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Summary 

Grey matter atrophy is present from the earliest clinical stages of multiple sclerosis (MS), but 

the temporal ordering is poorly understood. We aimed to determine the sequence in which 

grey matter regions become atrophic in MS, and its association with disability accumulation.  

 

In this longitudinal study, we included 1,417 subjects: 253 with clinically-isolated syndrome 

(CIS), 708 relapsing-remitting MS (RRMS), 128 secondary-progressive MS (SPMS), 125 

primary-progressive MS (PPMS), and 203 healthy controls from 7 European centres. 

Subjects underwent repeated MRI scanning (total number of scans 3,604); the mean follow-

up for patients was 2.41yrs (SD±1.97). Disability was scored using the Expanded Disability 

Status Scale (EDSS). We calculated the volume of brain grey matter regions and brainstem 

using an unbiased within-subject template. We used an established data-driven event-based 

model (EBM) to determine the sequence of occurrence of atrophy and its uncertainty. We 

assigned each subject to a specific EBM stage, based on the number of their atrophic regions. 

We used nested linear mixed-effects regression models to explore the associations between 

the rate of increase in the EBM stages over time, disease duration and annual rate of EDSS 

gain.  

 

 

The first regions to become atrophic in CIS and relapse-onset MS patients (RRMS and 

SPMS) were the posterior cingulate cortex and precuneus, followed by the middle cingulate 

cortex, brainstem and thalamus. The sequence of atrophy in PPMS showed a similar 

involvement of the thalamus, cuneus, precuneus, and pallidum, followed by the brainstem 

and posterior cingulate cortex. The cerebellum, caudate and putamen showed early atrophy in 

relapse-onset MS and late atrophy in PPMS. Patients with SPMS showed the highest EBM 

stages (highest number of atrophic regions, all p<0.001) at study entry. Rates of increase in 
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EBM stages were significantly different from healthy controls in all MS phenotypes, except 

for CIS. The increase in the number of atrophic regions (EBM stage) was associated with 

disease duration in all patients. EBM stage was associated with disability accumulation in 

RRMS independent of disease duration (p<0.0001).  

 

This data-driven staging of atrophy progression in a large MS sample demonstrates that grey 

matter atrophy spreads to involve more regions over time. The sequence in which regions 

become atrophic is reasonably consistent across MS phenotypes. The spread of atrophy was 

associated with disease duration, and disability accumulation in RRMS.  

 

 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 19, 2017. ; https://doi.org/10.1101/190116doi: bioRxiv preprint 

https://doi.org/10.1101/190116


Introduction 

Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous 

system with a prominent neurodegenerative component. Brain atrophy, as assessed by MRI, 

develops at a faster rate in people with MS than healthy controls. Whole brain atrophy is the 

result of grey matter and to a lesser extent of white matter atrophy (Fisher et al., 2008), which 

is related to long term disability in MS (Fisniku et al., 2008; Filippi et al., 2013). Histology-

MRI studies have demonstrated that MRI-derived grey matter atrophy reflects 

neurodegeneration (Filippi et al., 2012). 

 

Grey matter atrophy is not uniform across the brain in MS and some regions are more 

susceptible to atrophy than others (Steenwijk et al., 2016; Preziosa et al., 2017). The limbic 

system, temporal cortex and deep grey matter show early atrophy in patients with relapse-

onset MS (Audoin et al., 2010), whilst the cingulate cortex shows early atrophy in PPMS 

(Eshaghi et al., 2014). In our previous study using the same large cohort of MS patients 

(Eshaghi et al., 2017), we have found that the deep grey matter showed the fastest annual rate 

of tissue loss in relapsing-remitting MS and progressive MS, and that in the cortex the rate of 

atrophy accelerated in the temporal regions in secondary progressive MS. However, it is 

unknown whether there is a consistent and identifiable order in which atrophy progresses 

affecting different regions over time. A key question is whether there is an association 

between the sequential development of atrophy and disability accumulation.  

 

One approach to investigate the sequence of atrophy progression is to employ a probabilistic 

data-driven method, such as an event-based model (EBM), which, as the name implies, 

identifies the sequence of events at which a biomarker becomes abnormal, using cross-

sectional or longitudinal observations (Fonteijn et al., 2012; Young et al., 2014). The EBM is 
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an established method. It has given new insights on the progression of Alzheimer’s in which 

the hippocampal atrophy is seen before the whole brain atrophy. Similarly in Huntington’s 

disease, the EBM has successfully predicted earlier atrophy in the basal ganglia than other 

regions (Fonteijn et al., 2012; Young et al., 2014).  

 

In this study, we used the EBM to investigate the progression of brain atrophy as a sequence 

of “events” at which grey matter regions become atrophic in all phenotypes of MS. This 

method is data-driven; it does not rely on a priori thresholds to define when the volume of a 

region ceases to be normal and becomes atrophic, but calculates the probability of atrophy 

based on data-derived model distributions of normal and atrophic regional volumes. 

Moreover, the EBM constructs a subject staging system: it assigns each subject to a stage that 

reflects how far through the sequence of regions that subject shows lower than normal 

volumes – the higher the stage, the greater the number of atrophic regions.  

 

In this study, we built on the evidence that neurodegeneration in MS does not affect all the 

grey matter regions equally (Haider et al., 2016; Eshaghi et al., 2017) and that brain regions 

become atrophic in a non-random manner (Rocca et al., 2010). We hypothesised that: (i) 

there is a sequence in which grey matter regions become atrophic; (ii) this sequence differs 

between relapse- and progressive-onset phenotypes; and (iii) the EBM stage increases with 

disease duration and disability worsening.  
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Methods 

Participants 

This was a retrospective study of 1,424 participants, studied between 1996-2016 in 7 

European centres, which were part of the Magnetic Resonance in MS (MAGNIMS) 

Collaboration (www.magnims.eu). The same participants were previously used to investigate 

the spatiotemporal pattern of grey matter atrophy in MS (Eshaghi et al., 2017). They were 

healthy controls (HCs), patients with clinically-isolated syndrome (CIS), relapsing-remitting 

(RR) MS, secondary-progressive (SP) MS and primary-progressive (PP) MS. Eligibility 

criteria included: (1) A diagnosis of CIS or MS according to 2010 McDonald Criteria 

(Polman et al., 2011); (2) Healthy controls without history of neurological or psychiatric 

disorders; (3) The presence of at least 2 sequential MRI scans, acquired with identical 

protocol, including T1-weighted MRI and T2-weigthed/Fluid Attenuated Inversion Recovery 

(FLAIR) sequences; (4) A minimum interval of 6 months between MRI scans. We requested 

that the Expanded Disability Status Scale (EDSS) scored at clinical follow-ups on the eligible 

patients was made available (Kurtzke, 1983).  

An additional group of age-matched healthy controls (N=29) was also obtained from the 

Parkinson’s Progression Markers Initiative (PPMI) database (www.ppmi-info.org/data) to 

match healthy control’s age to that of patients.  

MRI scans were acquired under written consent obtained from each participant independently 

in each centre. The final protocol for this study was reviewed and approved by the European 

MAGNIMS collaboration for the analysis of pseudo-anonymised scans.  

 
MRI data and analysis 

We collected 3D T1-weighted scans, in addition to T2/FLAIR MRI, from all centres except 

one. Details of the 13 different MRI protocols are shown in Supplementary Table 1.  
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The aim of the image analysis was to extract the volume of brain regions according to the 

Desikan-Killiany-Tourville protocol (Klein and Tourville, 2012) [as explained in detail 

elsewhere (Eshaghi et al., 2017)]. Briefly, the main steps were as follows: After an N4-bias 

field correction (part of ANTs software, version 4.1.9), which adjusted for the 

inhomogeneous intensity of the T1-weighted scans (Tustison et al., 2010), we performed T1 

lesions filling (Battaglini et al., 2012) to improve the accuracy of the segmentation. We then 

created an unbiased, within-subject template, and linearly transformed all the subject-specific 

T1 scans to this symmetric space, using Freesurfer version 5.3 (Reuter et al., 2010; Reuter 

and Fischl, 2011; Reuter et al., 2012). In the symmetric space, we segmented the T1 scans in 

grey matter, white matter and CSF using the geodesic information flows or GIF software 

(part of NiftySeg, http://cmictig.cs.ucl.ac.uk/niftyweb/) (Cardoso et al., 2015). Finally, we 

calculated the regional volumes in the cortex and deep grey matter (the volume of the 

bilateral regions were averaged between the left and right hemisphere), the brainstem, white 

matter, cerebellum and lateral ventricles, according to the Desikan-Killiany-Tourville 

protocol (http://braincolor.mindboggle.info/index.html)(Klein and Tourville, 2012). 

 

The event-based model (EBM) 

We used the EBM, as described previously in (Fonteijn et al., 2011, 2012; Young et al., 

2014), to estimate the most likely sequence in which selected regions become atrophic over 

time (see below details on region selection). We also repeated the same analysis using all 

brain regions to test the dependence of our findings on the region selection.  

The EBM assumes that a population of patients represents the whole trajectory of disease 

progression (Fonteijn et al., 2011) and reconciles cross-sectional or short-term longitudinal 

data into a picture of the whole disease course. We therefore created separate EBMs for: (1) 

relapse-onset patients (CIS, RRMS, SPMS); (2) progressive-onset (PPMS) patients; and  (3) 
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to develop a unique staging system for all patients we merged all clinical phenotypes into a 

single cohort. We used the sequence estimated by this EBM to stage patients by assigning 

them the most probable stage along the sequence.  

The main steps of the EBM include (Figure 1): (1) model input, which consists of adjustment 

of regional volumes for effects of nuisance variables and selection of regions; (2) model 

fitting; and (3) a cross-validation. For the last step, we used a novel cross-validation method, 

used here within the EBM for the first time, whilst steps 1 and 2 have not changed since the 

original EBM implementation (Fonteijn et al., 2011; Young et al., 2014). Model input used 

all MS patients; model fitting and cross-validation were repeated three times using (1) 

relapse-onset and CIS patients together, (2) PPMS, and (3) a merged cohort of patients. 

 

<…Figure 1…> 

 

Model input 

We adjusted the regional volumes for the total intracranial volume, age at study entry, 

gender, scanner magnetic field and MRI protocol. Since some centres provided data from 

more than one MRI protocol we adjusted for MRI protocol and magnetic field instead of only 

a “centre” variable (see Supplementary Table 1). We constructed a regression model for each 

region separately, entering the volume as the dependent variable and the remaining variables 

as predictors. We extracted the amount of each regional volume that remained unexplained in 

the regression (residual of the fit). Subsequently, we selected the regions whose adjusted 

volumes at the study entry showed a significant difference between all MS patients and 

healthy controls, with a Bonferroni corrected p<0.01 (non-corrected p < 0.0001). We used 

these regions in the subsequent analyses. We repeated the analysis using all the segmented 

regions of the Desikan-Killiany-Tourville atlas for the following reasons: 1) To test whether 
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the sequence in which brain regions become atrophic was not influenced by restricting the 

analysis only to the regions that showed a lower volume in patients than controls; 2) to detect 

potential subtle early changes that might have not survived multiple-comparison correction.  

 

Model fitting 

The EBM considers an “event” to have occurred when a biomarker, here regional volume, 

has abnormal value (“atrophy”) in comparison with the expected values measured in healthy 

controls. The model then estimates the sequence S = S(1), S(2), …, S(l) in which regions 

become atrophic, where S(1) is the first region, and S(l) is the last to become atrophic. The 

model assumes that all patients go through the same sequence as they progress. The 

estimation procedure first fits a mixture of two Gaussians to regional volumes, with one of 

the components fixed to be identical to the healthy distribution; the other component provides 

the model for the “abnormal” distribution. This provides probabilistic models for normal and 

abnormal volumes from which we can calculate the likelihood of atrophy ��������� for the 

region i of the scan j, i.e. the probability density function (PDF) estimated at ��� from the 

abnormal component of the mixture-model. The likelihood that region i has no atrophy, or 

����������, is the PDF of the normal component of the mixture-model estimated at ���  (see 

Figure 1, section 2[i]). 

To search for the most likely sequence, we used a greedy ascent search (Fonteijn et al., 2012; 

Young et al., 2014) which started at 10 different random sequences and iterated by randomly 

flipping sequences for 1000 times. The final sequence was selected when 10 different initial 

sequences converged to a similar likelihood after 1000 iterations. Within each iteration new 

(flipped) sequences (Figure 1, section 2[ii]) were accepted only if they increased the 

likelihood, which is defined as 

 ��	|��  ∏ �∑ ����� ∏ ���������
�
���  ∏ �����|�

����� ����� � ��
��� �	

���    (1) 
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where X is the data matrix, S is the sequence of atrophy events, J is the number of scans, l is 

the number of regions, and P(k) is the prior probability of being at stage k, which means E1, 

…., Ek have occurred, and Ek+1, …., El have not occurred. We used a uniform distribution for 

prior probabilities, which assumes equal prior-probability for all possible stages; all 

sequences are equally likely a-priori.  

 

Cross-validation of atrophy sequence 

After estimating the most likely sequence, the uncertainty in the position of each region in the 

sequence was estimated using cross-validation and Markov Chain Monte-Carlo (MCMC). 

We divided the dataset (including baseline and follow-up visits) into ten equally-sized folds 

(cross-validation folds) and repeated the sequence estimation ten times. During each iteration, 

we used nine-folds to fit the mixture-models (as explained above) and estimated the most-

likely sequence. We kept one fold out as the test fold to assign the EBM stages (explained 

below). Within each iteration, we used MCMC to sample from the posterior distribution on 

the sequence given the nine-fold training data, as in (Fonteijn et al., 2012; Young et al., 

2014). We then aggregated MCMC samples from the 10 iterations of cross-validation (10,000 

samples from each fold) to calculate uncertainty across cross-validation folds. Finally, we 

used these 100,000 sampled sequences to plot the positional variance diagram (as in (Fonteijn 

et al., 2012; Young et al., 2014)), which shows on the y-axis the sequence with the highest 

likelihood, and the x-axis enumerates the number of sequence positions (or EBM stages). The 

intensities of the matrix entries correspond to the proportion of MCMC samples in which the 

corresponding region (y-axis) appears at the respective stage (x-axis). Therefore, if there were 
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no uncertainty, i.e. all MCMC samples in all folds find the same sequence, the matrix would 

be black on the diagonal and white everywhere else; non-white off-diagonal and non-black 

diagonal elements indicate uncertainty in the position of the corresponding region in the 

sequence.  

 

Staging individual subjects and clinical associations  

We used the most likely sequence of atrophy progression from a unique EBM created from a 

merged patient cohort to obtain the EBM stage for each MRI scan j, which is the stage k that 

maximises ∏ �����|��� ∏ �����|����
�
�����

�
��� . This assigned each subject an EBM stage 

between 1 and the number of regions, l, at each visit (see Figure 1).   

We used a nested linear mixed-effects regression model to explore the associations between 

changes of EBM stage over time with disease duration, where disease duration was nested in 

subjects (random-effects), and disease duration was also a fixed-effects variable.  

For those clinical phenotypes that showed a significant change in the EBM stage over time 

(RRMS, SPMS and PPMS), we investigated whether longitudinal EDSS changes could be 

predicted by EBM changes independent of disease duration. We divided the changes in EDSS 

and EBM by number of years from the study entry, and performed a linear regression 

analysis where annualised EDSS change was the outcome variable. Annualised EBM change 

and disease duration at the study entry were the predictor variables. Since both the EBM 

stage and EDSS are ordinal variables, we used ordinal regression analyses to confirm the 

results of the linear regressions but presented the results of linear models (as they did not 

materially differ).  
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Results 

 

Subject characteristics 

Imaging data from 1,424 subjects were analysed; three subjects’ scans were excluded because 

of motion artefacts and four because of poor registration due to missing MRI header 

information. Therefore, data from 1,417 subjects were included in the final modelling: 1,214 

patients (253 CIS, 708 RRMS, 128 SPMS, and 125 PPMS), and 203 healthy controls (HCs). 

The average (±standard deviation) length of follow-up for patients was 2.43 years (±1.97) 

and for HCs was 1.83 years (±1.77). In total, we analysed 3,604 T1-weighted MRI scans 

(mean number of scans per patient was 2.54 [SD=1.04]).  

<…Table 1…> 

Sequence of atrophy progression  

At baseline, 24 regions showed a smaller volume in MS than HCs with a Bonferroni 

corrected p<0.01. They included the deep grey matter regions and the posterior cortices 

(including the precuneus and the posterior cingulate cortex), several regions in the temporal 

lobe, the precentral cortex, and the brainstem (see Figure 2 for the full list).  

<…Figure 2…> 

When we estimated the sequence in which these 24 regions become atrophic in patients with 

relapse-onset MS (RRMS and SPMS) and CIS, the first regions were the posterior cingulate 

cortex and the precuneus, followed by the middle cingulate cortex, brainstem, and thalamus 

(Figure 3A & D); the last regions to become atrophic were the pallidum, and medial 

precentral gyrus.  

 

In patients with PPMS, among the 24 selected regions, the first ones to show atrophy were 

the thalamus, cuneus and precuneus, and pallidum, followed by the brainstem, precentral 
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gyrus, and posterior cingulate cortex (Figure 3B & D); the last regions to become atrophic 

were the frontal operculum and middle temporal gyrus. 

<…Figure 3…> 

 

When the EBM was used to estimate the sequence of atrophy progression of the selected 24 

regions in all patients together, additional regions were detected as showing early atrophy, 

such as the insula, accumbens and caudate (Figure 3C). The likelihood of the 10 randomly 

chosen sequences (log-likelihood range: -149000 to -117000) converged to a similar range 

(log-likelihood range: -1000000 to -99000) after 1000 iteration (Supplementary Figure 1). 

For other EBMs, the likelihoods converged to a similar range (results are not shown).  

 

When all the remaining regions were included additional regions were identified. In PPMS 

they were the transverse temporal gyrus, cerebral white matter, post-central gyrus and middle 

frontal gyrus (see Figure 4, Supplementary Figures 2 and 3). In relapse-onset group these 

regions were the superior frontal gyrus, inferior frontal gyrus, and middle frontal gyrus.  

 

When we qualitatively compared CIS and relapse-onset MS patients with PPMS, across all 

regions, the cerebellum, caudate and putamen showed a differential pattern of atrophy, with 

early atrophy in patients with relapse-onset disease and late atrophy in PPMS (see Figure 4). 

<…Figure 4…> 

EBM staging of individual subjects 

Patients with relapse-onset MS and PPMS had significantly higher EBM stages at baseline 

than HCs (average intercept [±standard error] EBM stage for HCs=8.02±0.59, relapse-

onset=12.39±0.66, PPMS=12.22±0.35, p<0.05). When looking at each clinical phenotype, 

patients with SPMS had the highest EBM stage at the study entry than other clinical 
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phenotypes (average intercept ± standard error=14.73±0.93, all p-values<0.001), followed by 

RRMS (12.60±0.67), PPMS (12.22±0.35), CIS (8.12±0.76), and HCs (8.02±0.59) 

respectively. The annual rate of change (or slope) of the EBM stage over time was significant 

(null hypothesis=zero slope) for SPMS (average slope± standard-error:1.02±0.41), PPMS 

(0.52±0.34), and RRMS (0.37±0.26), but not for CIS (0.19±0.33) or HCs (0.10±0.24). The 

rate of change, although nominally higher in SPMS, was not significantly different between 

clinical phenotypes.  

 
  
Associations between EBM staging and disease duration and disability accumulation 

There was a significant association between the rate of increase in the EBM stages and 

disease duration in all patients with MS (β=0.21, standard error [SE]=0.03, p<0.001) using all 

available time points. This means that for every increase of one EBM stage, disease duration 

increased by 4.76 years.  

 

At the baseline visit, there was no significant association between the EBM stage and EDSS 

in any clinical phenotype (CIS, RRMS, SPMS, or PPMS). Over time there was a significant 

increase in EDSS in both relapse-onset/CIS and PPMS patients (increase of 0.07 and 0.2 per 

year, respectively, p<0.01). There was a significant association (independent of disease 

duration) between annualised EBM stage and annualised EDSS changes in RRMS (beta 

=0.03, p <0.0001) but not in SPMS and PPMS. This means that assuming a linear 

relationship between EDSS and EBM stage, for every unit increase in the annual rate of EBM 

stage there is 0.03 increase in the annual rate of EDSS worsening. There was no significant 

association between the rate of change in EBM stage and lesion load over time. 
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Discussion 

In this study, we used a data-driven method to determine the most likely sequence in which 

brain regions become atrophic in MS. This sequence is consistent in key regions across MS 

phenotypes: the posterior cingulate cortex, the precuneus, and the thalamus were among the 

earliest regions to become atrophic in both relapse-onset phenotypes and PPMS. The EBM 

predicted a different pattern in the cerebellum, caudate, and putamen, which was an early 

atrophy in relapse-onset but a later atrophy in PPMS. The EBM staging system was applied 

to individual patients and the rate of increase in the EBM stage was associated with the 

disease duration in all MS phenotypes and with the EDSS in patients with RRMS 

independent of disease duration. These results provide insights into the mechanisms of 

disease worsening in MS.  

 

The order of atrophy progression in the EBM for most regions was similar between PPMS 

and CIS/relapse-onset MS. This may support the evidence from histological studies that the 

pathological processes are regionally consistent between early RRMS and progressive MS 

(SPMS and PPMS) (Mahad et al., 2015). Our results showed that areas with an early atrophy 

according to the EBM were the posterior cingulate cortex, precuneus, thalamus and brainstem 

in both groups, thereby extending the results of previous studies, which have limited their 

investigation to specific MS subtypes (Gilmore et al., 2009; Audoin et al., 2010; Calabrese, 

Reynolds, et al., 2015; Steenwijk et al., 2016). When all patients were included together, the 

insula, the accumbens and the caudate were predicted as becoming atrophic early on.  

 

The cingulate cortex and insula are interconnected with other regions, and vulnerable to 

secondary damage via white matter tracts (Bodini et al., 2016). Moreover, these structures are 

in cortical invaginations, which could expose them to meningeal inflammation, cortical 
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demyelination, and neurodegeneration (Gilmore et al., 2009; Howell et al., 2011; Haider et 

al., 2016). The cingulate cortex and precuneus are part of a network of active regions during 

rest (the default mode network) (Raichle, 2015). These regions are interconnected with other 

areas, have the highest energy consumption in the brain, and are affected in MS and other 

neurodegenerative disorders (Bonavita et al., 2011; Raichle, 2015). In MS, neurons with 

demyelinated axons consume more energy to adapt to demyelination, which creates a 

microenvironment similar to that of hypoxia (“virtual hypoxia”) (Trapp and Stys, 2009). 

Neurons that survive in a state of persistent virtual hypoxia are more vulnerable to 

degeneration (Zhang and Raichle, 2010), and this may explain higher vulnerability of the 

cingulate and precuneus cortex to atrophy.  

Other regions that showed early atrophy were the thalamus and the brainstem in both relapse-

onset MS and PPMS. In our previous study, we found that the deep grey matter showed the 

fastest rate of atrophy over time, whilst brainstem had the highest atrophy (the lowest 

volume) at study entry, but its atrophy progressed at a slower rate than that occurring in other 

regions (Eshaghi et al., 2017). This may suggest that during early stages of MS, the rate of 

atrophy in the brainstem is higher than later stages, whilst the rate of atrophy in the thalamus 

remains high throughout the disease course. The brainstem is in close contact with the spinal 

cord, whose atrophy is seen from early stages of MS independent of the cortex or deep grey 

matter (Biberacher et al., 2015; Ruggieri et al., 2015).  

Several mechanisms may underlie neurodegeneration in the deep grey matter, including 

mitochondrial failure, iron deposition, retrograde degeneration through white mater lesions, 

and meningeal inflammation (for structures closer to CSF) (Calabrese, Magliozzi, et al., 

2015; Bodini et al., 2016; Haider et al., 2016; Pardini et al., 2016). Network overload and 

collapse, similar to the cingulate and precuneus cortex, could also explain preferential 

atrophy of the deep grey matter in MS (Minagar et al., 2013). 
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There were a few regions showing differential pattern of atrophy between relapse- and 

progressive-onset phenotypes. The cerebellum, caudate and putamen were predicted to have 

early atrophy in relapse-onset disease and late atrophy in PPMS. In the cerebellum this 

different behaviour can be explained by a more inflammatory phenotype of patients with 

relapse-onset MS. In patients with MS, more than any other brain region, demyelination is 

seen in the cerebellar grey matter, which is 5 times more than the white matter demyelination 

(Gilmore et al., 2009). This may be a consequence of overlying meningeal inflammation in 

the deep folia, which accommodate a static inflammatory milieu (such as cytokines, and 

immunoglobulins) (Kutzelnigg et al., 2007; Howell et al., 2011). Therefore, in the cerebellum 

overlying inflammation may play a role and amplify other pathological mechanisms, such as 

retrograde neurodegeneration secondary to white matter lesions (Kutzelnigg et al., 2007; 

Gilmore et al., 2009; Howell et al., 2011). Thus, the cerebellum could be susceptible to 

inflammatory damage from CSF. Previous studies have reported in relapse-onset MS, but not 

PPMS, tertiary lymphatic follicles in cortical invaginations, which may suggest a more 

inflammatory CSF milieu than PPMS (Kutzelnigg et al., 2007; Choi et al., 2012). This could 

explain earlier atrophy of the cerebellar grey matter in people with relapse onset disease, 

whilst in PPMS neurodegeneration in a less inflammatory CSF milieu might cause a gradual 

progression of atrophy (Choi et al., 2012; Mahad et al., 2015). However, this is speculative 

and it remains unclear whether meningeal inflammation has a causative effect on 

demyelination and neurodegeneration.  

The caudate and putamen, which are histologically similar, constitute a structure that is 

known as the neostriatum. A previous histopathological study has shown that the highest 

extent of demyelination and lesions in the deep grey matter can be seen in the caudate even in 

early MS, although the pattern was not different between MS phenotypes (Haider et al., 
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2014). Moreover, the neostriatum receives major inputs to the deep grey matter from the 

motor cortex (mostly to putamen) and the association cortices (mostly to the caudate). 

Therefore, we could speculate that retrograde neurodegeneration secondary to a higher lesion 

load in relapse-onset disease (compared to PPMS) may perform as an additive factor on 

demyelination to explain the higher vulnerability of these structures.  

We extended our analysis from regions that showed significant atrophy at baseline to the all 

segmented regions to test the dependence of our findings to region selection. Another reason 

was to explore early, but subtle, changes in brain regions, which might have been missed by 

just looking at a snapshot at the study entry to choose specific regions based on stringent 

multiple-comparison correction. For example, a brain region may show mild volume loss 

earlier than another region with a greater (but later) volume loss through the course of MS. 

Whole brain EBM analysis predicted an early involvement of the posterior cortices (posterior 

cingulate and precuneus) along with the brain stem. New additional regions in the whole 

brain EBM were also identified including: the superior, middle, and inferior frontal gyri in 

relapse-onset phenotypes, and the transverse temporal gyrus, white matter, and post-central 

gyrus in PPMS. These findings suggest that the changes in these structures may happen early, 

but with a lower intensity than other regions that were only reported in the EBM with 24 

regions.  

 

The EBM has potential for clinical use as it does not rely on time, and can be applied to 

individual (cross-sectional) MRI scans. To have a unique staging system across clinical 

phenotypes, we therefore created a separate EBM from a merged MS cohort. We showed that 

patients with SPMS had the highest EBM stage –or the highest number of atrophic regions– 

at the study entry. This, in line with previous studies, suggests that SPMS has more advanced 

neurodegeneration across MS phenotypes (Ceccarelli et al., 2008). When we performed the 
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EBM staging using follow-up scans of patients and healthy controls, we found a significant 

increase in EBM stages in all MS phenotypes, but not in CIS or HCs (although the baseline 

EBM stage was nominally higher in CIS than HCs). The clinical relevance of the EBM was 

confirmed by a significant association between stages and EDSS after adjusting for disease 

duration in RRMS. Therefore, the sequential pattern of atrophy may explain disease 

worsening in RRMS. We did not find the same association between the changes in EBM 

stages and EDSS. However, patients with SPMS had the highest EBM stages at the study 

entry, and the highest nominal rate of increase in the EBM stage (although not significantly 

so in comparison with RRMS or PPMS). This suggests that sequential pattern of atrophy may 

explain mechanisms of disease progression.  

 

Although this is a retrospective and multi-centre study, we have adjusted for the effects of 

centre; as reported before on this dataset (Eshaghi et al., 2017), the effect of MS phenotypes 

on regional measures was higher than that from the centre. A possible limitation is that EBM 

assumes that all brain regions eventually become abnormal (all regions show atrophy at the 

last stage). Therefore, an implicit assumption is that patients with relapse-onset disease (CIS, 

RRMS, and SPMS) or those with PPMS, represent the whole continuum of progression when 

analysed separately; future implementations of this model could remove this assumption. We 

used EDSS as the clinical outcome, but both EDSS and EBM provide measures that are 

ordinal, and may not have a uniform interpretation. Therefore, the coefficients of associations 

should be interpreted relatively (e.g., to compare clinical groups) rather than absolutely.   

 

We showed that the sequence of atrophy progression in relapse-onset disease and PPMS are 

similar in many key regions, whilst the cerebellum, caudate and putamen show an earlier 

atrophy in relapse-onset MS, perhaps due to a more inflammatory milieu. The sequence of 
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atrophy progression can be used to score automatically patients during their path of atrophy 

progression, and has potential clinical utility because for staging of patients. 
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Tables: 

Table 1. Baseline characteristics of participants. 

Group Healthy 

control 

CIS Relapse onset  PPMS  

subgroups   
RRMS & SPMS 

 

Total number 

(number of 

females) 

203 (112) 253 (171) 836 (548) 125 (55) 

Age (± SD1) 38.7 ± 10.5 33±8 39.7±9.8 48.5 ± 10.1 

Disease duration (± 

SD) 

— 0.4±1.4 8.06±8.03 6.8 ± 5.9 

Median EDSS2 

(range) 

— 

 

1 (0-4.5) 2 (0-9) 5 (2-8) 

Percent (number) 

receiving disease 

modifying drugs  

— 20% (52) 397 (47%) 6% (8) 
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Figure titles: 

 

Figure 1. Estimating the most likely sequence of atrophy progression. 

Figure 2. Regional volumes of the chosen regions across groups at baseline. 

Figure 3. Most likely sequences of atrophy progression and patient staging. 

Figure 4. Regional atrophy and its sequence of progression. 

 
Figure legends: 
Figure 1. EBM steps to estimate the most likely sequence of atrophy progression. The 3 steps are: 

(1) calculating the best-fit probability distributions for normal and atrophic brain regions; (2) 

searching for the most likely sequence; and (3) quantifying the uncertainty with cross validation. (1) 

shows the distribution of the volume in an example region in healthy controls and patients. (2) shows 

the steps for greedy ascent search. (3) a matrix showing a sequence of atrophy progression on the y-

axis, and the position in the sequence of each region ranging from 1 to the total number of regions on 

the x-axis. The intensity of each matrix entry corresponds to the proportion of Markov Chain Monte 

Carlo samples of the posterior distribution where a certain region of y-axis appears at the respective 

stage of x-axis.  

 

Figure 2. Comparisons of regional volumes between groups. Box plots at y-axis show z-scores of 

the corresponding region shown at x-axis. Lower and upper hinges of each boxplot correspond to 25th 

and 75th percentiles of data. We arbitrarily selected 24 regions (shown in A) according to the t-value 

of the comparison between all patients with MS and healthy controls at baseline visit.  

 

Figure 3. Sequences of atrophy progression and patient staging. The positional variance diagrams 

for (A) relapse-onset MS, (B) PPMS and (C) all patients together show the most likely sequences of 

atrophy and their associated uncertainty. In (A), (B), and (C) the y-axis shows the most likely 

sequence of atrophy progression, and the x-axis shows the sequence position ranging from 1 to the 

total number of regions. The intensity of each rectangle corresponds to the proportion of Markov 

Chain Monte Carlo samples of the posterior distribution where a certain region of y-axis appears at 
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the respective stage of x-axis. (D) shows the evolution of EBM stage (or atrophy progression staging) 

over time in CIS and relapse-onset MS together and PPMS. Each line in (D) is the prediction of 

mixed-effects model whose ribbon shows standard error of the prediction.  

 

Figure 4. Regional atrophy and its sequence of progression in all grey matter regions plus 

brainstem in relapse-onset disease and PPMS. The probability of atrophy in each region was 

calculated from the positional variance diagrams and colour coded, so that brighter colour 

corresponded to higher probability of seeing atrophy in the corresponding EBM stage.  
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Supplementary Legends for Figures: 
Supplementary Figure 1: Greedy ascent search and convergence of likelihoods. The 
most likely sequence of atrophy progression in relation to 10 randomly chosen initial 
sequences. The y-axis shows the data likelihood (calculated from Equation 1). The x-axis 
shows the number of iterations at which two events are randomly swapped in search for a 
higher sequence likelihood. This procedure was repeated during each cross-validation (10 
times).  
 
Supplementary Figure 2: Event-based model applied to all regions in patients with 
CIS/relapse-onset MS. 
 
Supplementary Figure 3: Event-based model applied to all regions in patients with PPMS. 
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Supplementary figure titles:  

Supplemental Figure 1. Greedy ascent search.  

Supplementary Figure 2. Positional variance diagram for CIS/relapse-onset MS based on all brain regions. 

Supplementary Figure 3. Positional variance diagram for PPMS based on all brain regions. 
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Supplementary Table 1. MRI protocols for each participating centre.  

 T1-weighted MRI Sequence for lesion delineation 

 Magnetic 

field 

Vendor Voxel dimension TR TE Matrix 

size 

Slices MR 

Sequence 
TE TR TI Matrix size 

Slice 

thickness 

London 1.5T General 

Electric 

Signa 

3D  

(1.2x1.2x1.5 

mm) 

13.3 

ms 

4.2 

ms 
256x256 124 T2 80 ms 1720 ms – 256x256 5 mm 

 1.5T General 

Electric 

Signa 

3D 

 (1.2x1.2x1.2) 
14.3 

ms 

5.1 

ms 
256x256 156 PD-T2 17-102 ms 2000 ms  256x256 5 mm 

 1.5T General 

Electric 

Signa 

3D  

(1.2x1.2x1.5) 
29 

ms 

15 

ms 
256x256 124 PD-T2 17-102 ms 2000 ms – 256x 256 5 mm 

 3T Philips 

Achieva 

3D  

(1x1x1 mm) 

6.8 

ms 

3.1 

ms 
256x256 256 PD-T2 19-85 ms 3500 ms – 240x240 3 mm 

Milan 1.5T Siemen 

Avanto 

3D  

(1x1x1 mm) 

2000 

ms 

3.93 

ms 
256*224 208 PD-T2 28-113 ms 2560 ms – 256x256 2.5 mm 

 3T Philips 

Intera 

3D  

(0.89x0.89x1 

mm) 

25 

ms 

4.6 

ms 
256*256 220 PD-T2 24-120 ms 3350 ms – 256x256 3 mm 

Graz 3T Siemens 

Tim Trio 

3D  

(1x1x1 mm) 

1900 

ms 

2.6 

ms 
176*221 256 FLAIR 69 ms 

10000 

ms 

2500 

ms 
192x256 3 mm 

Barcelona 1.5T Siemens 

Symphony 

3D  

(1x1x1 mm) 

1980 

ms 

3.1 

ms 
256x256 176 FLAIR 95 ms 8500 ms 

2440 

ms 
192x256 3 mm 

 3T Siemens 

Tim Trio 

3D 

 (1x1x1.2 mm) 

2300 

ms 

2.98 

ms 
256x240 128 FLAIR 93 ms 9000 ms 

2500 

ms 
400x512  3 mm 

Amsterdam 1.5T Siemens 

Vision 

3D 

 (1x1x1 mm) 

4000 

ms 

20 

ms 
180x256 256 T2 20 ms 4000 ms 

108 

ms 
256x256 3 mm 

Rome 1.5T Siemens 

Avanto 

3D  

(1x1x1 mm) 

9000 

ms 

89 

ms 
192x256 160 FLAIR 89 ms 9000 ms 

2500 

ms 
192x256 3 mm 

Siena 1.5T Philips 

Gyroscan 

2D 

(0.97x0.97x3mm

) 

35 

ms 

10 

ms 
256x256 50  FLAIR 150 ms 9000 ms 

2725 

ms 
256x256 3mm 

PPMI 3T Siemens 

Tim Trio 

3D  

(1x1x1mm) 

2300 

ms 

2.52 

ms 
176x240 256 – – – – – – 
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Appendix: 

*MAGNIMS Steering Committee Members 

Alex Rovira: MR Unit and Section of Neuroradiology, Department of Radiology, Multiple Sclerosis Centre of 

Catalonia (CEMCAT), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, 

Spain 

Christian Enzinger: Department of Neurology, Medical University of Graz, Graz, Austria 

Frederik Barkhof: Queen Square Multiple Sclerosis Centre, UCL Institute of Neurology, University College 

London, London, UK 

Olga Ciccarelli: Queen Square Multiple Sclerosis Centre, UCL Institute of Neurology, University College 

London, London, UK 

Massimo Filippi: Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, 

San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy 

Nicola De Stefano: Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy 

Ludwig Kappos: Department of Neurology, University Hospital, Kantonsspital, Basel, Switzerland 

Jette Frederiksen: The MS Clinic, Department of Neurology, University of Copenhagen, Glostrup Hospital, 

Denmark 

Jaqueline Palace: Centre for Functional Magnetic Resonance Imaging of the Brain, University of Oxford, UK 

Maria A Rocca: Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, 

San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy 

Jaume Sastre-Garriga: Department of Neurology/Neuroimmunology, Multiple Sclerosis Centre of Catalonia 

(CEMCAT), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain 

Hugo Vrenken: Department of Radiology and Nuclear Medicine, MS Center Amsterdam, Amsterdam, The 

Netherlands 

Tarek Yousry: NMR Research Unit, Institute of Neurology, University College London, London, UK 

Claudio Gasperini: Department of Neurology and Psychiatry, University of Rome Sapienza, Rome, Italy 
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