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ABSTRACT 9 

Excitation-inhibition (EI) balance controls excitability, dynamic range, and input gating in many 10 

brain circuits. Subsets of synaptic input can be selected or 'gated' by precise modulation of 11 

finely tuned EI balance, but assessing the granularity of EI balance requires combinatorial 12 

analysis of excitatory and inhibitory inputs. Using patterned optogenetic stimulation of 13 

hippocampal CA3 neurons, we show that hundreds of unique CA3 input combinations recruit 14 

excitation and inhibition with a nearly identical ratio, demonstrating precise EI balance at the 15 

hippocampus. Crucially, the delay between excitation and inhibition decreases as excitatory 16 

input increases from a few synapses to tens of synapses. This creates a dynamic millisecond-17 

range window for postsynaptic excitation, controlling membrane depolarization amplitude and 18 

timing via subthreshold divisive normalization. We suggest that this combination of precise EI 19 
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balance and dynamic EI delays forms a general mechanism for millisecond-range input gating 20 

and subthreshold gain control in feedforward networks. 21 

 22 

INTRODUCTION 23 

Individual neurons in the brain can receive tens of thousands of excitatory (E) and inhibitory 24 

(I) synaptic inputs. Under normal conditions, the ratio of excitatory to inhibitory input remains 25 

invariant, a robust property of the nervous system, termed EI balance(Anderson, Carandini, & 26 

Ferster, 2000; Atallah & Scanziani, 2009; Okun & Lampl, 2008, 2009; Wehr & Zador, 2003). 27 

Disruption of  balance is linked with several pathologies, including epilepsy, autism spectrum 28 

disorders and schizophrenia(Yizhar et al., 2011). 29 

Theoretically, neurons in ‘detailed balanced’ EI networks receive balanced responses from 30 

all subsets of presynaptic inputs(Tim P Vogels & Abbott, 2009), and neurons in ‘tightly balanced’ 31 

EI networks receive inputs balanced at fast (<10 ms) timescales(Denève & Machens, 2016). 32 

Together, these properties constitute a ‘precisely balanced’ network(Hennequin, Agnes, & 33 

Vogels, 2017). This precise balance on all synaptic subsets can be exploited by the brain for 34 

‘input gating’. In this process, neurons can be driven by selective shifts in EI ratios at specific 35 

inputs, while other inputs remain balanced in the background. This  constitutes a flexible and 36 

instantaneous information channel local to the shifted synapses(Kremkow, Aertsen, & Kumar, 37 

2010; Tim P Vogels & Abbott, 2009). 38 

Our current understanding of EI balance is based on measurements made at single neurons 39 

in response to various stimuli. Strong EI correlations have been seen in response to series of 40 

tones in auditory cortex(Wehr & Zador, 2003; Zhang, Tan, Schreiner, & Merzenich, 2003; Zhou 41 

et al., 2014), whisker stimulation in somatosensory cortex(Wilent & Contreras, 2005), during 42 

cortical up states in vitro(Shu, Hasenstaub, Badoual, Bal, & McCormick, 2003) and in 43 

vivo(Haider, Duque, Hasenstaub, & McCormick, 2006), during gamma oscillations in vitro and in 44 
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vivo(Atallah & Scanziani, 2009), and during spontaneous activity(Okun & Lampl, 2008). At the 45 

synaptic scale, the ratio of excitatory and inhibitory synapses on various dendrites of a neuron 46 

has been shown to be conserved (Iascone et al., 2018)However, the precision and presynaptic 47 

origin of balance is not well understood. It remains to be established if EI balance arises 48 

transiently from complex temporal dynamics of several presynaptic layers, if it requires 49 

summation of inputs from multiple presynaptic populations, or if it exists even at subsets of a 50 

single presynaptic population. This granularity of EI balance, of both presynaptic identity and 51 

number of inputs, can determine the precision with which synaptic inputs can be selected or 52 

‘independently gated’ to affect postsynaptic activity. 53 

In this study we address two key open questions in the field. First, can EI balance arise even 54 

in a single layer feedforward network, and if so, at what granularity of network subsets do 55 

postsynaptic cells experience balanced excitation and inhibition? Second, how do excitation and 56 

inhibition integrate to encode and communicate information at the postsynaptic neuron? We 57 

addressed these questions in vitro, to isolate the hippocampal network from background activity, 58 

and to deliver precisely controlled combinatorial stimuli. We stimulated channelrhodopsin-2 59 

(ChR2) expressing CA3 neurons in several combinations using optical patterns, and measured 60 

responses in CA1. 61 

We report that hundreds of randomly chosen subsets of CA3 neurons provide excitatory and 62 

feedforward inhibitory inputs to CA1 cells with a close to identical ratio, demonstrating for the 63 

first time, precise balance(Hennequin et al., 2017) in the brain. On examining the integration of 64 

excitation and feedforward inhibition, we found that it leads to divisive normalization at 65 

subthreshold potentials. Subthreshold Divisive Normalization (SDN) operates by preserving the 66 

amplitude of the small excitatory inputs in a manner independent of inhibition, and for larger 67 

inputs, it uses balanced inhibition to progressively reduce the output with increasing input. This 68 

novel gain control operation encodes input information in both amplitude and timing of the CA1 69 

response.  70 
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RESULTS 71 

Optical stimuli at CA3 elicit subthreshold responses at CA1 72 

 73 

To provide a wide range of non-overlapping stimuli, we projected patterned optical 74 

stimuli onto channelrhodopsin-2 (ChR2) expressing CA3 neurons in acute hippocampal slices. 75 

We used CA3-cre mice to achieve CA3-specific localization of ChR2 upon injection of a Lox-76 

ChR2 virus (Fig. 1a, Methods). We used a Digital Micromirror Device (DMD) projector 77 

(Methods, Supplementary Fig. S1) to generate spatiotemporal optical patterns in the form of a 78 

grid of several 16um x 16um squares, each square approximating the size of a CA3 soma(N 79 

Ishizuka, Cowan, & Amaral, 1995) (Fig. 1d). This grid was centered at the CA3 cell body layer, 80 

and extended to the dendritic layer (Fig. 1a). Each optical pattern consisted of 1 to 9 such 81 

randomly chosen grid squares, presented to CA3 cells as stimulus, at an inter-stimulus interval 82 

of 3 seconds (Fig. 1a, 1d, Methods). In a typical experiment, several randomly chosen stimulus 83 

patterns with different number of input squares were delivered to CA3, in 3 successive repeats. 84 

We first characterized how CA3 responded to the grid stimulation (Fig. 1b,e,f,g). CA3 neurons 85 

fired reliably with a <2ms jitter, calculated as the standard deviation of the time of first spike 86 

(Fig. 1f) (n = 8 CA3 cells, inputs = 52, median = 0.44ms, N = 1 to 9 squares). No desensitization 87 

occurred during the timeframe of an experiment, and the probability of spiking remained 88 

constant between the 3 repeats (Fig. 1g) (n = 7 CA3 cells, N = 1 to 9 squares). Thus, we could 89 

stimulate CA3 with hundreds of distinct optical stimuli in each experiment.  90 

We then recorded postsynaptic potentials (PSPs) evoked at patched CA1 neurons while 91 

optically stimulating CA3 cells (Fig. 1c,h,i,j). A wide range of stimulus positions in CA3 excited 92 

CA1 neurons (Fig. 1c). Stimulation of CA3 elicited excitation and feedforward inhibition at CA1 93 

(Fig. 1a, Supplementary Fig.S3). Most stimuli elicited subthreshold responses (N = 1 to 9 94 

squares). Action potentials occurred in only 0.98% of trials (183 out of 18,668 trials, n = 38 cells, 95 
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N = 1 to 9 squares). This helped rule out any significant feedback inhibition from CA1 96 

interneurons for all our experiments. Restriction of ChR2 to CA3 pyramidal cells, coupled with 97 

the fact that ~99% of all recorded CA1 responses were subthreshold, ensured that the recorded 98 

inhibition was largely feedforward (disynaptic)(Fig. 1a). Responses to the same 1-square 99 

stimulus were consistent, 84.74% responses showed less than 0.5 variance by mean (695 100 

stimuli, 3 repeats each, n = 28 cells, N = 1 square) (Fig. 1i). Notably, the distribution of all 1 101 

square responses had a mode at 0.25 mV, which is close to previous reports of a 0.2mV 102 

somatic response of single synapses in CA1 neurons(Magee & Cook, 2000)(8845 trials, n = 38 103 

cells, N = 1 square) (Fig. 1j).   104 
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 105 

Figure 1: Stimulating CA3-CA1 network with hundreds of optical patterns 106 

(a) Top, schematic of the CA3-CA1 circuit with direct excitation and feedforward inhibition. Bottom, image 107 

of a hippocampus slice expressing ChR2-tdTomato (red) in CA3 in a Cre-dependent manner. Optical 108 

stimulation grid (not drawn to scale) was centered at the CA3 cell body layer and CA1 neurons were 109 

patched. 110 

(b) Heat map of CA3 neuron responses with 1 grid square active at a time. A CA3 neuron was patched 111 

and optically stimulated, in random spatio-temporal order, on the grid locations marked with gray border. 112 

This cell spiked in response to 5 stimuli (marked with number inside representing spike counts over 4 113 

trials) out of 24 such 1 square stimuli delivered. Color in grid squares represents peak Vm change from 114 
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baseline, averaged over trials when the neuron did not spike. Locations where the cell spiked all 4 times 115 

are in white. 116 

(c) Heatmap of CA1 responses while CA3 neurons were stimulated with 1 square optical stimuli. 117 

Colormap represents peak Vm, change averaged over 3 repeats. 118 

(d) Schematic of patterned optical stimuli. Examples of combinations of N-square stimuli where N could 119 

be 1, 2, 3, 5, 7 or 9 (in rows). 120 

(e) Spikes in response to 4 repeats for the circled square, in b. Spike times are marked with a black tick, 121 

showing variability in evoked peak times. Blue trace at the bottom represents photodiode measurement of 122 

the stimulus duration. Scale bar for time, same as h. 123 

(f) Distribution of jitter in spike timing (SD) for all stimuli for all CA3 cells (n = 8 cells). 124 

(g) CA3 spiking probability (fraction of times a neuron spiked across 24 stimuli, repeated thrice) is 125 

consistent over a single recording session. Randomization of the stimulus pattern prevented ChR2 126 

desensitization. Circles, colored as in d, depict spiking probability on each repeat of a stimulus set with 127 

connecting lines tracking 3 repeats of the set (n = 7 cells). 128 

(h) PSPs in response to 3 repeats of the circled square in c. Peak times are marked with an asterisk. Blue 129 

photodiode trace same as (e). 130 

(i) Distribution of peak PSP amplitude variability (variance/mean) for all 1-square responses. (n = 28 cells, 131 

stimuli = 695) 132 

(j) Histogram of peak amplitudes of all PSPs elicited by all 1-square stimuli, over all CA1 cells. Gray 133 

dotted line marks the mode (n = 38 cells, trials = 8845). 134 

 135 

Arbitrarily chosen CA3 inputs show precise EI balanced at CA1 136 

 137 

To examine the relationship between excitation and inhibition, we voltage clamped CA1 138 

neurons, first at the inhibitory (-70 mV) and then at the excitatory (0 mV) reversal potential to 139 

record Excitatory and Inhibitory Post Synaptic Currents (EPSCs and IPSCs) respectively. We 140 

first presented 5 different patterns of 5 squares each, at both of these potentials, and recorded 141 

EPSCs and IPSCs. We found strong proportionality between excitation and inhibition for every 142 

stimulus pattern (Fig. 1d, 2a, b, c). This suggested that inputs from even random groups of CA3 143 

neurons may be balanced at CA1. Repeats with the same stimulus pattern gave consistent 144 

responses, but different patterns evoked different responses (Fig. 2a, Supplementary Fig. 145 

S3b). This indicated that the optically-driven stimuli were able to reliably activate different 146 
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subsets of synaptic inputs on the target neuron. Next, we asked, in what range of input 147 

strengths does random input yield balance? We presented 5 different patterns for each of 1, 2, 148 

3, 5, 7 or 9 square combinations at both recording potentials. Surprisingly, all stimuli to a cell 149 

elicited excitatory and inhibitory responses in the same ratio, irrespective of response amplitude 150 

(Fig. 2b, c) (n =13 CA1 cells, area under curve, mean R2 = 0.89+/- 0.06 SD, Supplementary 151 

Fig.S2). Notably, the mode of single-square responses was ~0.25 mV, close to single synapse 152 

PSP estimates(Magee & Cook, 2000) (Fig. 1j). However, given the low synaptic release 153 

probabilities at the CA3-CA1 synapse (~0.2(Murthy, Sejnowski, & Stevens, 1997)), we estimate 154 

that the granularity of the balance may be of the order of 5-10 synapses (Supplementary Fig. 155 

S3 d, e) synapses. The slope of the regression line through all stimulus-averaged responses for 156 

a CA1 cell was used to calculate the Inhibition/Excitation (I/E) ratio for the cell. IPSC/EPSC ratio 157 

will be here onwards referred to as I/E ratio, unless mentioned otherwise. This I/E ratio was 158 

typically between 2 and 5 (Fig. 2d).The variability of I/E ratios over all stimuli for a cell was 159 

lower than the variability of all stimuli across cells (for 12 out of 13 cells, Supplementary Fig. 160 

S3c). The high R2 values for all cells showed tight proportionality for all stimuli (Fig. 2e). The 161 

residual distribution remained symmetric for increasing numbers of spots, again showing that 162 

they were not affected by the number of stimulus squares presented (Supplementary Fig. 163 

S3a).While feedforward inhibition is expected to increase with excitation, convergence of I/E 164 

ratios for randomly chosen inputs to a cell to a single number was unexpected, since shared 165 

interneurons consist of only about 10% of the total neuronal population (Woodson, 1989; 166 

Bezaire and Soltesz, 2013). 167 

We next tested the hypothesis that the observed correlation between excitatory and 168 

inhibitory inputs was due to an averaged sum over many untuned (globally balanced) synapses, 169 

as opposed to tuning in excitatory and inhibitory synaptic weights (detailed balance). To address 170 

this, we took three approaches. 171 
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1. We built a model of excitatory and inhibitory synaptic weights to a neuron with different 172 

amounts of weight tuning, parameterized by rho (ρ), which takes values between 0 (no 173 

tuning or global balance) and 1 (detailed balance) (Methods). For values between 0 and 174 

1, ρ determined the degree of correlation between the basal excitatory and inhibitory 175 

synaptic weights. The model assumed proportionality of numbers of EI afferents, which 176 

admittedly is a simplification, and might itself require a tuning process to achieve. 177 

However, there is some evidence that the proportion of excitatory and inhibitory 178 

synapses on hippocampal dendrites is conserved(Liu, 2004). We wanted to see how 179 

correlations between excitatory and inhibitory inputs change with weight tuning, even 180 

under this stringent condition of number balance. We observed tight correlations 181 

between excitatory and inhibitory inputs without weight tuning, but only if the synaptic 182 

weight distribution of synapses was narrow. Further, for a narrow weight distribution, the 183 

change from global to detailed balance had little effect on EI correlations. In contrast, 184 

weight tuning was required to see EI balance for wider synaptic weight distributions, 185 

especially for stimuli which activated small numbers of synapses (Fig. 2g). We next 186 

calculated the width of the smallest responses (1-square GABAzine EPSP) as a proxy 187 

for the basal weight distribution (Supplementary Fig. S4a). We found that the basal 188 

excitatory weight distribution thus obtained necessitates that excitatory and inhibitory 189 

synaptic weights be co-tuned to be able to observe EI balance. (marked with arrow in 190 

Fig. 2g, Methods). 191 

2. With the reasoning developed above, we checked for EI balance in the smallest inputs in 192 

our datasets - 1 and 2 square data from voltage clamped cells (having 5 or more input 193 

patterns per cell) (Supplementary Fig. S3d), and only 1 square from current clamped 194 

cells (24 inputs per cell) (Supplementary Fig. S3 e,f). We found that the responses 195 

corresponding to a few synapses per input (Fig. 1j, Supplementary Fig. S3 d,e,f,i) 196 
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were balanced for excitation and inhibition (Fig. 2f, h), suggesting tuning of excitation 197 

and inhibition. 198 

3.  In addition, the model also predicted a tuning dependent change in the correlations of 199 

variability of excitation and inhibition for repeats of the same stimulus. For a wide 200 

synaptic weight distribution, increase in tuning increased EI variability correlations 201 

(Supplementary Fig. 3h,j). As with EI mean correlations (Fig 2 h,i), weight tuning had 202 

little effect on narrow synaptic weight distributions. Again, our calculated synaptic weight 203 

distribution was in the range where strong variability correlations would be seen only if 204 

synaptic weights were tuned. We found strong correlations between excitatory and 205 

inhibitory standard deviations in our voltage-clamp dataset, suggesting that there is 206 

detailed balance in the network (Supplementary Fig. S3g,i). 207 

 208 

Together, these results imply that the hypothesis of proportional increase in EI afferents in a 209 

globally balanced network leading to EI correlations is inconsistent with our observations of wide 210 

weight distribution and correlated EI amplitude and variability at small input strengths. This 211 

supports the existence of weight tuning and hence detailed balance in the CA3-CA1 network.  212 

 Overall, we found stimulus-invariant proportionality of excitation and inhibition for any 213 

randomly selected input, over a large range of stimulus strengths from a single presynaptic 214 

network. In addition to detailed balance, we show below that there is tight balance, i.e., the 215 

timing of the balanced feedforward inhibition was within a few milliseconds of the excitation (Fig 216 

6g, h). Thus, we concluded that the CA3-CA1 circuit exhibits precise (both detailed and tight) 217 

balance(Hennequin et al., 2017).  218 
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 219 

 220 

Figure 2: Excitation and inhibition are tightly balanced for all stimuli to a CA1 cell 221 

(a) Monosynaptic excitatory postsynaptic currents (EPSCs, at -70mV) and disynaptic inhibitory 222 

postsynaptic currents (IPSCs, at 0mV) in response to 5 different stimulus combinations of 5 squares 223 

each. All combinations show proportional excitatory and inhibitory currents over 6 repeats. Top: 224 

schematic of 5 square stimuli.   225 

(b) EPSCs and IPSCs are elicited with the same I/E ratio in response to 6 repeats of a combination, and 226 

across 6 different stimuli from 1 square to 9 squares, for the same cell as in a. Top, schematic of the 227 

stimuli. 228 

(c) Area under the curve for EPSC and IPSC responses, obtained by averaging over 6 repeats, plotted 229 

against each other for all stimuli to the cell in a, b. Error bars are s.d. 230 

(d) Summary of I/E ratios for all cells (n = 13 cells).  231 

(e) Summary for all cells of R2 values of linear regression fits through all points. Note that 11 out of 13 232 

cells had R2 greater than 0.9, implying strong proportionality. 233 

(f) Same as e, but with linear regression fits for 1 and 2 square responses, showing that even small 234 

number of synapses are balanced for excitation and inhibition (n = 9 cells). 235 
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(g) Phase plot from the model showing how tuning of synapses (ρ) affects observation of EI balance (R2) 236 

for various values of variance/mean of the basal weight distribution. Changing the scale of the basal 237 

synaptic weight distributions against tuning parameter ρ affects goodness of EI balance fits. Arrow 238 

indicates where our observed synaptic weight distribution lay. 239 

(h) Example of EI correlations (from data) for 1 and 2 square inputs for an example cell from f. Bottom, 240 

schematic of the stimuli. Excitation and inhibition are colored olive and purple respectively. Error bars are 241 

s.d. 242 

(i) Examples of EI correlation (from model) for small number of synapses, from the row marked with arrow 243 

in g. The left and right curves show low and high correlations when EI synapses are untuned (ρ = 0) and 244 

tuned respectively (ρ = 1) (A.U. = Arbitrary Units) .Colors, same as h. Error bars are s.d. 245 

 246 

Combinatorial CA3 inputs sum sublinearly at CA1 247 

 248 

We next asked how CA3 inputs, that lead to balanced excitatory and feedforward 249 

inhibitory conductances, transform into membrane potential change at CA1 neurons. Based on 250 

anatomical studies, CA3 projections are likely to arrive in a distributed manner over a wide 251 

region of the dendritic tree of CA1 pyramidal neuron(Norio Ishizuka, Weber, & Amaral, 252 

1990)(Fig. 3a). While pairwise summation at CA1 has been shown to be largely linear in 253 

absence of inhibition(Cash & Yuste, 1999), the degree of heterogeneity of summation in 254 

response to spatially distributed excitatory and inhibitory synaptic inputs is not well understood 255 

(except, see Lovett-Barron, et al., 2012(Lovett-Barron et al., 2012)). To avoid biases that may 256 

arise from a single response measure during input integration(Poirazi, Brannon, & Mel, 2003), 257 

we examined PSPs using four different measures (Fig. 3c). These were peak amplitude, area 258 

under curve (AUC), average membrane potential and area under curve till peak (Fig. 3c). 259 

 260 

We looked at input integration by presenting stimulus sets of 5 input squares to a given 261 

cell, with each stimulus set ranging from 24 to 225 combinations of inputs. We initially tested the 262 

center of our range of 1-9 squares (5-square inputs) before expanding the dataset to the full 263 
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range (Figure 4).We also recorded the responses to all squares of the grid individually (1 square 264 

input). The 1 square PSP peak response amplitude with inhibition intact (control) was not 265 

distinguishable from that with inhibition blocked (GABAzine) (Methods, Supplementary Fig. 266 

S4a). As analyzed below (Figure 6), we find that the apparent lack of effect of GABAzine for 267 

very small inputs is because inhibition arrives with a delay that does not affect the peak 268 

response of the neuron. The ‘observed’ response for a given square combination was plotted 269 

against the ‘expected’ response, obtained by linearly summing responses of the individual 270 

squares constituting that combination (Fig. 3b, d). Perfectly linear summation would imply that a 271 

multi-square combination of inputs would elicit the same response as the sum of the responses 272 

to the individual squares (dotted line, Fig. 3d). Figure 3e shows responses of a single cell 273 

stimulated with 126 distinct 5-square combinations. The ‘observed’ response was sublinear as 274 

compared to the ‘expected’ summed response, for most stimuli (Fig. 3e). For all the four 275 

measures in 3c, CA3 inputs summed sublinearly at CA1 (Fig. 3e, Supplementary Fig.S4c). At 276 

this point, we hypothesised that the observed sublinearity might mostly be due to inhibition 277 

divisively scaling excitation, since excitatory and inhibitory conductances were proportional for 278 

all stimuli (Fig. 2). We later tested this hypothesis by blocking inhibition (Figure 5). For all 279 

responses measured over all cells, 93.35% responses were individually sublinear, with 280 

distribution having mean 0.57± 0.31 (SD) (Fig. 3f, Supplementary Fig. S4 d). The slope of the 281 

regression line, which indicated the extent of sublinearity, varied between cells, with mean 0.38 282 

± 0.22 (SD) (n = 33 cells) (Fig. 3g). 283 

Thus, we found that the CA3-CA1 network exhibits sublinear summation over a large 284 

number of inputs.  285 
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 286 

Figure 3: Excitatory and feed-forward inhibitory inputs from CA3 integrate sublinearly at CA1 287 

(a) Schematic of a neuron receiving synaptic input distributed over its dendritic tree.  288 

(b) Schematic of input integration. Top, five 1-square stimuli presented individually, and a single 5-square 289 

stimulus comprising of the same squares. Bottom, PSPs elicited as a response to these stimuli. 5-square 290 

PSP can be larger (supralinear, orange), equal to (linear, black), or smaller (sublinear, gray) than the sum 291 

of the single square PSPs. 292 

(c) A PSP trace marked with the 4 measures used for further calculations. PSP peak, PSP area, area to 293 

peak and mean voltage are indicated.  294 

(d) Schematic of the input integration plot. Each circle represents response to one stimulus combination. 295 

‘Observed’ (true response of 5 square stimulation) on Y-axis and ‘Expected’ (linear sum of 1 square 296 

responses) is on X-axis. 297 

(e) Most responses for a given cell show sublinear summation for a 5-square stimulus. The 4 panels show 298 

sublinear responses for 4 different measures (mentioned in c) for the same cell. The grey dotted line is 299 

the regression line and the slope of the line is the scaling factor for the responses for that cell. For peak 300 

(mV), area (mV.ms), average (mV), and area to peak (mV.ms); slope = 0.27, 0.23, 0.23, 0.18; R2 0.57, 301 
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0.46, 0.46, 0.26 respectively. The responses to AUC and average are similar because of the similarity in 302 

the nature of the measure. 303 

(f) Distribution of Observed/Expected ratio of peaks of all responses for all 5-square stimuli (mean= 0.57, 304 

SD = 0.31), from all recorded cells pooled. 93.35% responses to 5-square stimuli were sublinear (2513 305 

PSPs, n = 33 cells). 306 

(g) Distribution of slopes for peak amplitude of 5-square stimuli (mean = 0.38, SD =0.22). Regression 307 

lines for all cells show that all cells display sublinear (<1 slope) summation (n = 33 cells). 308 

 309 

 310 

CA3-CA1 network performs Subthreshold Divisive Normalization 311 

 312 

We then tested how summation sublinearity scaled with a larger range of inputs. We 313 

noted that nonlinear functions can be observed better with a large range of inputs(Poirazi et al., 314 

2003), and therefore increased the stimulus range (Supplementary Fig. S5).GABAergic 315 

inhibition has been shown to be responsible for sublinear summation when Schaffer collateral 316 

and perforant path inputs are delivered simultaneously to CA1(Enoki, Inoue, Hashimoto, Kudo, 317 

& Miyakawa, 2001).We hypothesized that the sublinearity within the CA3-CA1 network might 318 

also occur due to the effect of inhibition. In general, inhibition may interact with excitation to 319 

perform arithmetic operations like subtraction, division, and normalization(Carandini & Heeger, 320 

2012). In order to predict the operation performed by EI integration at the CA3-CA1 network, we 321 

created a composite model to fit and test for the above three possibilities: subtractive inhibition, 322 

divisive inhibition, and divisive normalization (equation (1)). Equation (1) describes how 323 

inhibition controls the ‘observed’ response (𝛉) as a function of ‘expected’ response (𝛆), for the 324 
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above three operations. Alpha (α) can be thought to be a subtractive inhibition parameter, beta 325 

(β) as a divisive inhibition parameter, and gamma (γ) a normalization parameter (Fig. 4a).  326 

 327 

𝛉 = 𝛆 −
𝛽𝛆

𝛾 + 𝛆
𝛆 − 𝛼 (1) 

 328 

Using the framework of equation (1), we asked what computation was performed at the 329 

CA3-CA1 network. We recorded from CA1 cells while stimulating CA3 with many combinations 330 

of 2, 3, 5, 7 or 9 squares (Fig. 4b). We selected cells with at least 50 input combinations, and 331 

pooled responses from all stimuli to a cell. Then, we fit equation (1) to the PSP amplitudes (Fig. 332 

4b). From visual inspection, the subtractive inhibition model, 𝛉 = 𝛆 − 𝛼 (fixing β, γ=0) was a bad 333 

fit, since intercepts (𝛼) were close to 0 (Fig. 4a).  334 

 335 

By fixing γ and α to 0 in equation (1), we obtained the Divisive Inhibition (DI) model. In this 336 

form, β can be thought of as I/E ratio. Increasing β decreases the observed response (𝛉) (Fig. 337 

4a). 338 

 339 

𝛉 = 𝛆 −  𝛽𝛆 (2) 

 340 

Similarly, β was fixed to 1 and α to 0 to get the Divisive Normalization (DN) model. This form of 341 

the equation was inspired by the analogous canonical divisive normalization equation for firing 342 
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rates(Carandini & Heeger, 2012). Here, decrease in γ implies increase in normalization (Fig. 343 

4a). 344 

 345 

𝛉 = 𝛆 −
𝛆

𝛾 + 𝛆
𝛆 =  

𝛾𝛆

𝛾 + 𝛆
 (3) 

We used least-squares polynomial regression to fit DI and DN models to our data. The 346 

goodness of fit for all cells was tested by comparing BIC (Bayesian Information Criterion) (Fig. 347 

4c) and reduced chi-squares of the models (Supplementary Fig. S5o, Methods). DN (α = 0, β 348 

= 1) was better than DI (α = 0, γ = 0) model in explaining the data (BIC: Two-tailed paired t-test, 349 

P< 0.00005, reduced chi-square: Two-tailed paired t-test, P< 0.00005, n = 32 cells).  350 

 351 

Subthreshold Divisive Normalization (SDN) can be clearly seen in Figure 4b, where 352 

observed responses to stimuli with 5 mV and 15 mV expected responses are very similar. This 353 

shows that SDN allows CA1 cells to integrate a large range of inputs before reaching spike 354 

threshold. Thus, testing with a larger range of inputs showed that the initial finding of constant 355 

I/E ratios from Figure 2 needed to be elaborated based on the observed response saturation 356 

with increasing input strength. We examine mechanisms for this below (Fig.5, 6). In summary, 357 

we observed SDN as an outcome of integration of precisely balanced inputs in the CA3-CA1 358 

network.   359 
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 360 

Figure 4: Over a wide input range, integration of CA3 excitatory and feed-forward inhibitory input 361 

leads to SDN at CA1 362 

(a) Three models of how inhibition interacts with excitation and modulates membrane potential: (left to 363 

right) Subtractive Inhibition (SI), Divisive Inhibition (DI) and Divisive Normalization (DN). Note how 364 

parameters α, β and γ from equation (1) affect response output. 365 

(b) Divisive normalization seen in a cell stimulated with 2, 3, 5, 7 and 9 square combinations. DN and DI 366 

model fits are shown in purple and green respectively. 367 

(c) Difference in Bayesian Information Criterion (BIC) values for the 2 models - DI and DN. Most 368 

differences between BIC for DI and DN were less than 0, which implied that DN model fit better, 369 
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accounting for the number of variables used. Insets show raw BIC values. Raw BIC values were 370 

consistently lower for DN model, indicating better fit (Two-tailed paired t-test, P< 0.00005, n = 32 cells). 371 

(d) Distribution of the parameter γ of the DN fit for all cells (median = 7.9, n = 32 cells). Compare with a, b 372 

to observe the extent of normalization. 373 

(e) Distribution of the parameter beta of the DI fit for all cells (mean = 0.5, n = 32 cells). Values are less 374 

than 1, indicating sublinear behaviour. 375 

CA3 feedforward inhibition is necessary for SDN 376 

We first verified our hypothesis that SDN results from feedforward inhibition in the CA3-377 

CA1 network, and not from intrinsic properties of the CA1 neuron. We thus blocked inhibition 378 

and repeated the above experiment. We expected that SDN would be lost and linearity would 379 

be reinstated upon blocking inhibition. 380 

We recorded responses of CA1 cells to our array of optical stimuli (Fig. 1d, 5a), then 381 

applied GABAzine to the bath and repeated the stimulus array (Fig. 5b). We found that when 382 

inhibition was blocked, summation approached linearity (Fig. 5b, c). We compared the scaling 383 

parameter γ of the divisive normalization model fit, for the above two conditions (equation (3)). 384 

The values of γ were larger with inhibition blocked, indicative of approach to linearity (Wilcoxon 385 

rank-sum test, P<0.05, n = 8 cells) (Fig. 5c). While inhibition accounted in large part for the 386 

observed sublinear summation, the cells with inhibition blocked showed some residual 387 

sublinearity at high stimulus levels, which has been previously attributed to IA conductance in 388 

CA1 neurons(Cash & Yuste, 1999). Based on the conductance equation (equation (5)), leak 389 

conductance also contributes in part to the residual sublinearity (Supplementary equation (6)). 390 

Thus, we confirmed that blocking inhibition reduced sublinearity, attenuating SDN.  391 
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Precise balance is also seen at resting membrane potential 392 

 393 

Then, we hypothesised that the membrane potential change evoked by inhibitory 394 

synaptic currents could be increasing non-linearly with increasing CA3 input, even though the 395 

I/E ratio of conductances would be consistent across the range of input strengths. To address 396 

this, we compared responses to identical patterns before and after GABAzine application. For a 397 

given cell, for each pattern, we subtracted the initial control response with inhibition intact from 398 

the corresponding response with inhibition blocked. This gave us the inhibitory component or 399 

‘derived inhibition’ for each stimulus pattern (Fig. 5d, inset). We found that all stimuli to a cell 400 

evoked proportional excitation and inhibition even when recorded at resting potential (Fig. 5d, 401 

e). Thus, we rejected our hypothesis of non-linear increase in inhibitory post-synaptic potential 402 

(IPSP) with excitatory post-synaptic potential at resting membrane potential (EPSP). Over the 403 

population, the median slope of the proportionality line was around 0.7, indicating that the EI 404 

balance was slightly tilted towards higher excitation than inhibition (Fig 5f). IPSP/EPSP ratios 405 

(Fig. 5f) were smaller than IPSC/EPSC ratios (Fig. 2d) due to proximity of inhibition to its 406 

reversal (~-70mV), than excitation to its reversal (~0mV), at resting membrane potential (~-407 

65mV). Overall, we saw precise balance in evoked excitatory and inhibitory synaptic potentials 408 

for >100 combinations per neuron.  409 
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 410 

Figure 5: Blocking balanced inhibition at resting membrane potential attenuates SDN 411 

(a) Top, schematic of experiment condition. Bottom, a cell showing divisive normalization in control 412 

condition. 413 

(b) Top, schematic of experiment condition with feedforward inhibition blocked (2uM GABAzine). Bottom, 414 

responses of the same cell with inhibition blocked. The responses are much closer to the linear 415 

summation line (dashed). The blue lines in a, b are the fits of the DN model. The value of γ of the fit 416 

increases when inhibition is blocked. 417 

(c) Parameter γ was larger with GABAzine in bath (Wilcoxon rank sum test, P<0.05, n = 8 cells), implying 418 

reduction in normalization with inhibition blocked. 419 

(d) Excitation versus derived inhibition for all points for the cell shown in a (area under the curve) (Slope = 420 

0.97, r-square = 0.93, x-intercept = 3.75e-5 mV.ms). Proportionality was seen for all responses at resting 421 
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membrane potential. Top, ‘Derived inhibition’ was calculated by subtracting control PSP from the 422 

excitatory (GABAzine) PSP for each stimulus combination. 423 

(e,f) R2 (median = 0.8) and slope values (median = 0.7) for all cells (n = 8 cells), showing tight 424 

IPSP/EPSP proportionality, and slightly more excitation than inhibition at resting membrane potentials. 425 

 426 

Advancing inhibitory onset with increasing input explains SDN 427 

We made a single compartment conductance model (Fig. 6a, equation (5)) to analyze 428 

the mechanism of SDN. We fit a function of difference of exponentials (Methods) to our voltage 429 

clamp data to extract the peak amplitudes and kinetics of excitation and inhibition currents 430 

(Methods). We used these and other parameters from literature (Supplementary Table 1 and 431 

2), and constrained the model to have EI balance, i.e. have maximum excitatory (𝑔exc) and 432 

inhibitory conductance (𝑔inh) proportional to each other, with a given I/E ratio. To test for SDN, 433 

we simulated our model in the range of experimentally determined I/E ratios, ranging from 1-6. 434 

We observed that EI balance with constant EI delay led to a slightly sublinear response 435 

which can be approximated with a divisive inhibition model (Fig. 6b).  In contrast, subthreshold 436 

divisive normalization (SDN) implies progressively smaller changes in peak PSP amplitude with 437 

increase in excitatory input. We surmised that without changing EI balance, SDN should result if 438 

the inhibitory onset delays were an inverse function of the excitation (Fig. 6e, equation (4)). 439 

Hence, we simulated the model with different values of inhibitory delay (𝛿inh) as a function of the 440 

excitation. 441 

 442 

𝛿inh = 𝛿min +  𝑚𝑒
−𝑘𝑔exc (4) 

 443 

Here 𝛿minis the minimum synaptic delay between excitation and inhibition, k sets the 444 

steepness of the delay change with excitation, and m determines the maximum synaptic delay. 445 
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In Fig. 6c, we show that SDN emerged when we incorporated delays changing as a function of 446 

the total excitatory input to the model neuron. 447 

 448 

We then tested this model prediction. From the EPSC and IPSC curves (Methods), we 449 

extracted excitatory and inhibitory onsets, and subtracted the average inhibitory onsets from 450 

average excitatory onsets to get inhibitory delay (𝛿inh) for each stimulus combination. We saw 451 

that 𝛿inh indeed varied inversely with total excitation (𝑔exc) (Fig. 6f, g). Notably, the relationship 452 

of delay with conductance with data from all cells pooled, seems to be a single inverse function, 453 

and might be a network property (Fig.6g, Supplementary Fig. S6c). This input dependent 454 

change in inhibitory delay could be attributed to delayed spiking of interneurons with small 455 

excitatory inputs, and quicker firing with larger excitatory inputs. We further illustrate that this 456 

delay function emerges naturally by simply applying a threshold to the rising curve of an EPSP 457 

at an interneuron (Supplementary Fig. S6f). Thus, inhibition clamps down the rising EPSP at 458 

progressively earlier times, resulting in saturation of PSP amplitude when excitation is increased 459 

(Fig. 6c,d, Fig. 8). In Figure 8a and b, we show using a schematic, how SDN emerges when 460 

inhibitory onset changes as an inverse function of input strength. 461 

We then examined the sensitivity of SDN to EI balance and delay (𝛿inh) between 462 

excitation and inhibition. To test if balance and predicted inhibitory delay relationship are 463 

required for SDN, we shuffled the balanced 𝑔inh in relation with 𝑔exc, and separately shuffled the 464 

relationship of 𝛿inh and 𝑔exc. In both cases, SDN was strongly attenuated, implying that both EI 465 

balance and inverse scaling of inhibitory delay were necessary for SDN (Supplementary Fig. 466 

S6 a,b, Supplementary equation (6) to (8)). Further, we transformed the membrane current 467 

equation (equation(5)) into the form which resembles divisive normalization equation 468 
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(Supplementary Note 1),and saw that in this form, γ depends on the intrinsic properties of the 469 

neuron, and is modulated by delays and EI ratios .  470 

We also observed that we were able to capture the initial linear regime observed in Fig. 471 

4b by using the inverse relationship of delay with excitation in this conductance model. This can 472 

be understood as follows: At small excitatory input amplitudes, the EI delay is so large that 473 

inhibition begins after the peak depolarization of the neuron. The initial linear zone in Figure 4b 474 

therefore arises when cells receive their normalizing input too late to affect their peak EPSP. At 475 

higher stimulus amplitudes the output response is subjected to earlier, and hence increasingly 476 

effective inhibition, thus flattening the output curve (Supplementary Note 1, Fig S4a, Fig .6c).  477 

Thus our analysis of a conductance model suggests that SDN could be a general 478 

property of balanced feedforward networks, due to two characteristic features: EI balance and 479 

inhibitory kinetics. Each of these variables may be subject to plasticity and modulation to attain 480 

different amounts of normalization (Fig. 8c,d, Supplementary Fig.S7). 481 

  482 
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 483 

Figure 6: Conductance model predicts Excitatory-Inhibitory delay as an important parameter for 484 

divisive normalization. 485 

(a) Equivalent circuit for the conductance model showing capacitive, excitatory, inhibitory, and leak 486 

components. 487 

(b) PSP peak amplitude with both excitatory and balanced inhibitory inputs is plotted against the EPSP 488 

peak amplitude with only excitatory input. Model showed sublinear behavior for I/E proportionality ranging 489 

from 1 to 6 when the inhibitory delay was kept constant. Different colours show I/E ratios. 490 

(c) Same as in b, except the inhibitory delay was varied inversely with excitatory conductance (as shown 491 

in e). Initial linear zone and saturation of PSPs at higher amplitudes, indicative of SDN were observed, 492 

and the normalization gain was sensitive to the I/E ratio. 𝛿𝑚𝑖𝑛 = 2 ms, k = 0.5 nS-1, and m = 8.15 ms.    493 

(d) Effect of changing EI delay, keeping I/E ratio constant (I/E ratio = 5). Divisive inhibition (green) seen 494 

while changing EI delay values from 2 to 10ms. Divisive normalization (purple) emerges if delays are 495 

changed as shown in e. 𝛿𝑚𝑖𝑛 = 2 ms, k = 0.5 nS-1, and m = 8.15 ms. 496 

(e) Inverse relationship of EI delays with excitation. Inhibitory delay was varied with excitatory 497 

conductance in equation (4) with𝛿𝑚𝑖𝑛 = 2 ms, k = 2 nS-1, and m = 13 ms. 498 

(f) Data from an example cell showing the relationship of EI delays with excitation. The relationship is 499 

similar to the prediction in e. Points are binned averages. Error bars are s.d. 500 

(g) Data from all cells showing delay as a function of excitation. Different colours indicate different cells (n 501 

= 13 cells). Grey lines are linear regression lines through individual cells. 502 

(h) Traces showing the decreasing EI delay with increasing amplitude of PSCs. Each trace is an average 503 

of 6 repeats.  504 
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Stimulus information is encoded both in amplitude and time 505 

We next asked if the temporally advancing inhibition (Fig. 6e-h) affected PSP peak time 506 

with increase in stimulus strength. We calculated the slope of the PSP peak times against the 507 

expected axis in the presence (Control) and absence of inhibition (GABAzine) for a given cell. If 508 

inhibition cut into excitation and resulted in advancing of peak times with increasing stimulus 509 

strength, the slope of peak times would be negative, as shown in Figure 7a. Conversely, when 510 

inhibition is blocked, slope of peak times is not expected to change much. We saw that for all 511 

cells, slope of the peak time with inhibition intact was lower than the slope in the case with 512 

inhibition blocked (Fig. 7b) (Wilcoxon Rank sum test (P = 0.006), n = 8 cells). 513 

What does SDN mean for information transmission in balanced networks? While SDN 514 

allowed the cell to integrate a large range of inputs before reaching spiking threshold, it also 515 

resulted in saturation of PSP peaks at larger inputs (Fig. 4b). This implied that information about 516 

the input was partially ‘lost’ from the PSP amplitude. . However, PSP times to peak became 517 

shorter (Fig. 7a,b), hence potentially encoding some information about the input in this time 518 

variable (Fig 7e, Fig. 8b).  In contrast, while the peak amplitudes seen with GABAzine predicted 519 

the input more reliably, peak times of EPSPs did not change much with input (Fig. 7b,e). Thus, 520 

PSP peak time may carry additional information about stimulus strength, when EI balance is 521 

maintained. 522 

We quantified this using an information theoretical framework(Shannon, 1948).We took 523 

linear sum of 1-square PSP peak amplitudes (Expected sum), as a proxy for input strength. We 524 

then calculated the mutual information between Expected sum and peak PSP amplitudes of the 525 

corresponding N-squares, and between Expected sum and PSP peak timing (Methods). Using 526 

this, we asked, how is the information about the input divided between PSP peak amplitude and 527 

timing? The total mutual information of both peak amplitude and peak timing with expected sum 528 

was slightly lesser in the presence of inhibition, but this difference was statistically not significant 529 

(Fig. 7d) (Wilcoxon Rank sum test (< 0.05), P = 0.11, n = 7 cells). We found that peak timing 530 
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had more information in presence of inhibition (control), and peak amplitude had more 531 

information in absence of inhibition (GABAzine)(Wilcoxon Rank sum test (< 0.05), n = 7 cells) 532 

(Fig. 7e). Further, we asked, how better can we predict the input, with the knowledge of peak 533 

timing, when the peak amplitude is already known? We found that in the presence of inhibition, 534 

peak amplitude carried only a part of the total information about the input, and further 535 

knowledge of peak time substantially increased the total information. In contrast, in the absence 536 

of inhibition, peak amplitude carried most of the information about input, and there was very little 537 

gain in information with the knowledge of peak times (Fig. 7e) (Wilcoxon Rank sum test (= 538 

0.05), n = 6 cells).  539 

Overall, these results suggest that with inhibition intact, input information is shared 540 

between amplitude and time, and knowledge of peak time and amplitude together contains 541 

more information about input than either of them alone.  542 
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 543 

Figure 7: Advancing inhibitory onset changes PSP peak time with increase in stimulus strength 544 

(a,b) The PSP peak arrived earlier following larger input in the control case (black), but not with 545 

GABAzine in bath (red). Traces for an example cell, binned (20 bins for Expected sum axis) and 546 

averaged, for control (black) and with GABAzine in bath (red).  547 

(c) Slope of the peak time was more negative in presence of inhibition (control) than when inhibition was 548 

blocked (GABAzine) (n = 8 cells).  549 

(d) Total mutual information of peak amplitude and peak timing with expected sum was not significantly 550 

different between Control and GABAzine case (Wilcoxon Rank sum test (< 0.05), P = 0.11, n = 7 CA1 551 

cells).  552 

(e) Normalized mutual information between Expected Vm and peak time, Expected Vm and peak 553 

amplitude, and conditional mutual information between Expected Vm and peak time, given the knowledge 554 

of peak amplitude. Normalized information was calculated by dividing mutual information by total 555 

information (d) for each cell. Peak times carried more information in the presence of inhibition, and peak 556 

amplitudes carried more information in the absence of inhibition. There was higher gain in information 557 

about the input with timing if the inhibition was kept intact (Wilcoxon Rank sum test (P< 0.05), n = 7 (Pk 558 

time, Pk amp) and (P= 0.05) n = 6 (Gain with time) CA1 cells).  559 

 560 

Modulation of gating with SDN 561 

We next asked how the two basic parameters - I/E ratio and EI delay - modulated the 562 

degree of normalization and kinetics of the of SDN curve (Figure 8 c,d). Using our conductance 563 

model, we measured the normalization parameter 𝛾 (α = 0, β  = 1, equation (1)) for a range of 564 
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values of I/E ratio and delays, and found that normalization increased systematically with 565 

increase in I/E ratio as well as with increase in the steepness of the EI delay relationship 566 

(Figure 8c). This implies that the degree of normalization of not only an entire neuron, but 567 

subsets of inputs to a neuron, could be dynamically altered by changing these parameters. In 568 

terms of gating, for a neuron with all inputs tightly balanced, any subset of inputs with reduction 569 

in I/E ratio will be gated ‘on’, corresponding to a condition of higher 𝛾. Neurons can thus 570 

differentially gate and respond to specific inputs, while still retaining the capacity to respond to 571 

other input combinations.  572 
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 573 

Figure 8: Emergence of SDN from balanced excitation and inhibition, coupled with dynamic EI 574 

delays 575 

(a) Schematic showing precisely balanced EPSPs (blue) and corresponding IPSPs (red) summing to 576 

produce PSPs (purple). The EPSPs and IPSPs increase in equal input steps. 577 

(b) Zooming into the portion in the rectangle in a. Excitation onset is constant, but inhibition onset 578 

changes as an inverse function of input or conductance (𝑔exc), as shown in Figure 6e. With increasing 579 

input, inhibition arrives earlier and cuts into excitation earlier for each input step. This results in smaller 580 

differences in excitatory peaks with each input step, resulting in SDN. The timing of PSP peaks (purple) 581 
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becomes progressively advanced, whereas the timing of EPSP peaks (blue) does not, consistent with our 582 

results in Figure 7. 583 

(c,d) Normalization as a function of the two building blocks – EI balance (I/E ratio) and EI delays 584 

(interneuron recruitment kinetics, k), as predicted by the model. Larger values of both imply greater 585 

normalization and increased gating. Colors of the SDN curves depict the value of gamma (γ), as shown in 586 

the phase plot in d. White squares are values of γ larger than 40, where almost no normalization occurs.  587 

 588 

DISCUSSION  589 

This study describes two fundamental properties of the CA3-CA1 feedforward circuit: 590 

balanced excitation and inhibition from arbitrary presynaptic CA3 subsets, and an inverse 591 

relationship of excitatory-inhibitory delays with CA3 input amplitude. We used optogenetic 592 

photostimulation of CA3 with hundreds of unique stimulus combinations and observed precise 593 

EI balance at individual CA1 neurons for every input combination. Stronger stimuli from CA3 led 594 

to proportional increase in excitatory and inhibitory amplitudes at CA1, and a decrease in the 595 

delay with which inhibition arrived. Consequently, larger CA3 inputs had shorter inhibitory 596 

delays, which led to progressively smaller changes in CA1 membrane potential. We term this 597 

gain control mechanism subthreshold divisive normalization (SDN). This reduction in inhibitory 598 

delay with stronger inputs contributes to a division of input strength coding between PSP 599 

amplitude and PSP timing. 600 

 601 

Precise balance in the hippocampus 602 

Our findings demonstrate that precise EI balance is maintained by arbitrary 603 

combinations of neurons in the presynaptic network, despite the reduced nature of the slice 604 

preparation, with no intrinsic network dynamics. This reveals exceptional structure in the 605 

connectivity of the network. Theoretical analyses suggest that networks can achieve detailed 606 

balance with inhibitory Spike Timing Dependent Plasticity (iSTDP) rules(Hennequin et al., 2017; 607 

Luz & Shamir, 2012; T P Vogels, Sprekeler, Zenke, Clopath, & Gerstner, 2011). Such an iSTDP 608 
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rule has been observed in the auditory cortex(D’amour & Froemke, 2015). Given that balance 609 

needs to be actively maintained(Xue, Atallah, & Scanziani, 2014), we suspect that similar 610 

plasticity rules(Hennequin et al., 2017) may also exist in the hippocampus.  611 

Precisely balanced networks, with all input subsets balanced, are well suited for input 612 

gating (Barron, Vogels, Behrens, & Ramaswami, 2017; Hennequin et al., 2017). The finding that 613 

most CA1 cells can be converted to place cells for any arbitrary location predicts the existence 614 

of an input gating mechanism (Lee, Lin, & Lee, 2012), but the nature of this mechanism remains 615 

unknown. One prediction of precise balance is that inputs for multiple potential place fields may 616 

be balanced, and hence place field activity is gated ‘off’. Evoked depolarizations(Lee et al., 617 

2012) or dendritic plateau potentials(Bittner et al., 2015; Bittner, Milstein, Grienberger, Romani, 618 

& Magee, 2017), which potentiate the subset of active synapses, i.e. change I/E 619 

ratio(Grienberger, Milstein, Bittner, Romani, & Magee, 2017), can flip the gate ‘on’, thereby 620 

converting a silent cell to a place cell for that specific place field. This reasoning corroborates 621 

the observation of homogenous inhibition suppressing out-of-field heterogeneously tuned 622 

excitation(Grienberger et al., 2017), while providing a finer, synaptic scale view of the gating 623 

mechanism. 624 

 625 

EI delays and temporal coding 626 

In several EI networks in the brain, inhibition is known to suppress excitation after a 627 

short time delay, leaving a “window of opportunity” for spiking to occur(Higley & Contreras, 628 

2006; Pouille & Scanziani, 2001; Wehr & Zador, 2003). We have shown that balanced inhibitory 629 

input arrives with a delay modulated by the excitatory input in a feedforward circuit. This inverse 630 

relationship of EI delay with excitation has not been explicitly reported, though one study 631 

showed a decrease in EI delays with increase in whisker stimulation speed in layer 4 632 

cells.(Heiss, Katz, Ganmor, & Lampl, 2008).We show that modulation of EI delay by excitation 633 

helps encode the input information in both amplitude and timing of the PSP (Fig. 7). Thus, large 634 
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inputs could be represented with fewer spikes, while conserving input strength information in 635 

spike timing. Similar dual encoding has also been observed in somatosensory cortex (Panzeri, 636 

Petersen, Schultz, Lebedev, & Diamond, 2001). In CA1, a classic example of dual coding is 637 

theta phase precession(Jensen & Lisman, 2000). In addition, spike times during sharp wave 638 

ripples, gamma oscillations and time cell representations are also precise up to ~10ms, which is 639 

the range of the dynamic “window of opportunity” we observe. This dynamic window also 640 

implies that the neuron can transition from temporal integration mode at small input amplitudes 641 

to coincidence detection at large input amplitudes(Gabernet, Jadhav, Feldman, Carandini, & 642 

Scanziani, 2005; Higley & Contreras, 2006; Wehr & Zador, 2003).  643 

 644 

Subthreshold Divisive Normalization (SDN): a novel gain control mechanism 645 

We have introduced Subthreshold Divisive normalization (SDN) as a novel gain control 646 

mechanism arising from EI balance and dynamic EI delays. Our study was uniquely able to 647 

observe SDN because of the large range of inputs possible in our experiments(Poirazi et al., 648 

2003). SDN expands the dynamic range of inputs that a neuron can accommodate before 649 

reaching spike threshold (Supplementary Fig.S7b). This is particularly useful for temporally 650 

coding, sparsely spiking neurons like CA1(Ahmed & Mehta, 2009). So far, analogous gain 651 

control by divisive normalization has only been observed for firing rates of neurons(Carandini & 652 

Heeger, 2012). This implies that the timescales of gain change in DN are averaged over periods 653 

of tens of milliseconds, over which rates change. As opposed to this, in SDN, gain of every input 654 

is normalized at synaptic (millisecond) timescales. Our results add a layer of subthreshold gain 655 

control in single neurons, to the known suprathreshold gain control at the population level in 656 

CA1(Pouille, Marin-Burgin, Adesnik, Atallah, & Scanziani, 2009). This two-step gain control 657 

implies that the dynamic range of the population may be wider than previously estimated. While 658 

most experimental observations of firing rate gain change have been explained by the 659 

phenomenological divisive normalization equation, the mechanistic basis for normalization has 660 
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been unclear. SDN provides a biophysical explanation for phenomenological divisive 661 

normalization by connecting EI ratios and delays with gain control. 662 

I/E ratio can be changed by neuromodulation(Froemke, 2015; Froemke, Merzenich, & 663 

Schreiner, 2007), by short term plasticity mechanisms(Bartley & Dobrunz, 2015; Klyachko et al., 664 

2006; Tsodyks & Markram, 1997)and by disinhibition(Basu et al., 2016). Although we show that 665 

EI delays are input amplitude dependent, they may also be modulated by external signals, or 666 

behavioural states such as attention(Kim, Ährlund-Richter, Wang, Deisseroth, & Carlén, 667 

2016)(Fig. 8c,d). Such interneuron recruitment based changes have been shown to exist in 668 

thalamocortical neurons(Gabernet et al., 2005). Dynamic regulation of EI delay has been 669 

theoretically explored in balanced networks(Bruno, 2011; Kremkow et al., 2010) for temporal 670 

gating of transient inputs independently by amplitude and time. Thus, temporal gating by EI 671 

delays(Kremkow et al., 2010), combined with the amplitude gating by detailed balance(Tim P 672 

Vogels & Abbott, 2009) could be a powerful mechanism for gating signals(Kremkow et al., 2010) 673 

in the hippocampal feedforward microcircuit. 674 

Several studies point towards the existence of precise EI balance in the cortex(Atallah & 675 

Scanziani, 2009; Okun & Lampl, 2008; Wehr & Zador, 2003; Wilent & Contreras, 2005; Zhang 676 

et al., 2003; Zhou et al., 2014), and here we have shown it in the hippocampus. We propose 677 

that input strength dependent inhibitory delay change may be a general property of feedforward 678 

network motifs. Together, these suggest that precisely balanced feedforward networks are 679 

elegantly suited for controlling gain, timing and gating at individual neurons in neural circuits.  680 
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METHODS 681 

Animals 682 

All experimental procedures were approved by the National Centre for Biological 683 

Sciences Institutional Animal Ethics Committee (Protocol number USB–19–1/2011), in 684 

accordance with the guidelines of the Government of India (animal facility CPCSEA registration 685 

number 109/1999/CPCSEA) and equivalent guidelines of the Society for Neuroscience. CA3-cre 686 

(C57BL/6-Tg (Grik4-cre) G32-4Stl/J mice, Stock number 006474) were obtained from Jackson 687 

Laboratories. The animals were housed in a temperature controlled environment with a 14-h 688 

light: 10h dark cycle, with ad libitum food and water.  689 

Virus injections 690 

21-30 days old male transgenic mice were injected with Lox-ChR2 691 

(AAV5.CAGGS.Flex.ChR2-tdTomato.WPRE.SV40) virus obtained from University of 692 

Pennsylvania Vector Core. Injection coordinates used were -2.0mm RC, +/-1.9mm ML, -1.5mm 693 

DV. ~300-400nl solution was injected into the CA3 region of left or right hemisphere with brief 694 

pressure pulses using Picospritzer-III (Parker-Hannifin, Cleveland, OH, USA). Animals were 695 

allowed to recover for at least 4 weeks following surgery. 696 

Slice Preparation 697 

8-6 week (4-8 weeks post virus injection) old mice were anesthetized with halothane and 698 

decapitated post cervical dislocation. Hippocampus was dissected out and 350um thick 699 

transverse hippocampal slices were prepared. Slices (350 microns) were cut in ice-cold high 700 

sucrose ASCF containing (in mM) - 87 NaCl, 2.5 KCl, 1.25 NaH2PO4, 25 NaHCO3, 75 sucrose, 701 

10 glucose, 0.5 CaCl2, 7 MgCl2. For cut slice control experiments, CA3 was removed at this 702 

stage. Slices were stored in a holding chamber, in artificial cerebro-spinal fluid (aCSF) 703 

containing (in mM) - 124 NaCl, 2.7 KCl, 2 CaCl2, 1.3 MgCl2, 0.4 NaH2PO4, 26 NaHCO3, and 704 
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10 glucose, saturated with 95% O2/5% CO2. After at least an hour of incubation, the slices were 705 

transferred to a recording chamber and perfused with aCSF at room temperature. 706 

Electrophysiology 707 

Whole cell recording pipettes of 2-5MO were pulled from thick-walled borosilicate glass 708 

on a P-97 Flaming/Brown micropipette puller (Sutter Instrument, Novato, CA). Pipettes were 709 

filled with internal solution containing (in mM) 130 K-gluconate, 5 NaCl, 10 HEPES, 1 EGTA, 2 710 

MgCl2, 2 Mg-ATP, 0.5 Na-GTP and 10 Phosphocreatinine, pH adjusted to 7.3, osmolarity 711 

~285mOsm. The membrane potential of CA1 cells was maintained near -65mV, with current 712 

injection, if necessary. GABA-A currents were blocked with GABAzine (SR-95531, Sigma) at 713 

2uM concentration for some experiments. Cells were excluded from analysis if the input 714 

resistance changed by more than 25% (measured for 15/39 cells) or if membrane voltage 715 

changed more than 2.5mV (measured for 39/39 cells, maximum current injected to hold the cell 716 

at the same voltage was +/-15 pA) of the initial value. For voltage clamp recordings, the K-717 

gluconate was replaced by equal concentration Cs-gluconate. Cells were voltage clamped at 718 

0mV (close to calculated excitation reversal) and -70mV (calculated inhibition reversal) for IPSC 719 

and EPSC recordings respectively. At 0mV a small component of APV sensitive inward current 720 

was observed, and was not blocked during recordings. Cells were excluded if series resistance 721 

went above 25MO or if it changed more than 30% of the initial value, with mean series 722 

resistance being 15.7MO +/- 4.5MO std (n=13). For CA3 current clamp recordings, the cells 723 

were excluded if the Vm changed by 5mV of the initial value. For whole-cell recordings, neurons 724 

were visualized using infrared microscopy and differential interference contrast (DIC) optics on 725 
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an upright Olympus BX61WI microscope (Olympus, Japan) fitted with a 40X (Olympus 726 

LUMPLFLN, 40XW), 0.8NA water immersion objective. 727 

Data Acquisition  728 

Recordings were acquired on a HEKA EPC10 double plus amplifier (HEKA Electronik, 729 

Germany) and filtered 2.9 kHz and digitized at 20 kHz. All analysis was done using custom 730 

written software in Python 2.7.12 and MatlabR2012b.  731 

Optical stimulation setup 732 

Optical stimulation was done using DMD (Digital Micromirror Device) based Optoma 733 

W316 projector (60Hz refresh rate) with its color wheel removed. Image from the projector was 734 

miniaturized using a Nikon 50mm f/1.4D lens and formed at the focal plane of the tube lens, 735 

confocal to the sample plane. The white light from the projector was filtered using a blue filter 736 

(Edmund Optics, 52532), reflected off of a dichroic mirror (Q495LP, Chroma), integrated into the 737 

light path of the Olympus microscope, and focused on sample through a 40X objective. This 738 

arrangement covered a circular field of around 200 micron diameter on sample. 2.5 pixels 739 

measured 1 micron at sample through the 40X objective. Light intensity, measured using a 740 

power meter, was about 150mW/mm2 at sample surface. Background light from black screen 741 

usually elicited no or very little synaptic response at recorded CA1 cells. A shutter (NS15B, 742 

Uniblitz) was present in the optical path to prevent the slice from being stimulated by 743 

background light during the inter-trial interval. The shutter was used to deliver stimulus of 10-744 

15ms per trial. A photodiode was placed in the optical path after the shutter to record 745 

timestamps of the delivered stimuli. 746 

Patterned optical stimulation 747 

Processing 2was used for generating optical patterns. All stimuli were 16 micron squares 748 

sub sampled from a grid. 16 micron was chosen since it is close to the size of a CA3 soma. The 749 
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light intensity and square size were standardized to elicit typically 1 spike per cell per stimulus. 750 

The number of spikes varied to some extent based on the expression of ChR2, which varied 751 

from cell to cell. The switching of spots from one trial to next, at 3 sec inter trial interval, 752 

prevented desensitization of ChR2 over successive trials (Fig. 1g). Order of presentation N-753 

square was randomized. 754 

 755 

For a patched CA1 cell, the number of connected CA3 neurons stimulated per spot was 756 

estimated to be in the range of 1 to a maximum of 50 for responses ranging from 0 to 2mV. 757 

These calculations assume a contribution of 0.2mV per synapse(Magee & Cook, 2000) and 758 

release probability of ~0.2(Murthy et al., 1997). This number includes responses from passing 759 

axons, which could also get stimulated in our preparation.  760 

 761 

We did not observe any significant cross stimulation of CA1 cells. CA1 cells were 762 

patched and the objective was shifted to the CA3 region of the slice, where the optical patterns 763 

were then projected. CA1s showed no response to optical stimulation because (i) Use of CA3-764 

cre line restricted ChR2to CA3 cells, (ii) physical shifting of the objective away from CA1 also 765 

made sure that any leaky expression, if present, did not elicit responses. Using a cre-based 766 

targeted optogenetic stimulation combined with patterned optical stimulation, we designed an 767 

experiment which was both more specific and more effective at exploring a large stimulus 768 

space. Unlike electrical stimulation, optical stimulation specifically excited CA3 pyramidal 769 

neurons, and hence the recorded inhibition was largely feedforward. We believe this specificity 770 

was crucial to the finding that I/E ratios for all stimuli to a cell are conserved. Electrical 771 

stimulation does not distinguish between neuronal subclasses, and in particular fails to separate 772 

out the inhibitory interneurons. Since a key part of our findings emerged from being able to 773 

establish a temporal sequence of activation of interneurons, it was crucial to exclude 774 

monosynaptic stimulation of interneurons in the experimental design. Second, patterned optical 775 
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stimulation allowed us to explore a grid of 225 stimulus points in CA3, thereby obtaining a wide 776 

array of stimulus combination with large dynamic range, without compromising on the specificity 777 

of stimulation (Fig. 1, Supplementary Fig. 1). 778 

 779 

We used 4 different stimulus grids (Supplementary Fig. S1). All squares from a grid 780 

were presented individually (in random order) and in a stimulus set - randomly chosen 781 

combinations of 2, 3, 5, 7, or 9, with 2 or 3 repeats of each combination. The order of 782 

presentation of a given N square combination was randomized from cell to cell. 783 

 784 

Data analysis and code availability 785 

 Data analysis was done using Python, numpy, scipy, matplotlib and other free libraries. 786 

All error bars are standard deviations. All analysis code is available as a free library at 787 

(https://github.com/sahilm89/linearity). 788 

 789 

Data availability 790 

 The data that support the findings of this study are available from the corresponding 791 

author upon reasonable request.  792 

 793 

Pre-processing 794 

PSPs and PSCs were filtered using a low pass Bessel filter at 2 kHz, and baseline 795 

normalized using 100 ms before the optical stimulation time as the baseline period. Period of 796 

interest was marked as 100 ms from the beginning of optical stimulation, as it was the typical 797 

timescales of PSPs. Timing of optical stimulation was determined using timestamp from a 798 

photodiode responding to the light from the projector. Trials were flagged if the PSP in the 799 

interest period were indistinguishable from baseline period due to high noise, using a 2 sample 800 
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KS test (p-value < 0.05). Similarly, action potentials in the interest period were flagged and not 801 

analyzed, unless specifically mentioned. 802 

 803 

Feature extraction 804 

A total of 4measures were used for analyzing PSPs and PSCs (Fig. 3c). These were 805 

mean, area under the curve, average and area to peak. This was done to be able to catch 806 

differences in integration at different timescales, as suggested by Poirazi et al(Poirazi et al., 807 

2003). Trials from CA1 were mapped back to the grid locations of CA3 stimulation for 808 

comparison of Expected and Observed responses. Grid coordinate-wise features were 809 

calculated by averaging all trials for a given grid coordinate. 810 

 811 

Subthreshold Divisive Normalization model  812 

Different models of synaptic integration: Subtractive Inhibition, Divisive Inhibition, and 813 

Divisive Normalization models were obtained by constraining parameters in Equation (1). The 814 

models were then fit to the current clamp dataset using lmfit. Reduced chi-squares 815 
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(Supplementary Fig.S5o) and Bayesian Information Criterion (Fig 4c) were used to evaluate 816 

the goodness of fits of these models to experimental data. 817 

 818 

Single compartment model  819 

A single compartment conductance based model was created in Python using sympy 820 

and numpy. The model consisted of leak, excitatory and inhibitory synaptic conductances 821 

(equation (5), Fig 6a) to model the subthreshold responses by the CA1 neurons. 822 

 823 

𝐶𝑚
𝑑𝑉𝑚
𝑑𝑡

=  𝑔leak(𝑉𝑚 − 𝐸leak) + 𝑔exc(𝑉𝑚 − 𝐸exc) + 𝑔inh(𝑉𝑚 − 𝐸inh) (5) 

 824 

The parameters used for the model were taken directly from data, or literature 825 

(Supplementary Table2). The synaptic conductances𝑔exc(𝑡), and 𝑔inh(𝑡) were modeled as 826 

difference of exponentials (equation (6) and (7)): 827 

 828 

𝑔exc(𝑡) =  �̅�exc

(

 
 𝑒
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–𝑡
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𝑔inh(𝑡) =  �̅�inh
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 For the divisive normalization case, the inhibitory delays (𝛿inh) were modelled to be an 832 

inverse function of 𝑔exc(𝑡) (equation (4)). In other cases, they were assumed to be constant 833 

and values were taken from Supplementary Table 2. 834 

 835 

Fitting data 836 

Voltage clamp data was fit to a difference of exponential functions (equation (8), 837 

Supplementary Fig.S6e) by a non-linear least squares minimization algorithm using lmfit, a 838 

freely available curve fitting library for Python. Using this, we obtained amplitudes (𝑔), time 839 

course (𝜏rise,𝜏decay) and onset delay from stimulus (𝛿onset) for both excitatory and inhibitory 840 

currents. We then calculated inhibitory onset delay (𝛿inh ) by subtracting onset delayof 841 

excitatory from inhibitory traces.  842 

 843 

𝑔(𝑡) =  𝑔

(

 
 𝑒

(
𝛿onset–𝑡

𝜏decay
)
  –  𝑒

(
𝛿onset–𝑡

𝜏rise
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– (
𝜏rise

𝜏decay
)

𝜏decay

𝜏decay– 𝜏rise  +  (
𝜏rise

𝜏decay
)

𝜏rise
𝜏decay −𝜏rise

)

 
 

 (8) 

Onset detection 844 

 Onsets were also detected using 3 methods. Since we propose onset delays to be a 845 

function of the excitation peak, we avoided onset finding methods such as time to 10% of peak, 846 

which rely on peaks of the PSCs. We used threshold based (time at which the PSC crossed a 847 

threshold), slope based (time at which the slope of the PSC onset was the steepest) and a 848 

running window based methods. In the running window method, we run a short window of 0.5 849 

ms, and found the time point at which distributions of two consecutive windows became 850 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 25, 2018. ; https://doi.org/10.1101/190298doi: bioRxiv preprint 

https://doi.org/10.1101/190298
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

43 

dissimilar, using a 2 sample KS test. Ideally, with no input, the noise distribution across two 851 

consecutive windows should remain identical. All 3 methods gave qualitatively similar results. 852 

Modeling detailed balanced synapses 853 

Synaptic inputs were modeled as sums of probabilistically activated basal synapses with 854 

synaptic strengths taken from a lognormal distribution with shape and scale parameters as 855 

given by our one square current clamp data (shape = -0.39, scale = 0.80). The width of the 856 

weight distribution was altered by changing the scale parameter. Probabilistic synaptic 857 

activation was modeled as a binomial process, with synaptic “release probability” for excitatory 858 

and inhibitory inputs set at 0.2 and 0.8 respectively. 859 

Inhibitory inputs were generated with various degrees of correlation to the excitation, by 860 

shuffling the excitatory weights in differently sized bins, from 1 to the length of the excitatory 861 

weight vector, controlled by a parameter ρ. In this manner, as ρ changed from 1 to 0, excitatory 862 

and inhibitory weight vectors changed from paired (detailed balance) to completely unpaired but 863 

with identical mean and variance of the weight distributions (global balance).  864 

These synapses could be engaged by delivering stimuli, with the number of synapses 865 

per stimulus sampled from a Poisson distribution with mean of 5 synapses per stimulus. The 866 

total number of excitatory and inhibitory synaptic inputs engaged by a stimulus were always 867 

identical. Each stimulus was repeated 6 times. The resultant means and standard deviations for 868 

excitatory and inhibitory inputs were plotted against each other to compare different degrees of 869 

correlation. The whole process was repeated 100 times, and correlations and r-squared values 870 

were averaged to generate the heatmaps. 871 

Mutual Information calculation 872 

Mutual information was calculated by non-parametric entropy estimation and histogram 873 

methods. NPEET (https://github.com/gregversteeg/NPEET) was used for non-parametric 874 

estimation of Mutual Information. The relationship between variables was shuffled 500 times to 875 
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find the significance of the Mutual Information estimate. If the true value of MI was not larger 876 

than 90% of the distribution obtained by shuffling, mutual information was assumed to be 0. If 877 

the total information about the linear sum of one square responses using both peak amplitude 878 

and time could not be established with 90% confidence as described above, the cell was 879 

excluded from further analysis. We also used the histogram method to find the mutual 880 

information (data not shown), and saw a similar trend. Cells with fewer than 80 trials and less 881 

than 2 mV inter-quartile range in the linear sum from one square PSP were excluded from the 882 

analysis. The calculated linear sum from one square PSP peak amplitude responses, measured 883 

N-square peak amplitudes and time were binned with an equal number of bins. The number of 884 

bins were calculated using Sturges’ Rule, which selects the number of bins as 1 + 3.3 log n, 885 

where n is the total number of observations for a given neuron. Bin frequencies were divided by 886 

the total number of responses to get the probability of occurrence p(x) of each bin. 887 

Mutual Information was then calculated for all pairs of combinations between linear sum, 888 

peak amplitude and time using equation (9) and (10). 889 
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𝑀𝐼(𝑋, 𝑌) =  𝐻(𝑋) +  𝐻(𝑌) −  𝐻(𝑋, 𝑌) (9) 

 890 

Where Shannon’s entropy𝐻(𝑋) for a variable𝑋, is given as: 891 

 892 

𝐻(𝑋) = ∑ − 𝑝(𝑥) log2 𝑝(𝑥)

𝑥 ∈ 𝑋

 (10) 

 893 

Further, conditional mutual Information was calculated to measure gain in information about 894 

input (linear sum) by knowledge of peak timing when peak amplitude is already known. It was 895 

calculated using Equation 11. 896 

 897 

𝐼 (𝑋 ; 𝑌|𝑍) =   𝐻 (𝑋, 𝑍) +  𝐻(𝑌, 𝑍) −  𝐻(𝑋, 𝑌, 𝑍) −  𝐻(𝑍) (11) 

 898 

Normalized mutual information was calculated by dividing mutual information between pairs of 899 

variables by the total information between all three variables (Equation 12). 900 

 901 

𝐼 (𝑋; 𝑌, 𝑍) =   𝐻 (𝑍) +  𝐻(𝑋, 𝑌) −  𝐻(𝑋, 𝑌, 𝑍) (12) 

  902 
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