
  

 

 

1 

 

A Yeast Global Genetic Screen Reveals that Metformin Induces  

an Iron Deficiency-Like State 

Authors:  

B. Stynen1†, D. Abd-Rabbo1,5†, J. Kowarzyk1, L. Miller-Fleming2,3, M. Ralser2,3,4, S.W. 

Michnick1,5* 

Affiliations:  

1Département de Biochimie, Université de Montréal, C.P. 6128, Succursale centre-ville, 

Montréal, Québec, H3C 3J7, Canada. 

2Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom 

3Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom 

4The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, 1 

Midland Rd, NW11AT, United Kingdom 

5Centre Robert-Cedergren, Bio-Informatique et Génomique, Université de Montréal, C.P. 6128, 

Succursale centre-ville, Montréal, Québec, H3C 3J7, Canada. 

*Corresponding author. E-mail : stephen.michnick@umontreal.ca 

†Co-first author. 

 

  

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 18, 2017. ; https://doi.org/10.1101/190389doi: bioRxiv preprint 

https://doi.org/10.1101/190389
http://creativecommons.org/licenses/by-nc-nd/4.0/


  

 

 

2 

 

Abstract: 

We report here a simple and global strategy to map out gene functions and target pathways of 

drugs, toxins or other small molecules based on “homomer dynamics” Protein-fragment 

Complementation Assays (hdPCA). hdPCA measures changes in self-association 

(homomerization) of over 3,500 yeast proteins in yeast grown under different conditions. hdPCA  

complements genetic interaction measurements while eliminating confounding effects of gene 

ablation. We demonstrate that hdPCA accurately predicts the effects of two longevity and health-

span-affecting drugs, immunosuppressant rapamycin and type II diabetes drug metformin, on 

cellular pathways. We also discovered an unsuspected global cellular response to metformin that 

resembles iron deficiency. This discovery opens a new avenue to investigate molecular 

mechanisms for the prevention or treatments of diabetes, cancers and other chronic diseases of 

aging. 

 

1. Introduction 

Biguanides form a class of drugs that lower blood sugar levels. Its most prominent 

member metformin is currently one of the most prescribed forms of non-insulin therapy among 

type 2 diabetes (T2D) patients. Recent investigations have revealed potential novel health 

benefits of metformin, in spite of the fact that its mechanism of action is still unknown. There is a 

considerable interest in metformin as a drug that potentially improves human health span. An 

observational study for humans and promising initial reports for mice on the effect of metformin 

on life span have led to the launch of a pioneering clinical study on the longevity effects of 

metformin on humans (1-4). 
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No individual specific metformin-binding protein has been identified to date and it is 

likely to act on multiple targets (5, 6). In the absence of a single target, bridging the gap between 

phenotype of a chemical such as metformin and identifying the cellular processes that may 

underlie the phenotype requires screening strategies that provide reporters for all or most known 

cellular processes. Ideally, this screening strategy provides information on both passive and 

indirect (e.g. protein/mRNA turnover) and active (e.g. post-translational modification) effects on 

a pathway reporter protein. High-throughput methods such as mRNA and protein abundance 

profiling can be informative of molecular actions of pathways. However, they measure effects of 

molecules indirectly and on passive processes affecting the reporters. Large-scale screening of 

basic eukaryotic biochemical pathways can be achieved in the simplest eukaryotic model, the 

budding yeast Saccharomyces cerevisiae, where synthetic interactions of chemicals and gene 

knockouts across practically all genes can be used to determine if a chemical acts in a pathway 

and in some cases, on specific target proteins (7, 8). Recently, a combination of synthetic genetic 

array technology with high-content screening has generated the first flux network for the budding 

yeast in which protein abundance and localization are tracked in response to a chemical over time 

(9).   

We have developed a simple alternative to chemical epistasis in yeast that does not 

require gene knockout arrays and can capture integrated effects of a cellular perturbation on 

many reporter proteins. In our strategy, we measure condition-dependent changes in homo-

oligomerization of proteins in living yeast using a protein-fragment complementation assay 

(homomer dynamics or hdPCA). This method is based on protein-protein interaction-driven 

folding and reconstitution of murine dihydrofolate reductase (mDHFR) from complementary 

fragments. The coding sequences of N- and C-terminal complementary fragments (F[1,2] and 
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F[3]) of mDHFR are integrated into the genome 3’ to the open reading frames of genes of interest 

(Fig. 1A). For measurements of hdPCA, mDHFR F[1,2] and F[3] are integrated into the alleles of 

a single gene in mating type strains BY4741 MATa and BY4742 MATα, respectively. Mating of 

these two strains results in two copies of the same gene tagged with complementary mDHFR 

fragments. Homo-oligomerization of the tagged protein under study brings the two mDHFR 

fragments together in space resulting in mDHFR folding and reconstitution of its activity. The 

reconstituted mDHFR is a mutant version that does not bind the cytostatic DHFR inhibitor 

methotrexate at concentrations that inhibit the yeast DHFR. Consequently, cells with the 

reconstituted mDHFR can divide in the presence of methotrexate, resulting in colonies whose 

size is proportional to the number of homomeric complexes per cell (10). 

Applications of PCA reporter screens have been reported to measure effects of drugs on 

specific pathways or to map out specific mechanisms of action of drugs (11-14). For instance, we 

have previously used a series of heteromeric fluorescent protein reporter PCAs to identify 

potential anticancer agents in mammalian cells (12). The hdPCA differs from these strategies 

because the focus is shifted from protein-protein interactions to individual protein states. Any 

change in the number of homomeric complexes results from the integrated passive and/or active 

effects of a molecule acting on a pathway in which a reporter protein participates (Fig. 1B). The 

change in the number of homomeric complexes will then affect the colony growth of the 

corresponding hdPCA strain. Examples of protein properties that the mDHFR PCA can report on 

include a change in binding affinity, post-translational modifications, localization and abundance 

(15-18). 
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Fig. 1. A homomer dynamics DHFR PCA (hdPCA) for the detection of the condition-
dependent states of proteins. (A) A library of hdPCA strains is created by mating of two strains, 
each containing an ORF of interest tagged with one of the two complementary fragments of 
murine dihydrofolate reductase (mDHFR; brown and light blue). Upon interaction of two 
molecules of the same protein, the two fragments of mDHFR fold and reconstitute into a 
functional enzyme. This reconstitution quantitatively correlates with growth in the presence of 
methotrexate (17) and is determined by effective concentration and binding efficiency. (B) The 
degree of homomerization (self-association) of a protein is a result of different factors, some of 
which influence the effective concentration (upper part) while others influence binding efficiency 
(lower part). (C) Coverage of GO biological processes in the hdPCA, with coverage determined 
by the percentage of proteins associated with a GO Super-Slim biological process, that have been 
screened in the hdPCA. GO Super-Slim biological processes were obtained by manually 
condensing the standard terms in the GO Slim (available at 
http://www.yeastgenome.org/download-data/curation, as of July 2017) into eight GO global 
terms. (D) Workflow of the hdPCA.  
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Homomeric interactions are quite common; for instance 50 % of proteins in the bacterium 

Mycoplasma pneumoniae form homomers under one condition and 47 % (41,618 / 88,739) of 

high-resolution structures of protein complexes are homomeric (19, 20). It is important to note 

that strong binding affinities are not essential to detect changes in homomerization in the 

mDHFR PCA screen. This screen can report on abundance and localization of a protein even if 

the binding affinity between this protein and a second protein in the mDHFR PCA test is low 

(17). Likewise, changes in hdPCA signal of proteins with low self-binding affinity or low 

abundance, as indicated by their corresponding hdPCA colony sizes, can still be detected with 

statistical significance (Files S1-4). The 3,504 hdPCA reporters cover ~60 % of the yeast 

proteome equally distributed among the major categories of cellular processes (Fig. 1C). Thus, 

the hdPCA has the potential to evaluate the effects of a molecule across practically all cellular 

processes. In addition, the virtue of the hdPCA screening strategy is its simplicity and economy. 

The 3,504 diploid hdPCA strains can be arrayed at high density on just three agar plates (1,536 

strains per plate) and an entire screen to test the effects of a molecule on all of the strain reporters 

with an appropriate number of replicates can be performed with only a dozen plates (Fig. 1D; 

Supplementary Methods).  

hdPCA strains are spotted as four replicates on plates containing control or test media 

(e.g. containing drugs or toxins or missing nutrients). Next, pictures of the plates are taken on 

nine days within two weeks. Integrated colony density is derived from image analysis and the 

final values are obtained after two rounds of normalization, one to correct for plate-to-plate 

variability (quantile normalization) and the other to correct for the basal effect of the drug on 

growth (LOESS normalization). Finally, a statistically significant growth difference is 
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determined with a regularized t-test that compares means of the replicates under the control and 

drug conditions (21). 

 

2. hdPCA measures passive and active protein changes 

To assess the performance of the hdPCA screen, we chose the immunosuppressant drug 

rapamycin as a test perturbation. We chose this molecule because (1) it has well-defined and 

distinct target receptors (the target-of-rapamycin (TOR) complex) and known downstream 

affected cellular processes, (2) like metformin, it has potential anticancer and anti-aging 

properties and (3) there exist a number of sources of data for large-scale effects of rapamycin on 

mRNA and protein homeostasis, active processes and chemical-genetic interactions (22). These 

allowed us to test the hypothesis that hdPCA can capture the effects of a molecule on a reporter 

protein and by extension on a given cellular process in which the reporter protein is implicated.  

We performed the hdPCA screen with strain arrays grown in the presence or absence of 

2 nM rapamycin. As an example of a response to the addition of rapamycin, the strain expressing 

the hdPCA for the protein Asc1 (ASC1-DHFR-F[1,2] and ASC1-DHFR-F[3]) grows 

significantly better in the absence of rapamycin (Fig. 2A). This reflects a change in the state of 

Asc1, an ortholog of human G-protein subunit RACK1.  
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Fig. 2. Optimization and validation of hdPCA with rapamycin data. (A) Growth of a strain 
containing ASC1-DHFR-F[1,2] and ASC1-DHFR-F[3] during the course of an hdPCA screen 
with rapamycin. Four replicates (R1 to R4) were tested. (B) Correlations among different large-
scale datasets comparing control versus rapamycin-treated yeast cells. Data sets are compared 
with each other for significant overlap of genes or proteins affected by rapamycin. Values 
correspond to –log10(P) where P is the P-value of the hypergeometric test which compares 
significance of overlap between datasets. AB: protein abundance; FD: fitness of deletion strains; 
HD: hdPCA; EX: mRNA expression; FX: protein flux; PH: phosphoproteomics. (C) A LOESS 
curve indicating the average overlap between hdPCA hits, ranked by P-value, and the top 20% 
hits of five external rapamycin datasets (deletion screens, mRNA expression data, 
phosphoproteomics data, protein abundance data, and protein flux data). The enrichment found in 
top ranked hdPCA hits falls to background levels close to the threshold P-value of 0.01, which 
was chosen as a threshold value in further experiments.  

Large-scale screens that measure individual properties of a gene, its interactions or its 

products are notoriously orthogonal to each other, showing little overlap in changes of individual 

quantities (23). If hdPCA truly captures the integrated effects of changes to a protein’s fate 

following a change of cellular conditions then we should expect significant correlations between 

hdPCA reporter responses and other large-scale data. We assessed how well the results of the 

rapamycin hdPCA reflect the integrated effects of the drug (Files S1-2) by comparing the data 

with other large-scale data on rapamycin perturbation of different gene variables (gene deletion, 

mRNA and protein abundance, flux, and phosphorylation levels) obtained from external sources 

(Fig. 2B; see Supplementary Methods for details on the datasets). We found that hdPCA agrees 

better with the other datasets than any other dataset with the exception of a strong correlation 

between changes in mRNA and protein abundance. This observation implies that the hdPCA 
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incorporates combinations of passive (e.g., mRNA and protein abundance) and active (e.g., 

fitness of deletion strains, flux and phosphorylation) protein changes.  

The overlap between rapamycin hdPCA hits (affected strains) and hits in other rapamycin 

large-scale studies was used to determine a criterion for a significance cutoff of differences in 

colony size between control- and drug-treated strains. At P > 0.01, the overlap between 

rapamycin hdPCA data and other datasets reached a plateau and hence was chosen as cutoff 

criterion (Fig. 2C). The significant results include 124 proteins that are essential for yeast and 

which are difficult to study in deletion screens. 

 

3. The hdPCA reveals pleiotropic cellular effects by the antidiabetic drug metformin 

Systematic global analyses of cellular processes that might be affected by metformin are 

lacking and the hdPCA screen provides a unique opportunity to obtain a general overview of the 

impact of metformin on cellular function. The hdPCA was carried out with metformin and 

identified 342 proteins with increased signal and 403 proteins with reduced signal in the presence 

of metformin, relative to the control condition (Files S3-4). Protein hits from the screen were 

more likely to modulate yeast sensitivity to metformin than proteins whose hdPCA signal was not 

significantly changed by the drug, as determined by a deletion screen (Fig. S1).  

We next investigated the relationship between our observations and potential beneficial 

effects of metformin to T2D and to prevention of different cancers (24). To this end, we assessed 

the overlap between metformin hdPCA hits and human homologs containing single-nucleotide 

polymorphisms (SNPs) associated with T2D and with different types of cancer identified by 

genome-wide association studies (GWAS) that are annotated in the GWAS Catalog database 

(25). We found a significant overlap between our hits and homologous genes associated with 
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T2D and prostate cancer (P = 0.01 and 0.02, respectively, hypergeometric test, Table S1). 

Among the eleven genes (ARL1, CMK2, CDC55, COT1, ECM14, FYV10, HSL1, PAH1, PAB1, 

SFP1, SSM4) in common between our hits and homologs associated to T2D, SLC30A8, the 

human homolog of COT1, was found to be associated with T2D in 12 out of 42 GWASs (Table 

S1 and S2). SLC30A8 encodes a zinc transporter in the secretory vesicles of pancreatic β cells, 

which are implicated in insulin storage with insulin as a hexamer binding two zinc ions before 

secretion (26). A non-synonymous mutation in SLC30A8 (R325W; rs13266634) might thus affect 

storage, stability or secretion of insulin in carriers of this mutation. Interpretations of the 

association between this mutation and the risk or prevention of T2D have been contradictory: loss 

of function of SLC30A8 confers protection from T2D, whereas the decreased activity of 

SLC30A8 is most commonly associated with a higher risk of developing T2D (27-29). COT1, the 

yeast homolog of SLC30A8, encodes a vacuolar transporter mediating zinc transport into the 

vacuole in a zinc replete environment and it is required for zinc and cobalt detoxification and for 

surviving zinc shock (30-32). COT1 is also activated by the two transcription factors Aft1/2 on 

iron limitation (33). Cot1 exhibits an increase in signal on metformin (P = 1.1 x 10-4), explaining 

thus the potential benefits of metformin concordant with a higher T2D risk linked with decreased 

activity of SLC30A8 in human.  

One of the other overlapping genes, FYV10, is a negative regulator of glucose production 

(34). Notably, its human homolog, MAEA, is not known to be involved in this process. Its 

appearance in the overlap between hdPCA hits and T2D GWAS suggests that MAEA might also 

be involved in regulation of glucose metabolism in humans.  

Recently, a growing body of evidence supports a potential therapeutic benefit of 

metformin in prostate cancer (35). The fifteen genes (CDC8, DAL80, DID4, GZF3, MYO4, 
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PRP6, PHB1, RAD51, RNR2, SCP160, SFP1, SPS1, SSM4, VMA1 and GAT1) in common 

between our hits and homologs associated to prostate cancer include two genes that are directly 

implicated in the cell cycle, and hence possibly in cancer: SCP160 (increased signal on 

metformin, P = 2.4 x 10-5) maintains exact chromosome ploidy (36), and RAD51 (increased 

signal on metformin, P = 2.1 x 10-5) is involved in DNA damage repair (37) (Table S3). In 

addition, among the 15 common genes between our hits and homologs associated to prostate 

cancer, ATP6V1A, the human homolog of VMA1, encodes the catalytic subunit of the peripheral 

V1 complex of vacuolar ATPase responsible for the acidification of various intracellular 

compartments. ATP6V1A, associated to the oxidative phosphorylation pathway, is overexpressed 

in lethal prostate cancer, while its homolog in yeast, Vma1, exhibits a decreased signal on 

metformin (P = 3.7 x 10-4) (38). In conclusion, these results follow the proposed role of 

metformin in the prevention of T2D (39) and imply a potential preventive and/or therapeutic role 

of metformin in prostate cancer in addition to its previous suggested preventive and/or 

therapeutic role in other cancers (24, 40). 

A gene ontology (GO) enrichment analysis (Bioconductor GOstats package in R) was 

performed to obtain an overview of cellular processes affected by metformin (Fig. 3) (41-43). We 

used GOstats to identify biological processes that are overrepresented in proteins showing 

increased signal on metformin and control respectively. The enriched GO terms (P < 0.05) are 

illustrated as a network of biological processes that are organized in space according to their 

mutual overlap and clustered based on their relationships. The screen uncovered a wide set of GO 

biological processes affected by metformin and is classified into four groups (metabolism, 

signalling and regulation, transport and other processes) (Fig. 3, Files S5-6).  
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Fig. 3. Enrichment map of GO biological processes in the metformin hdPCA. The map 
displays the enriched GO terms in metformin versus control (blue) and those that are enriched in 
control versus metformin (red). GO terms that have associated genes in common are linked with 
an edge. The edge width is proportional to the overlap between the linked GO terms. GO terms 
closer to each other in space are more functionally related than those further from each other in 
space and are clustered together. Ungrouped processes not mentioned in the main text are found 
at the bottom (unnamed; see Suppl. Tables S5 and S6 for more details). The figure is generated 
using the Enrichment Map (GO terms cutoff: 0.05 and Similarity measure: Jaccard Coefficient 
with default settings) and AutoAnnotate (default settings) plugins. 

 

An important aspect of the antidiabetic properties of metformin originates from its ability 

to interfere with energy metabolism. Metformin stimulates glucose uptake, reduces 

gluconeogenesis and cellular respiratory capacity, and increases concentrations of glycerol and 
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lactic acid (reviewed in (44)). In accordance with these observations in higher eukaryotes, the 

hdPCA in yeast shows an increased signal for the major glucose transporters, for proteins 

involved in breakdown of gluconeogenic enzymes and for enzymes involved in glycerol and 

ethanol production (Fig. 3; Fig. 4A). In contrast, the hdPCA signal of members of the citric acid 

cycle and oxidative phosphorylation is reduced. This cross-species conservation of the effect of 

metformin on central carbon metabolism was previously reported in a study that showed 

increased glucose uptake and glycerol production in yeast despite its lack of a structurally 

conserved mitochondrial complex I, the most cited potential target of metformin (45). Indeed, 

sensitivity to metformin follows the degree to which yeast depends on respiration. Higher levels 

of the fermentable sugar glucose reduce the effect of metformin on yeast growth while carbon 

source conditions that rely partially (galactose and low glucose) or completely (glycerol) on 

respiration increase sensitivity to metformin (Fig. 4B). Furthermore, the proton gradient across 

the mitochondrial membrane is reversed after prolonged metformin exposure (Fig. 4C), indicative 

of an interference with ATP production based on the electron transport chain, the final phase of 

respiration. Even though the mitochondria are considered to be the main target site of metformin, 

the effect of this drug on cellular processes extends far beyond this. For example, proteins 

involved in one-carbon and nucleotide (dNTP) metabolism are negatively affected by metformin 

according to the hdPCA data (Fig. 4D), which is in line with previous observations (46, 47). 

Nucleotide synthesis requires methyl groups from folate intermediates produced in one-carbon 

metabolic processes. We confirmed by mass spectrometric analysis that dNTP levels are reduced 

in yeast upon metformin treatment (Fig. 4E). Overall, catabolic processes tend to be positively 

affected by metformin while hdPCA reporters involved in anabolic processes are reduced in the 

presence of the drug (Fig. 3). 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 18, 2017. ; https://doi.org/10.1101/190389doi: bioRxiv preprint 

https://doi.org/10.1101/190389
http://creativecommons.org/licenses/by-nc-nd/4.0/


  

 

 

14 

 

On the level of cell regulation, three important results appear from the hdPCA. First, proteins that 

stimulate chronological aging show a reduced hdPCA signal on metformin (Fig. 4F), consistent 

with observations of increased yeast longevity after metformin treatment (45). We found that 

metformin increases the median survival time by 16 days, a 3.2-fold increase compared to the 

control condition (Fig. 4G). The second form of regulation that appears in the hdPCA data is the 

TOR pathway exhibiting reduced signals for several of its associated members in the presence of 

metformin (Fig. S2A). In breast cancer cells, metformin inhibits the TOR pathway and reduces 

translation rates (48). Moreover, the kinase Sch9, which is tightly linked to TOR signaling, is the 

most significant hit for a major regulatory protein, with a decreased hdPCA signal on metformin 

(P = 2.04 x 10-6). Interestingly, its human homolog, S6 kinase, is inhibited by metformin (48). 

Finally, the hdPCA data suggest that metformin induces a DNA repair response in yeast. An 

understanding at the molecular level of the relationship between metformin and DNA repair is of 

particular interest for alternative applications of metformin administration in cancer prevention 

and cancer chemotherapy. Our data supports the involvement of the SWI/SNF and INO80 

chromatin remodeling complexes in metformin-mediated DNA repair mechanisms (Fig. S2B). 
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Fig. 4. Metformin influences a range of cellular processes. (A) Metformin increases (blue) and 
decreases (pink) the hdPCA signal of proteins involved in glucose uptake and catabolism. (B) 
Sensitivity to metformin changes with carbon source. Pictures were taken on different days to 
account for the basal effect of carbon source on growth. (C) The mitochondrial membrane proton 
gradient reverses after prolonged metformin treatment (7h). The pH was determined using a pH-
dependent fluorescent protein (pHluorin) with or without mitochondrial localization sequence. 
(D) The hdPCA signals for proteins involved in purine ribonucleoside biosynthesis and one-
carbon metabolism are reduced in the presence of metformin. Each horizontal line represents one 
protein member of the biological process. (E) Metformin at 5 mM and 50 mM reduces the 
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concentration of dNTPs. Concentrations were determined by mass spectrometric analysis of the 
individual dNTPs (12 replicates for each condition). (F-G) Metformin prolongs chronological 
lifespan. Three cultures were incubated in the presence of metformin and three in its absence. 
Cell survival was tracked over time by counting the colony-forming units at regular time points. 
The error bars correspond to the standard deviation of three replicates of one qualitatively 
representative experiment. GID: glucose-induced degradation; GA3P: glyceraldehyde-3-
phosphate; DHAP: dihydroxyacetone phosphate. 

 

4. Metformin provokes a cellular state akin to iron deficiency 

Interestingly, a common theme appears upon global analysis of the affected cellular 

processes in yeast upon metformin treatment. Reduction in respiratory capacity, increased 

glucose uptake, increased glycerol production, inhibition of the TOR pathway, increased life span 

and activation of DNA repair are all found under conditions of iron limitation in yeast and/or 

other organisms (Fig. 5A) (49-54). Furthermore, other cellular functions found in the hdPCA data 

such as RNA transport, vesicle-mediated transport, the glyoxylate cycle and folate metabolism 

have been linked in the past with reduced iron availability(55-58). In addition, iron-binding 

proteins show a reduced hdPCA signal on metformin (Fig. 5B), whereas proteins important for 

resistance to iron limitation tend to have a positive signal in the hdPCA (1.7-fold enrichment, P = 

2.9 x 10-4) (56).  
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Fig. 5. Metformin treatment resembles an iron limitation state and iron changes yeast 
sensitivity to metformin. (A) Processes affected by metformin treatment according to hdPCA 
data are also modulated by iron limitation. (B) Metformin hdPCA data on proteins involved in 
high-affinity iron ion uptake and proteins binding iron. (C) Growth of fet3Δ in the presence of 
metformin and CuSO4 or FeSO4. (D) Growth of wild-type yeast in the presence of metformin and 
CuSO4 or FeSO4. (E) Growth of wild-type yeast in respiratory conditions with metformin and 
CuSO4 or FeSO4. (F) Intracellular iron levels of cells in stationary phase in control and 
metformin conditions.  

 

An increase in hdPCA signal for the high-affinity iron uptake system provides a more 

direct link between the hdPCA data and iron deficiency (Fig. 5B). Yeast becomes more sensitive 

to metformin upon deletion of the ferro-O2-oxidoreductase FET3, which is directly involved in 

copper-dependent high-affinity iron uptake (Fig. 5C). Iron supplementation overcomes the 

growth deficiency of fet3Δ in the presence of metformin. Furthermore, addition of iron (FeSO4) 
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or copper (CuSO4) to growth medium makes wild-type yeast less sensitive to the drug (Fig. 5D). 

The antagonistic effect of copper on metformin-mediated growth inhibition requires Fet3, which 

suggests that copper mainly improves yeast growth by stimulation of copper-dependent iron 

uptake. Under respiratory growth conditions, which require more iron than fermentable 

conditions, the supplementation of iron (or copper) counters the effects of metformin on growth 

more profoundly  (Fig. 5E). These results suggest that metformin either interferes with iron 

uptake or with intracellular iron homeostasis. We found that metformin does not reduce the 

intracellular iron content during exponential growth (Fig. S3) and even increases intracellular 

iron levels in stationary phase cultures (Fig. 5F). This result indicates that metformin generates a 

condition perceived by the cell as iron deficient even though there is no shortage of iron inside 

the cell.  

 

5. Conclusions 

Our observations suggest that metformin somehow acts upon sensors of iron levels 

(perhaps Fet3) to signal an iron deficient state to the cells. Iron supplementation partially 

compensates for this perturbation. These results may bear directly on observations in humans. 

Iron excess caused by hereditary factors, nutrition or medical intervention is a diabetes risk factor 

(reviewed in (59)). A low-iron diet or iron chelation therapy improves the glycemia of diabetes-

prone, leptin-deficient mice (60). Metformin treatment leads to a trend of reduction in serum iron 

levels (61). Our results warrant a closer investigation of the effects of metformin on iron 

homeostasis, accessibility and distribution at the possible sites of metformin activity, including 

the gut and the liver. 
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With hdPCA, we were able to uncover the effect of metformin on a broad set of cellular 

processes and we found cross-species conservation of core mechanisms of metformin treatment 

in yeast, such as its effect on central carbon metabolism, nucleotide metabolism and longevity. 

This opens up the possibility for future research on metformin with this model organism. 

Furthermore, the overlap between the hdPCA data and GWA studies related to diabetes and 

prostate cancer narrows down the human genes of interest in establishing important predictors of 

diabetes risk and genes involved in manifestation of prostate cancer. 

Finally, hdPCA provides a simple strategy to globally profile cellular responses to 

external perturbations that can be applied widely to study mechanisms of action of bioactive 

molecules, their effects on intended target or unsuspected off-target effects. Identifying off-target 

effects are particularly important for determining both potential liabilities and added benefits of 

molecules (62). Applications of hdPCA include the general study of the impact of environmental 

stresses, revisions of mechanisms of action of commercialized drugs, comparison of off-target 

effects within a drug family and elucidation of the harmful effects of toxins. 
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