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 17 

Abstract 18 

k-mer based methods are widely utilized for the analysis of nucleotide sequences and were 19 

successfully applied to proteins in several works. However, the reasons for the species-specificity of 20 

aminoacid k-mer distributions are unknown. In this work I show that performance of these methods 21 

is not only due to orthology between k-mers in different proteomes, which implies the existence of 22 

some factors optimizing k-mer distributions of proteins in a species-specific manner. Whatever 23 

these factors could be, they are affecting most if not all proteins and are more pronounced in 24 

structurally organized regions. 25 
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Introduction 29 

k-mer based methods are widely used in metagenomic studies because of their relatively low 30 

computational cost compared to aligning reads to refence database. The exact algorithms vary 31 

between implementations [1-3], but the idea is that k-mer spectra (or distributions) of 32 

phylogenetically close taxa are more similar to each other than they are to those of more distant 33 

groups. There is a plenty of empirical data to support this notion. The above-mentioned 34 

metagenomic approaches perform rather well on both simulated and real datasets, and k-mer based 35 

distance metrics have been used to reconstruct large-scale phylogenomic trees which were 36 

consistent with trees produced by more orthodox methods [4]. 37 

Most of the k-mer-related work in bioinformatics was performed on nucleotide sequences, 38 

but there is nothing inherently DNA-specific in this kind of analysis. There are works that have 39 

translated k-mer based methods, initially designed for DNA, to proteomics. Using a distance metric 40 

based on relative frequencies of k-mers, [5] have reconstructed a phylogenetic tree of 109 different 41 

organisms from all major taxa. The topology of this tree does not contradict results produced by 42 

other methods. In more recent work [6], a tree of approx. 900 bacteria with some eukaryotic 43 

outgroups was built using a different distance metric, again pretty consistent with the consensus on 44 

bacterial evolution. A recent metagenomic classifier named Kaiju [1] leverages protein 45 

conservativity to classify sequences that don't have any close relatives in the reference database. 46 

Thus, there is no question of whether k-mer distribution in aminoacid sequences is species-specific 47 

or whether the divergence of these distributions correlates with evolutionary distances. However, 48 

there is no answer to why it does. 49 

The most common explanation relies on the orthology between k-mers in query sequence 50 

and database. When the classifier is concerned with orthologous sequences, as eg in case of 51 

classifying SSU RNA reads via RDP classifier [7], with sufficient value of k the chance of identical 52 

k-mers appearing in non-homologous parts of sequences by random coincidence is negligible. 53 

Somewhat similarly, protein-level metagenomic classification in Kaiju relies on finding MEMs 54 
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(maximum exact matches) and extending them to inexact shared k-mers. While not stated explicitly, 55 

the phylogenetic importance of shared subsequences is also based on the orthology assumption. 56 

However, performance of k-mer-based classifiers and distance metrics on divergent bacterial 57 

proteomes with relatively few shared genes suggests there may be more to k-mer distribution than 58 

MEMs. In this work I show that this specificity holds even in the complete absence of the 59 

orthology. 60 

Results and Discussion 61 

Performance of the naïve bayesian classifier on CEGMA dataset is shown at fig.1. In 62 

practically all cases this classifier performs better than random, and with optimal k of 5-7 more than 63 

50% of sequences are assigned correctly. There is no possible orthology between sequences from 64 

the same species' training and test sets. In fact, there is a risk that a protein from test set has an 65 

ortholog in the wrong species' training set. k-mer distribution specificity persists even despite the 66 

lack of orthology, which suggests that it is formed by species-specific factors on the proteomic 67 

scale, rather than solely by the requirements of a particular protein family. Expanding the dataset to 68 

the entire proteomes leads to precision skyrocketing to almost 100%. Although some part of the 69 

precision increase can be explained by the presence of recently duplicated paralogs and isoforms, it 70 

still suggests that most, if not all, proteins are affected by these factors. 71 

To study the effect of these factors on a finer scale, we have built k-mer distributions for 72 

protein features from the complete proteomes of the same species according to UNIPROT 73 

annotations. Distances between the k-mer distribution of the feature in a particular species and the 74 

summary distribution for this feature across the entire dataset were calculated. The higher this 75 

distance, the more different these features in one organism are (on average) from their  counterparts 76 

from other species, which allows to use them as a proxy for the species-specificity of k-mer 77 

distribution in protein fragments. As only structural features and entire domains have both average 78 

length and feature counts sufficient for a reliable estimation of k-mer distribution, various binding 79 

sites and signal peptides are omitted. Box-plots of these distances among different species are 80 
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shown at fig. 2. 81 

For all structurally organised elements (ie helices and beta-strands) k-mer distributions are 82 

more species-specific than they are for protein sequences as a whole (fig. 2), which means that 83 

pressure for k-mer adaptation is greater in this regions. The same is true for functional domains, 84 

whose k-mer distributions are optimised above protein-average level. This is strikingly similar to 85 

codon usage adaptation on DNA level, where the use of different codons is regulating kinetics of 86 

translation and folding. In particular, quickly translating high-frequency codons are common in 87 

alpha helices, while  rare, slower ones are more likely to be found in random coils [11]. Several 88 

mechanisms can be proposed to explain this specificity on protein level. It's possible that the 89 

evolutionary advantage or disadvantage of particular k-mers is related to protein creation specifics, 90 

eg quicker and more efficient folding of optimal aminoacid sequence. Different aminoacid 91 

composition can also be invoked as one of the explanations, although different frequencies of k-92 

mers with similar aminoacid composition prevent it from being considered the sole source of k-mer 93 

distribution. Some of the specificity can be the effect of translating DNA with a specific distribution 94 

of 3k-mers, which in turn is created by a range of DNA-specific factors such as GC-content, codon 95 

usage, presence of specific sites like splicing regulators and so on. If the analogy with codon usage 96 

bias is anything to go by, though, we should presume that there isn't a single source of selective 97 

pressure on k-mer composition. All the factors described above probably apply to some degree, as 98 

well as many others. 99 

Material and methods 100 

CEGMA dataset of highly conserved genes from six model eukaryotic species (A. thaliana, 101 

C. elegans, D. melanogaster, H. sapiens, S. cerevisiae, S. pombe) was used. These are genes from 102 

459 distinct orthogroups, each of which is represented by no more than one sequence from every 103 

species, for a total of 456-458 proteins per species [8]. 104 

50 randomly selected proteins from each species were used as a test set, and naïve Bayesian 105 

classifier (similar to multinomial classifier in [9]) was trained on the remaining ones.  Test set 106 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 18, 2017. ; https://doi.org/10.1101/190280doi: bioRxiv preprint 

https://doi.org/10.1101/190280
http://creativecommons.org/licenses/by-nd/4.0/


sequences were assigned to the proteomes using this classifier using for values of k between 3 and 107 

10. Similar procedure was performed on the complete proteomes of these species, using 10% of 108 

proteins randomly sampled as a testing set. All distances between k-mer distributions were 109 

calculated using FFP distance metric [10]. 110 
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Figure legends 150 

Figure 1 Specificity of naive Bayesian classifier on CEGMA dataset under different 151 

values of k. 152 

Figure 2 Species-specificity of k-mer distribution on different features across six 153 

proteomes. “Chain” feature represents protein sequence as a whole. 154 
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