp. 

666-682, 2013. 

[2] M. D. Greicius, B. Krasnow, A. L. Reiss, and V. Menon, “Functional 
connectivity in the resting brain: a network analysis of the default mode 

hypothesis,” Proceedings of the National Academy of Sciences of the 

United States of America, vol. 100, no. 1, pp. 253-258, 2003. 
[3] A. Fornito, A. Zalesky, and M. Breakspear, “The connectomics of 

brain disorders,” Nature Reviews Neuroscience, vol. 16, no. 3, pp. 159-

72, 2015. 
[4] C. J. Stam, “Modern network science of neurological disorders,” 

Nature Reviews Neuroscience, vol. 15, no. 10, pp. 683-695, 2014. 

[5] C. Y. Wee, P. T. Yap, and D. Shen, “Diagnosis of Autism Spectrum 
Disorders Using Temporally Distinct Resting-State Functional 

Connectivity Networks,” Cns Neuroscience & Therapeutics, vol. 22, 

no. 3, 2016. 
[6] C. Y. Wee, L. Wang, F. Shi, P. T. Yap, and D. Shen, “Diagnosis of 

autism spectrum disorders using regional and interregional 

morphological features,” Human Brain Mapping, vol. 35, no. 7, pp. 
3414-30, 2014. 

[7] S. Delmonte, L. Gallagher, E. O'Hanlon, J. Mcgrath, and J. H. Balsters, 

“Functional and structural connectivity of frontostriatal circuitry in 
Autism Spectrum Disorder,” Frontiers in Human Neuroscience, vol. 7, 

no. 7, pp. 233-242, 2012. 

[8] S. Huang, J. Li, L. Sun, J. Liu, T. Wu, K. Chen, A. Fleisher, E. Reiman, 
and J. Ye, "Learning Brain Connectivity of Alzheimer's Disease from 

Neuroimaging Data." pp. 808-816. 

[9] K. Supekar, V. Menon, D. Rubin, M. Musen, and M. D. Greicius, 
“Network Analysis of Intrinsic Functional Brain Connectivity in 

Alzheimer's Disease,” Plos Computational Biology, vol. 4, no. 6, pp. 

1--11, 2008. 
[10] C. Duval, J. F. Daneault, W. D. Hutchison, and A. F. Sadikot, “A brain 

network model explaining tremor in Parkinson's disease,” 

Neurobiology of Disease, vol. 85, 2015. 
[11] S. M. Smith, K. L. Miller, G. Salimi-Khorshidi, M. Webster, C. F. 

Beckmann, T. E. Nichols, J. D. Ramsey, and M. W. Woolrich, 

“Network modelling methods for FMRI,” Neuroimage, vol. 54, no. 2, 
pp. 875-91, 2011. 

[12] L. Qiao, Z. Han, M. Kim, S. Teng, L. Zhang, and D. Shen, “Estimating 

functional brain networks by incorporating a modularity prior,” 
Neuroimage, vol. 141, pp. 399-407, 2016. 

[13] L. Zhou, L. Wang, and P. Ogunbona, "Discriminative Sparse Inverse 

Covariance Matrix: Application in Brain Functional Network 
Classification." pp. 3097-3104. 

[14] M. J. Rosa, L. Portugal, T. Hahn, A. J. Fallgatter, M. I. Garrido, J. 

Shawe-Taylor, and J. Mourao-Miranda, “Sparse network-based 

 
Fig. 5. Comparison of classification results based on three different methods. The results obtained by LOOCV test show that the proposed SR+SS achieves the 

best performance.  

  

79.09%

61.54%

82.35%

57.78%

76.27%

65.22%

80.91%

71.43%

82.35%

71.11%

79.66%

71.74%

82.73%
80.22%

84.31%

80.00% 81.36% 80.43%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

Accuracy（ADNI） Accuracy（NITRC ） Sensitivity（ADNI） Sensitivity（NITRC ） Specificity（ADNI） Specificity（NITRC ）

PC SR SR+SS

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 20, 2017. ; https://doi.org/10.1101/191262doi: bioRxiv preprint 

https://doi.org/10.1101/191262
http://creativecommons.org/licenses/by-nc-nd/4.0/


 8 

models for patient classification using fMRI,” Neuroimage, vol. 105, 
no. 3, pp. 493-506, 2015. 

[15] J. Peng, P. Wang, N. Zhou, and J. Zhu, “Partial Correlation Estimation 

by Joint Sparse Regression Models,” Journal of the American 
Statistical Association, vol. 104, no. 486, pp. 735-746, 2009. 

[16] O. Yamashita, M. A. Sato, T. Yoshioka, F. Tong, and Y. Kamitani, 

“Sparse estimation automatically selects voxels relevant for the 
decoding of fMRI activity patterns,” Neuroimage, vol. 42, no. 4, pp. 

1414-1429, 2008. 

[17] R. Yu, H. Zhang, L. An, X. Chen, Z. Wei, and D. Shen, Correlation-
Weighted Sparse Group Representation for Brain Network 

Construction in MCI Classification: Springer International Publishing, 

2016. 
[18] C. Y. Wee, P. T. Yap, D. Zhang, L. Wang, and D. Shen, “Group-

constrained sparse fMRI connectivity modeling for mild cognitive 

impairment identification,” Brain Structure & Function, vol. 219, no. 
2, pp. 641-656, 2014. 

[19] A. Benichoux, and T. Blumensath, "A spatially constrained low-rank 

matrix factorization for the functional parcellation of the brain." pp. 1-
5. 

[20] R. A. Poldrack, J. A. Mumford, and T. E. Nichols, Handbook of 

functional MRI data analysis: Cambridge University Press, 2011. 
[21] C. G. Yan, B. Cheung, C. Kelly, S. Colcombe, R. C. Craddock, A. D. 

Martino, Q. Li, X. N. Zuo, F. X. Castellanos, and M. P. Milham, “A 

comprehensive assessment of regional variation in the impact of head 
micromovements on functional connectomics,” Neuroimage, vol. 76, 

no. 1, pp. 183-201, 2013. 

[22] K. Murphy, R. M. Birn, and P. A. Bandettini, “Resting-state fMRI 
confounds and cleanup,” Neuroimage, vol. 80, no. 1, pp. 349-359, 2013. 

[23] K. R. Van Dijk, M. R. Sabuncu, and R. L. Buckner, “The influence of 

head motion on intrinsic functional connectivity MRI,” Neuroimage, 
vol. 59, no. 1, pp. 431-438, 2012. 

[24] J. D. Power, K. A. Barnes, A. Z. Snyder, B. L. Schlaggar, and S. E. 

Petersen, “Spurious but systematic correlations in functional 
connectivity MRI networks arise from subject motion,” Neuroimage, 

vol. 59, no. 3, pp. 2142, 2012. 

[25] S. Yang, T. J. Ross, Y. Zhang, E. A. Stein, and Y. Yang, “Head motion 
suppression using real-time feedback of motion information and its 

effects on task performance in fMRI,” Neuroimage, vol. 27, no. 1, pp. 

153, 2005. 
[26] M. F. Mason, M. I. Norton, J. D. V. Horn, D. M. Wegner, S. T. Grafton, 

and C. N. Macrae, “Wandering minds: the default network and 

stimulus-independent thought,” Science, vol. 317, no. 5834, pp. 43; 
author reply 43, 2007. 

[27] L. Jiang, D. Meng, Q. Zhao, S. Shan, and A. Hauptmann, "Self-paced 

Curriculum Learning." 
[28] M. P. Kumar, B. Packer, and D. Koller, "Self-Paced Learning for 

Latent Variable Models." pp. 1189-1197. 

[29] A. Fornito, A. Zalesky, and E. Bullmore, Fundamentals of brain 
network analysis: Academic Press, 2016. 

[30] G. Marrelec, A. Krainik, H. Duffau, M. Pélégriniissac, S. Lehéricy, J. 

Doyon, and H. Benali, “Partial correlation for functional brain 
interactivity investigation in functional MRI,” Neuroimage, vol. 32, no. 

1, pp. 228-37, 2006. 

[31] K. V. Mardia, J. T. Kent, and J. M. Bibby, “Multivariate analysis,” 
Mathematical Gazette, vol. 37, no. 1, pp. 123-131, 1979. 

[32] H. Lee, D. S. Lee, H. Kang, B. N. Kim, and M. K. Chung, “Sparse 

brain network recovery under compressed sensing,” IEEE Transactions 
on Medical Imaging, vol. 30, no. 5, pp. 1154-65, 2011. 

[33]  S. Ryali, K. Supekar, D. A. Abrams, and V. Menon, “Sparse logistic 

regression for whole-brain classification of fMRI data,” Neuroimage, 
vol. 51, no. 2, pp. 752-764, 2010. 

[34] J. D. Power, K. A. Barnes, A. Z. Snyder, B. L. Schlaggar, and S. E. 
Petersen, “Spurious but systematic correlations in functional 

connectivity MRI networks arise from subject motion,” Neuroimage, 

vol. 59, no. 3, pp. 2142-54, 2012. 
[35] J. D. Power, A. Mitra, T. O. Laumann, A. Z. Snyder, B. L. Schlaggar, 

and S. E. Petersen, “Methods to detect, characterize, and remove 

motion artifact in resting state fMRI,” Neuroimage, vol. 84, no. 1, pp. 
320, 2014. 

[36] A. Gilad, “Brain covariance selection: better individual functional 

connectivity models using population prior,” Quantitative Biology, vol. 
1, no. 6, pp. 665-672, 2010. 

[37] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty, Nonlinear 

Programming: Theory and Algorithms, 3rd Edition: Wiley, 2013. 

[38] P. L. Combettes, and J. C. Pesquet, “Proximal Splitting Methods in 
Signal Processing,” Heinz H Bauschke, vol. 49, pp. págs. 185-212, 

2015. 

[39] Z. Jie, C. Wei, Z. Liu, Z. Kai, L. Xu, Y. Ye, B. Becker, Y. Liu, K. M. 
Kendrick, and G. Lu, “Neural, electrophysiological and anatomical 

basis of brain-network variability and its characteristic changes in 

mental disorders,” Brain, vol. 139, no. 8, 2016. 
[40] Y. Chao-Gan, and Z. Yu-Feng, “DPARSF: a MATLAB toolbox for 

"pipeline" data analysis of resting-state fMRI,” Frontiers in Systems 

Neuroscience, vol. 4, no. 13, pp. 13, 2010. 
[41] K. J. Friston, S. Williams, R. Howard, R. S. J. Frackowiak, and R. 

Turner, “Movement-Related effects in fMRI time-series,” Magnetic 

Resonance in Medicine, vol. 35, no. 3, pp. 346–355, 1996. 
[42] N. Tzourio-Mazoyer, B. Landeau, D. Papathanassiou, F. Crivello, O. 

Etard, N. Delcroix, B. Mazoyer, and M. Joliot, “Automated 

Anatomical Labeling of Activations in SPM Using a Macroscopic 
Anatomical Parcellation of the MNI MRI Single-Subject Brain,” 

Neuroimage, vol. 15, no. 1, pp. 273-289, 2002. 

[43] C. C. Chang, and C. J. Lin, “LIBSVM: A library for support vector 
machines,” Acm Transactions on Intelligent Systems & Technology, 

vol. 2, no. 3, article 27, pp. 389-396, 2007. 

 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 20, 2017. ; https://doi.org/10.1101/191262doi: bioRxiv preprint 

https://doi.org/10.1101/191262
http://creativecommons.org/licenses/by-nc-nd/4.0/

