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Abstract12

Motivation: Genome-wide datasets produced for association studies have dramatically in-13

creased in size over the past few years, with modern datasets commonly including millions of14

variants measured in dozens of thousands of individuals. This increase in data size is a major15

challenge severely slowing down genomic analyses. Specialized software for every part of the16

analysis pipeline have been developed to handle large genomic data. However, combining all17

these software into a single data analysis pipeline might be technically difficult.18

Results: Here we present two R packages, bigstatsr and bigsnpr, allowing for management19

and analysis of large scale genomic data to be performed within a single comprehensive frame-20

work. To address large data size, the packages use memory-mapping for accessing data matri-21

ces stored on disk instead of in RAM. To perform data pre-processing and data analysis, the22

packages integrate most of the tools that are commonly used, either through transparent system23

calls to existing software, or through updated or improved implementation of existing meth-24

ods. In particular, the packages implement a fast derivation of Principal Component Analysis,25

functions to remove SNPs in Linkage Disequilibrium, and algorithms to learn Polygenic Risk26

Scores on millions of SNPs. We illustrate applications of the two R packages by analysing a27

case-control genomic dataset for the celiac disease, performing an association study and com-28

puting Polygenic Risk Scores. Finally, we demonstrate the scalability of the R packages by29

analyzing a simulated genome-wide dataset including 500,000 individuals and 1 million mark-30

ers on a single desktop computer.31

Availability: https://privefl.github.io/bigstatsr/ & https://privefl.github.io/bigsnpr/32

Contact: florian.prive@univ-grenoble-alpes.fr & michael.blum@univ-grenoble-alpes.fr33

Supplementary information: Supplementary data are available at Bioinformatics online.34
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1 Introduction35

Genome-wide datasets produced for association studies have dramatically increased in size36

over the past years. A range of software and data formats have been developed to perform37

essential pre-processing steps and data analysis, often optimizing each of these steps within38

a dedicated implementation. This diverse and extremely rich software environment has been39

of tremendous benefit for the genetic community. However, it has two limitations: analysis40

pipelines are becoming very complex and researchers have limited access to diverse analysis41

tools due to growing data sizes.42

Consider first the basic tools necessary to perform a standard genome-wide analysis. Con-43

versions between standard file formats has become a field by itself with several tools such as44

VCFtools, BCFtools and PLINK, available either independently or incorporated within large45

framework (Danecek et al. 2011; Li et al. 2011; Purcell et al. 2007). Similarly, quality control46

software for genome-wide analysis have been developed such as PLINK and the Bioconductor47

package GWASTools (Gogarten et al. 2012). There are also several software for the compu-48

tation of principal components (PCs) of genotypes, commonly performed to account for pop-49

ulation stratification in association studies, including EIGENSOFT (SmartPCA and FastPCA)50

and FlashPCA (Abraham and Inouye 2014; Abraham et al. 2016; Galinsky et al. 2016; Price51

et al. 2006). Then, implementation of GWAS analyses also depends on the data format and52

model analyzed. For example, the software ProbABEL (Aulchenko et al. 2010) or SNPTEST53

(Marchini and Howie 2010) can handle dosage data, while PLINK version 1 is limited to best54

guess genotypes because of its input file format. Finally, there exists a range of tools for Poly-55

genic Risk Scores (PRSs) such as LDpred (Vilhjálmsson et al. 2015) and PRSice (Euesden56

et al. 2015), which provide prediction for quantitative traits or disease risks based on multiple57

genetic variants. As a result, one has to make extensive bash/perl/R/python scripts to link these58

software together and convert between multiple file formats, involving many file manipulations59

and conversions. Overall, this might be a brake on data exploration.60

Secondly, increasing size of genetic datasets is the source of major computational chal-61

lenges and many analytical tools would be restricted by the amount of memory (RAM) avail-62
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able on computers. This is particularly a burden for commonly used analysis languages such63

as R, Python and Perl. Solving the memory issues for these languages would give access to a64

broad range of tools for data analysis that have been already implemented. Hopefully, strate-65

gies have been developed to avoid loading large datasets in RAM. For storing and accessing66

matrices, memory-mapping is very attractive because it is seamless and usually much faster67

to use than direct read or write operations. Storing large matrices on disk and accessing them68

via memory-mapping has been available for several years in R through “big.matrix” objects69

implemented in the R package bigmemory (Kane et al. 2013). We provide a similar format as70

filebacked “big.matrix” objects that we called “Filebacked Big Matrices (FBMs)”. Thanks to71

this matrix-like format, algorithms in R/C++ can be developed or adapted for large genotype72

data.73

2 Approach74

We developed two R packages, bigstatsr and bigsnpr, that integrate the most efficient algorithms75

for the pre-processing and analysis of large-scale genomic data while using memory-mapping.76

Package bigstatsr implements many statistical tools for several types of FBMs (unsigned char,77

unsigned short, integer and double). This includes implementation of multivariate sparse lin-78

ear models, Principal Component Analysis, matrix operations, and numerical summaries. The79

statistical tools developed in bigstatsr can be used for other types of data as long as they can80

be represented as matrices. Package bigsnpr depends on bigstatsr, using a special type of FBM81

object to store the genotypes, called “FBM.code256”. Package bigsnpr implements algorithms82

which are specific to the analysis of SNP arrays, such as calls to external software for process-83

ing steps, I/O (Input/Output) operations from binary PLINK files, and data analysis operations84

on SNP data (thinning, testing, plotting). We use both a real case-control genomic dataset for85

Celiac disease and large-scale simulated data to illustrate application of the two R packages,86

including association study and computation of Polygenic Risk Scores. We also compare re-87

sults from the two R packages with those obtained when using PLINK and EIGENSOFT, and88

report execution times along with the code to perform major computational tasks.89
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3 Methods90

3.1 Memory-mapped files91

The two R packages don’t use standard read operations on a file nor load the genotype matrix92

entirely in memory. They use an hybrid solution: memory-mapping. Memory-mapping is used93

to access data, possibly stored on disk, as if it were in memory. This solution is made available94

within R through the BH package, providing access to Boost C++ Header Files1.95

We are aware of the software library SNPFile that uses memory-mapped files to store and96

efficiently access genotype data, coded in C++ (Nielsen and Mailund 2008) and of the R pack-97

age BEDMatrix2 which provides memory-mapping directly for binary PLINK files. With the98

two packages we developed, we made this solution available in R and in C++ via package Rcpp99

(Eddelbuettel and François 2011). The major advantage of manipulating genotype data within100

R, almost as it were a standard matrix in memory, is the possibility of using most of the other101

tools that have been developed in R (R Core Team 2017). For example, we provide sparse102

multivariate linear models and an efficient algorithm for Principal Component Analysis (PCA)103

based on adaptations from R packages biglasso and RSpectra (Qiu and Mei 2016; Zeng and104

Breheny 2017).105

Memory-mapping provides transparent and faster access than standard read/write opera-106

tions. When an element is needed, a small chunk of the genotype matrix, containing this107

element, is accessed in memory. When the system needs more memory, some chunks of the108

matrix are freed from the memory in order to make space for others. All this is managed by the109

Operating System so that it is seamless and efficient. It means that if the same chunks of data110

are used repeatedly, it will be very fast the second time they are accessed, the third time and so111

on. Of course, if the memory size of the computer is larger than the size of the dataset, the file112

could fit entirely in memory and every second access would be fast.113

1http://www.boost.org/
2https://github.com/QuantGen/BEDMatrix
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3.2 Data management, preprocessing and imputation114

Package bigsnpr currently takes as input a variety of formats (e.g. vcf, bed/bim/fam, ped/map).115

However, it uses PLINK for conversion to bed/bim/fam format and for Quality Control (QC) of116

the data, so that we first provide R functions that use system calls to PLINK for the conversion117

and QC steps (Figure 1). Then, fast read/write operations from/to bed/bim/fam PLINK files are118

implemented. PLINK files are then read into a “bigSNP” object, which contains the genotype119

Filebacked Big Matrix (FBM), a data frame with information on samples and another data120

frame with information on SNPs. We also provide another function which could be used to121

read from tabular-like text files in order to create a genotype in the format “FBM”.122

We developed a special FBM object, called “FBM.code256”, that can be used to seam-123

lessly store up to 256 arbitrary different values, while having a relatively efficient storage.124

Indeed, each element is stored on one byte which requires 8 times less disk storage than double-125

precision numbers but 4 times more space than the binary PLINK format “.bed”. With these 256126

values, the matrix can store genotype calls and missing values (4 values), best guess genotypes127

(3 values) and genotype dosages (likelihoods) rounded to two decimal places (201 values).128

We also provide two functions for imputing missing values of genotyped SNPs (Figure 2).129

The first function is a wrapper to PLINK and Beagle (Browning and Browning 2008) which130

takes bed files as input and return bed files without missing values, and should therefore be used131

before reading the data in R. The second function is a new algorithm we developed in order to132

have a fast imputation method without losing much of imputation accuracy. This algorithm is133

based on Machine Learning approaches for genetic imputation (Wang et al. 2012) and doesn’t134

use phasing, thus allowing for a dramatic decrease in computation time. It only relies on some135

local XGBoost models. XGBoost is an optimized distributed gradient boosting library that can136

be used in R and provides some of the best results in machine learning competitions (Chen and137

Guestrin 2016). XGBoost builds decision trees that can detect nonlinear interactions, partially138

reconstructing phase, making it well suited for imputing genotype matrices. Systematically,139

for each SNP, we provide an estimation of imputation error by separating non-missing data140

into training/test sets. The training set is used to build a model for predicting missing data. The141

prediction model is then evaluated on the test set for which we know the true genotype values,142
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which gives an unbiased estimator of the number of genotypes that have been wrongly imputed143

for that particular SNP.144

3.3 Population structure and SNP thinning based on Linkage Dis-145

equilibrium146

For computing Principal Components (PCs) of a large-scale genotype matrix, we provide sev-147

eral functions related to SNP thinning and two functions, for computing a partial Singular Value148

Decomposition (SVD), one based on eigenvalue decomposition, big_SVD, and the other on149

randomized projections, big_randomSVD (Figure 3). While the function based on eigenvalue150

decomposition is at least quadratic in the smallest dimension, the function based on random-151

ized projections runs in linear time in all dimensions (Lehoucq and Sorensen 1996). Pack-152

age bigstatsr use the same PCA algorithm as FlashPCA2 called Implicitly Restarted Arnoldi153

Method (IRAM), which is implemented in R package RSpectra. The main difference between154

the two implementations is that FlashPCA2 computes vector-matrix multiplications with the155

genotype matrix based on the binary PLINK file whereas bigstatsr computes these multiplica-156

tions based on the FBM format, which enables parallel computations and easier subsetting.157

SNP thinning improves ascertainment of population structure with PCA (Abdellaoui et al.158

2013). There are at least 3 different approaches to thin SNPs based on Linkage Disequilibrium,159

two of them named pruning and clumping, address SNPs in LD close to each others because160

of recombination events, while the third one address long-range regions with a complex LD161

pattern due to other biological events such as inversions (Price et al. 2008). First, pruning, the162

most naive approach, is an algorithm that sequentially scan the genome for nearby SNPs in LD,163

performing pairwise thinning based on a given threshold of correlation. A variant of pruning164

is clumping. Clumping is useful if a statistic is available to sort the SNPs by importance, e.g.165

association with a phenotype, and for discarding SNPs in LD with a more associated SNP166

relatively to the phenotype of interest. Furthermore, we advise to always use clumping instead167

of pruning (by using the minor allele frequency as the statistic of importance, which is the168

default) because, in some particular cases, pruning can leave regions of the genome without169
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any representative SNP at all3.170

As mentioned above, the third approach that is generally combined with pruning or clump-171

ing consists of removing SNPs in long-range LD regions (Price et al. 2008). Long-range LD172

regions for the human genome are available as an online table that our packages can use to173

discard SNPs in long-range LD regions while computing PCs4. However, the pattern of LD174

might be population specific, so we developed an algorithm that automatically detects these175

regions and removes them. This algorithm consists in the following steps: first, PCA is per-176

formed using a subset of SNP remaining after clumping, then outliers SNPs are detected using177

Mahalanobis distance as implemented in the R package pcadapt (Luu et al. 2017). Finally,178

the algorithm considers that consecutive outlier SNPs are in long-range LD regions. Indeed,179

a long-range LD region would cause SNPs in this region to have strong consecutive weights180

(loadings) in the PCA. This algorithm is implemented in function snp_autoSVD and will be181

referred by this name in the rest of the paper.182

3.4 Association tests and Polygenic Risk Scores183

Any test statistic that is based on counts could be easily implemented because we provide fast

counting summaries. Among these tests, the Armitage trend test and the MAX3 test statistic

are already provided for binary outcome (Zheng et al. 2012). We also implement statistical

tests based on linear and logistic regressions. For the linear regression, for each SNP j, a t-test

is performed on β(j) where

ŷ = α(j) + β(j)SNP (j) + γ
(j)
1 PC1 + · · ·+ γ

(j)
K PCK + δ

(j)
1 COV1 + · · ·+ δ

(j)
K COVL,

and K is the number of principal components and L is the number of other covariates (such as

the age and gender). Similarly, for the logistic regression, for each SNP j, a Z-test is performed

on β(j) where

log
p̂

1− p̂
= α(j)+β(j)SNP (j)+γ

(j)
1 PC1+ · · ·+γ(j)K PCK + δ

(j)
1 COV1+ · · ·+ δ(j)K COVL,

3https://goo.gl/T5SJqM
4https://goo.gl/8TngVE
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and p̂ = P(Y = 1) and Y denotes the binary phenotype.184

The R packages also implement functions to compute Polygenic Risk Scores using two ap-185

proaches. The first method is the widely-used Pruning + Thresholding (P+T) model based on186

univariate GWAS summary statistics as described in previous equations. Under the P+T model,187

a coefficient of regression is learned independently for each SNP along with a corresponding188

p-value. The SNPs are first clumped (P) so that there remains only SNPs that are weakly cor-189

related with each other. Thresholding (T) consists in removing SNPs that are under a certain190

level of significance (P-value threshold to be determined). A polygenic risk score is defined191

as the sum of allele counts of the remaining SNPs weighted by the corresponding regression192

coefficients (Chatterjee et al. 2013; Dudbridge 2013; Golan and Rosset 2014). The second193

approach doesn’t use univariate summary statistics but instead train a multivariate model on194

all the SNPs and covariables at once, optimally accounting for correlation between predictors195

(Abraham et al. 2012). The currently available models are linear and logistic regressions and196

Support Vector Machine (SVM). These models include lasso and elastic-net regularizations,197

which reduce the number of predictors (SNPs) included in the predictive models (Friedman198

et al. 2010; Tibshirani 1996; Zou and Hastie 2005). Package bigstatsr provides a fast imple-199

mentation of these models by using efficient rules to discard most of the predictors (Tibshirani200

et al. 2012). The implementation of these algorithms is based on modified versions of functions201

available in the R packages sparseSVM and biglasso (Zeng and Breheny 2017). These modi-202

fications allow to include covariates in the models and to use these algorithms on the special203

type of FBM called “FBM.code256” used in bigsnpr.204

3.5 Data analyzed205

In this paper, two datasets are analyzed: the celiac disease cohort and the POPRES datasets206

(Dubois et al. 2010; Nelson et al. 2008). The Celiac dataset is composed of 15,283 individuals207

of European ancestry genotyped on 295,453 SNPs. The POPRES dataset is composed of 1385208

individuals of European ancestry genotyped on 447,245 SNPs. For computation times compar-209

ison, we replicated individuals in the Celiac dataset 5 and 10 times in order to increase sample210

size while keeping the same population structure and pattern of Linkage Disequilibrium as the211
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original dataset. To assess scalibility of our algorithms for a biobank-scale genotype dataset,212

we formed another dataset of 500,000 individuals and 1 million SNPs, also through replication213

of the Celiac dataset.214

3.6 Reproducibility215

All the code used in this paper along with results, such as execution times and figures, are216

available as HTML R notebooks in the Supplementary Data.217

4 Results218

4.1 Overview219

We present the results for three different analyses. First, we illustrate the application of R220

packages bigstatsr and bigsnpr. Secondly, we compare the performance of the R packages221

to the performance obtained with PLINK and FastPCA (EIGENSOFT). Thirdly, we present222

results of the two new methods implemented in these packages, one method for the automatic223

detection and removal of long-range LD regions in PCA and another for the imputation of224

missing genotypes. We use three types of data: a case-control cohort for the celiac disease,225

the European population cohort POPRES and simulated datasets using real genotypes from the226

Celiac cohort. We compare performances on two computers, a desktop computer with 64GB227

of RAM and 12 cores (6 physical cores), and a laptop with only 8GB of RAM and 4 cores (2228

physical cores). For the functions that enable parallelism, we use half of the cores available on229

the corresponding computer.230

4.2 Application231

We performed an association study and computed a polygenic risk score for the Celiac cohort.232

The data was preprocessed following steps from figure 1, removing individuals and SNPs which233

had more than 5% of missing values, non-autosomal SNPs, SNPs with a minor allele frequency234

lower than 0.05 or a p-value for the Hardy-Weinberg exact test lower than 10−10, and finally,235
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removing the first individual in each pair of individuals with a proportion of alleles shared236

IBD greater than 0.08 (Purcell et al. 2007). For the POPRES dataset, this resulted in 1382237

individuals and 344,614 SNPs with no missing value. For the Celiac dataset, this resulted in238

15,155 individuals and 281,122 SNPs with an overall genotyping rate of 99.96%. The 0.04%239

missing genotype values were imputed with the XGBoost method. If we used a standard R240

matrix to store the genotypes, this data would require 32GB of memory. On the disk, the241

“.bed” file requires 1GB and the “.bk” file (storing the FBM) requires 4GB.242

We used bigstatsr and bigsnpr R functions to compute the first Principal Components (PCs)243

of the Celiac genotype matrix and to visualize them (Figure 4). We then performed a Genome-244

Wide Association Study (GWAS) investigating how Single Nucleotide Polymorphisms (SNPs)245

are associated with the celiac disease, while adjusting for PCs, and plotted the results as a246

Manhattan plot (Figure 5). As illustrated in the supplementary data, the whole pipeline is user-247

friendly and requires only 20 lines of R code.248

To illustrate the scalability of the two R packages, we performed a GWAS analysis on 500K249

individuals and 1M SNPs. The GWAS analysis completed in approximately 11 hours using the250

aforementioned desktop computer. The GWAS analysis was composed of four main steps.251

First we read from PLINK files in our format "bigSNP" in 1 hour. Then, we removed SNPs252

in long-range LD regions and used SNP clumping, leaving 93,083 SNPs in 5.4h. Then, the 10253

first PCs were computed on the 500K individuals and these remaining SNPs in 1.8h. Finally,254

we performed a linear association test on the complete 500K dataset for each of the 1M SNPs,255

using the 10 first PCs as covariables in 2.9h.256

4.3 Method Comparison257

We first compared the GWAS and PRS computations obtained with the R packages to the ones258

obtained with PLINK 1.9 and EIGENSOFT 6.1.4. For most functions, multithreading is not259

available yet in PLINK, nevertheless, PLINK-specific algorithms that use bitwise parallelism260

(e.g. pruning) are still faster than the parallel algorithms reimplemented in package bigsnpr261

(Table 1). Overall, the computations with our two R packages for an association study and a262

polygenic risk score are of the same order of magnitude as when using PLINK and EIGEN-263
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SOFT (Tables 1 and 2). However, the whole analysis pipeline makes use of R calls only; there264

is no need to write temporary files and functions have parameters which enable subsetting of265

the genotype matrix without having to copy it.266

On our desktop computer, we compared the computation times of FastPCA, FlashPCA2267

to the similar function big_randomSVD implemented in bigstatsr. For each comparison, we268

used the 93,083 SNPs which were remaining after pruning and we computed 10 PCs. We269

used the datasets of growing size simulated from the Celiac dataset. Overall, our function270

big_randomSVD showed to be almost twice as fast as FastPCA and FlashPCA2 and 8 times271

as fast when using parallelism (an option not currently possible with either FastPCA or Flash-272

PCA2) with 6 cores (Figure 6). We also compared results in terms of precision by comparing273

squared correlation between approximated PCs and “true” PCs provided by an exact singular274

value decomposition obtained with SmartPCA. FastPCA, FlashPCA2 and bigstatsr infer the275

true first 6 PCs but the squared correlation between true PCs and approximated ones decreases276

for larger PCs when using FastPCA (Fast mode of EIGENSOFT) whereas it remains larger277

than 0.999 when using FlashPCA2 or bigstatsr (Figure 7).278

4.4 Automatic detection of long-range LD regions279

For the detection of long-range LD regions during the computation of PCA, we tested the280

function snp_autoSVD on both the Celiac and POPRES datasets. For the POPRES dataset,281

the algorithm converged in two iterations. The first iterations found 3 long-range LD regions282

in chromosomes 2, 6 and 8 (Table S1). We compared the PCs of genotypes obtained after283

applying snp_autoSVD with the PCs obtained after removing pre-determined long-range LD284

regions5 and found a mean correlation of 89.6% between PCs, mainly due to a rotation of PC7285

and PC8 (Table S2). For the Celiac dataset, we found 5 long-range LD regions (Table S3) and286

a mean correlation of 98.6% between PCs obtained with snp_autoSVD and the ones obtained287

by clumping with removing of predetermined long-range LD regions (Table S4).288

For the Celiac dataset, we further compared results of PCA obtained when using snp_autoSVD289

and when computing PCA without removing any long range LD region (only clumping at290

5https://goo.gl/8TngVE
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R2 > 0.2). When not removing any long range LD region, we show that PC4 and PC5291

don’t capture population structure and correspond to a long-range LD region in chromosome292

8 (Figures S1 and S2). When automatically removing some long-range LD regions with293

snp_autoSVD, we show that PC4 and PC5 reflect population structure (Figure S1). Moreover,294

loadings are more equally distributed among SNPs after removal of long-range LD regions295

(Figure S2). This is confirmed by Gini coefficients (measure of dispersion) of each squared296

loadings that are significantly smaller when computing SVD with snp_autoSVD than when no297

long-range LD region is removed (Figure S3).298

4.5 Imputation of missing values for genotyped SNPs299

For the imputation method based on XGBoost, we compared the imputation accuracy and com-300

putation times with Beagle on the POPRES dataset. The histogram of the minor allele frequen-301

cies (MAFs) of this dataset is provided in figure S4 and there is no missing value. We used a302

Beta-binomial distribution to simulate the number of missing values by SNP and then randomly303

introduced missing values according to these numbers, resulting in approximately 3% of miss-304

ing values overall (Figure S5). Imputation was compared between function snp_fastImpute of305

package bigsnpr and Beagle 4.1 (version of January 21, 2017). Overall, snp_fastImpute made306

4.7% of imputation errors whereas Beagle made only 3.1% of errors but it took Beagle 14.6307

hours to complete while our method only took 42 minutes (20 times less). We also show that308

the estimation of the number of imputation errors is accurate (Figure S6). For the Celiac dataset309

in which there was already missing values, in order to further compare computation times, we310

report that snp_fastImpute took less than 10 hours to complete for the whole genome whereas311

Beagle didn’t finish imputing chromosome 1 in 48 hours.312

5 Discussion313

We have developed two R packages, bigstatsr and bigsnpr, which enable multiple analyses of314

large-scale genotype datasets in a single comprehensive framework. Linkage Disequilibrium315

pruning, Principal Component Analysis, association tests and computations of polygenic risk316
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scores are made available in this software. Implemented algorithms are both fast and memory-317

efficient, allowing the use of laptops or desktop computers to make genome-wide analyses.318

Technically, bigstatsr and bigsnpr could handle any size of datasets. However, if the OS has319

to often swap between the file and the memory for accessing the data, this would slow down320

data analysis. For example, the Principal Component Analysis (PCA) algorithm in bigstatsr is321

iterative so that the matrix has to be sequentially accessed over a hundred times. If the num-322

ber of samples times the number of SNPs remaining after pruning is larger than the available323

memory, this slowdown would happen. For instance, a 32GB computer would be slow when324

computing PCs on more than 100K samples and 300K SNPs remaining after LD thinning.325

The two R packages use a matrix-like format, which makes it easy to develop new func-326

tions in order to experiment and develop new ideas. Integration in R makes it possible to take327

advantage of the vast and diverse R libraries. For example, we developed a fast and accurate328

imputation algorithm for genotyped SNPs using the widely-used machine learning algorithm329

XGBoost available in the R package xgboost. Other functions, not presented here, are also330

available and all the functions available within the package bigstatsr are not specific to SNP331

arrays, so that they could be used for other omic data or in other fields of research.332

We think that the two R packages and the corresponding data format could help researchers333

to develop new ideas and algorithms to analyze genome-wide data. For example, we wish to334

use these packages to train much more accurate predictive models than the standard P+T model335

currently in use when computing Polygenic Risk Scores. As a second example, multiple impu-336

tation has been shown to be a very promising method for increasing statistical power of a GWAS337

(Palmer and Pe’er 2016), and it could be implemented with the data format “FBM.code256”338

without having to write multiple files.339

14

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 19, 2017. ; https://doi.org/10.1101/190926doi: bioRxiv preprint 

https://doi.org/10.1101/190926
http://creativecommons.org/licenses/by/4.0/


Input files of many types 
(ped/map, bed/bim/fam, vcf, etc.)

Conversion and quality control 
(call rates, maf, hwe, etc.)

bed/bim/fam

bed/bim/fam

Relatedness removal

Figure 1: Conversion and Quality Control preprocessing functions available in package bigsnpr via
system calls to PLINK.
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bed/bim/fam

bed/bim/fam

bk/rds

Conversion to vcf, 
imputation with Beagle, 
and conversion back to 
bed/bim/fam

snp_beagleImpute()

Conversion to 
bigSNP formatsnp_readBed()

Attach in R session

snp_attach()

bigSNP object

bk/rds

Conversion to 
bigSNP format

snp_readBed()

Attach in R session

snp_attach()

bigSNP object

snp_fastImpute()

bigSNP object

Imputation with local 
XGBoost models

Figure 2: Imputation and reading functions available in package bigsnpr.
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bigSNP object
(no missing values)

Very stringent 
pruning

vector of SNP 
indices to keep

snp_clumping(thr.r2 = 0.05)
snp_pruning(thr.r2 = 0.05)

Get SNPs in 
long-range 
LD regions

vector of SNP indices to 
exclude, corresponding to 

long-range LD regions

big_randomSVD(ind.col = ind.keep)
big_SVD(ind.col = ind.keep)

snp_indLRLDR()

Pruning after excluding 
some regions

snp_clumping(thr.r2 = 0.2,
    exclude = ind.excl)

snp_pruning(thr.r2 = 0.2,
   exclude = ind.excl)

Partial Singular Value 
Decomposition

Computation 
of partial SVD

snp_autoSVD()

Algorithm that clumps 
and automatically 
detects long-range 
Linkage Disequilibrium 
regions while 
computing SVD

ind.excl

ind.keep

Figure 3: Functions available in packages bigstatsr and bigsnpr for the computation of a partial
Singular Value Decomposition of a genotype array, with 3 different methods for thinning SNPs.
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Figure 4: Principal Components of the celiac cohort genotype matrix produced by package
bigstatsr.
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Figure 5: Manhattan plot of the celiac disease cohort produced by package bigsnpr. Some SNPs in
chromosome 6 have p-values smaller than the 10−30 threshold used for vizualisation purposes.
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Operation
Execution times (in seconds)

PLINK and FastPCA bigstatsr and bigsnpr
Reading PLINK files n/a 5 / 20

Pruning 4 / 4 14 / 52
Computing 10 PCs 306 / 315 58 / 180

GWAS (binary phenotype) 339 / 293 301 / 861
Total 649 / 612 378 / 1113

Table 1: Execution times with bigstatsr and bigsnpr compared to PLINK and FastPCA for making
a GWAS for the Celiac dataset. The first execution time is with a desktop computer (6 cores used
and 64GB of RAM) and the second one is with a laptop computer (2 cores used and 8GB of RAM).
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Operation
Execution times (in seconds)

PLINK bigstatsr and bigsnpr
GWAS (binary phenotype) 232 / 239 178 / 650

Clumping 49 / 58 10 / 35
PRS 9 / 10 2 / 3
Total 290 / 307 190 / 688

Table 2: Execution times with bigstatsr and bigsnpr compared to PLINK and FastPCA for making
a PRS for a training set of 80% of the Celiac dataset. The first execution time is with a desktop
computer (6 cores used and 64GB of RAM) and the second one is with a laptop computer (2 cores
used and 8GB of RAM).
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Figure 6: Benchmark comparisons between randomized Partial Singular Value Decomposition
available in FlashPCA2, FastPCA (fast mode of SmartPCA/EIGENSOFT) and package bigstatsr.
It shows the computation time in minutes as a function of the number of samples. The first 10 prin-
cipal components have been computed based on the 93,083 SNPs which remained after thinning.
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Figure 7: Precision comparisons between randomized Partial Singular Value Decomposition avail-
able in FlashPCA2, FastPCA (fast mode of SmartPCA/EIGENSOFT) and package bigstatsr. It
shows the squared correlation between approximated PCs and “true” PCs (given by the slow mode
of SmartPCA) of the Celiac dataset (whose individuals have been repeated 1, 5 and 10 times).
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Supplementary Data422

5.1 Long-range LD regions423

Chromosome Start (Mb) Stop (Mb)
1 2 134.7 (134.5) 137.3 (138)
2 6 27.5 (25.5) 33.1 (33.5)
3 8 6.6 (8) 13.2 (12)

Table S1: Regions found by snp_autoSVD for the POPRES dataset. Numbers in parentheses cor-
respond to regions referenced in Price et al. (2008).

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10
PC1 100.0 -0.1 -0.0 0.1 -0.1 0.0 0.0 0.0 -0.0 -0.0
PC2 0.1 100.0 -0.0 0.1 -0.0 -0.0 -0.0 0.2 -0.1 -0.0
PC3 0.0 -0.0 99.9 0.9 0.1 -0.1 -0.3 0.2 0.4 0.1
PC4 -0.1 -0.1 -0.9 99.7 -1.0 0.7 0.6 0.2 0.3 0.9
PC5 0.1 0.0 -0.1 1.1 99.3 1.3 -0.8 1.3 -4.2 -2.4
PC6 -0.0 0.0 0.1 -0.7 -1.0 97.7 -3.5 6.1 7.9 -6.2
PC7 -0.0 -0.1 0.2 -0.3 -1.7 0.3 58.3 73.2 -25.9 9.1
PC8 0.1 -0.1 -0.3 0.4 -0.5 -5.3 -73.5 59.5 15.8 13.2
PC9 0.0 0.1 -0.4 -0.8 5.0 -7.6 27.8 11.0 91.9 9.0
PC10 0.1 0.0 0.0 -0.9 1.6 10.2 3.9 -19.6 -6.3 89.2

Table S2: Correlation between scores of PCA for the POPRES dataset when automatically remov-
ing long-range LD regions and when removing them based on a predefined table.

Chromosome Start (Mb) Stop (Mb)
1 2 134.4 (134.5) 138.1 (138)
2 6 23.8 (25.5) 35.8 (33.5)
3 8 6.3 (8) 13.5 (12)
4 3 163.1 (n/a) 164.9 (n/a)
5 14 46.6 (n/a) 47.5 (n/a)

Table S3: Regions found by snp_autoSVD for the celiac dataset. Numbers in parentheses corre-
spond to regions referenced in Price et al. (2008).
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PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10
PC1 100.0 -0.1 -0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
PC2 0.1 100.0 0.0 0.0 -0.0 -0.0 0.0 -0.0 -0.0 -0.0
PC3 0.1 -0.0 99.9 0.2 -0.0 0.1 0.1 0.1 0.0 -0.1
PC4 -0.0 -0.0 -0.3 99.9 -0.1 0.1 -0.1 0.0 0.1 0.1
PC5 0.0 0.0 0.0 0.1 99.7 0.9 -0.3 0.1 -0.8 -0.6
PC6 -0.0 0.0 -0.1 -0.2 -0.8 99.6 0.5 -0.5 -0.2 -0.4
PC7 -0.0 0.0 -0.1 0.0 0.5 -0.4 98.9 3.1 0.7 1.6
PC8 0.0 0.0 -0.2 -0.0 -0.2 0.5 -3.2 98.4 -4.5 -1.5
PC9 -0.0 -0.0 -0.0 0.0 0.6 0.1 -0.7 4.6 96.9 -10.7
PC10 -0.0 -0.0 0.1 -0.1 0.3 0.1 -1.2 1.5 8.6 92.7

Table S4: Correlation between scores of PCA for the Celiac dataset when automatically removing
long-range LD regions and when removing them based on a predefined table.

Figure S1: PC4 and PC5 of the celiac disease dataset. Left panel, PC scores obtained without re-
moving any long range LD region (only clumping at R2 > 0.2). Individuals are coloured according
to their genotype at the SNP that has the highest loading for PC4. Right panel, PC scores obtained
with the automatic detection and removal of long-range LD regions. Individuals are coloured ac-
cording to their population of origin.

5.2 Imputation424
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Figure S2: Loadings of first 6 PCs of the celiac disease dataset plotted as hexbins (2-D histogram
with hexagonal cells). On the left, without removing any long range LD region (only clumping at
R2 > 0.2). On the right, with the automatic detection and removal of long-range LD regions.
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Figure S3: Boxplots of 1000 bootstrapped Gini coefficients (measure of statistical dispersion) of
squared loadings without removing any long range LD region (only clumping at R2 > 0.2) and
with the automatic detection and removal of long-range LD regions. The dashed line corresponds
to the theoretical value for gaussian loadings.
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Figure S4: Histogram of the minor allele frequencies of the POPRES dataset used for comparing
imputation methods.
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Figure S5: Histogram of the number of missing values by SNP. These numbers were generated
using a Beta-binomial distribution.
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Figure S6: Number of imputation errors vs the estimated number of imputation errors by SNP.
For each SNP with missing data, the number of imputation errors corresponds to the number of
individuals for which imputation is incorrect. The estimated number of errors is a quantity that
is returned when imputing with snp_fastimpute, which is based on XGBoost (Chen and Guestrin
2016).
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