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Abstract

The mechanisms by which di�erent microbes colonize the healthy human gut versus free-living com-
munities, other body sites, or the gut in disease states remain largely unknown. Identifying microbial
genes in�uencing �tness in the gut could lead to new ways to engineer probiotics or disrupt pathogenesis.
We propose a statistical approach to this problem that measures the association between having a gene
and the probability that a species is present in the gut microbiome. The challenge is that closely related
species tend to be jointly present or absent in the microbiome and also share many genes, only a subset
of which are involved in gut adaptation. We show that this phylogenetic correlation indeed leads to many
false discoveries and propose phylogenetic linear regression as a powerful solution. To apply this method
across the bacterial tree of life, where most species have not been experimentally phenotyped, we used
metagenomes from hundreds of people to quantify each species' prevalence in and speci�city for the gut
microbiome. This analysis revealed thousands of genes potentially involved across species in adaptation
to the gut, including many novel candidates as well as processes known to contribute to �tness of gut
bacteria, such as acid tolerance in Bacteroidetes and sporulation in Firmicutes. We also found microbial
genes associated with a preference for the gut over other body sites, which were signi�cantly enriched
for genes linked to �tness in an in vivo competition experiment. Finally, we identi�ed gene families asso-
ciated with higher prevalence in patients with Crohn's disease, including Proteobacterial genes involved
in conjugation and �mbria regulation, processes previously linked to in�ammation. These gene targets
may represent new avenues for modulating host colonization and disease. Our strategy of combining
metagenomics with phylogenetic modeling is general and can be used to identify genes associated with
adaptation to any environment.

Author Summary

Why do certain microbes and not others colonize our gut, and why do they di�er between healthy and
sick people? One explanation is the genes in their genomes. If we can �nd microbial genes involved in
gut adaptation, we may be able to keep out pathogens and encourage the growth of bene�cial microbes.
One could look for genes that were present more often in prevalent microbes, and less often in rare ones.
However, this ignores that similar species may have related phenotypes simply because of common ancestry.
To solve this problem, we used a method from ecology that accounts for phylogenetic relatedness. We �rst
calculated gut prevalence phenotypes for thousands of species using a compedium of shotgun sequencing
data, then tested for gene associations. We found genes that are associated with overall gut prevalence, with
a preference for the gut over other body sites, and with the gut in Crohn's disease vs. health. Many of these
�ndings have biological plausibility based on existing literature. We also showed agreement with the results
of a previously published high-throughput screen of bacterial gene knockouts in mice. These results, and
this type of analysis, may eventually lead to new strategies for maintaining gut health.

Short title

Phylogenetic modeling of gut colonization
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1 Background

Microbes that colonize the human gastrointestinal (GI) tract have a wide variety of e�ects on their hosts,
ranging from bene�cial to harmful. Increasing evidence shows that commensal gut microbes are responsible
for training and modulating the immune system [1, 2], protecting against in�ammation [3] and pathogen
invasion (reviewed in Sassone-Corsi and Ra�atellu [4]), a�ecting GI motility [5], maintaining the intestinal
barrier [6], and potentially even a�ecting mood [7]. In contrast, pathogens (and conditionally-pathogenic
microbes, or �pathobionts�) can induce and worsen in�ammation [8, 9], increase the risk of cancer in mouse
models [10], and cause potentially life-threatening infections [11]. Additionally, the transplantation of mi-
crobes from a healthy host (fecal microbiota transplant, or FMT) is also a highly e�ective therapy for some
gut infections [12], although it is still an active area of investigation why certain microbes from the donor
persist long-term and others do not [13], and how pre-existing in�ammatory disease a�ects FMT e�cacy
[14]. Which microbes are able to persist in the GI tract, and why some persist instead of others, is therefore
a question with consequences that directly impact human health.

Because of this, we are interested in the speci�c mechanisms by which microbes colonize the gut, avoiding
other potential fates such as being killed in the harsh stomach environment, simply passing through the GI
tract transiently, or being outcompeted by other gut microbes. Understanding these mechanisms could
yield opportunities to design better probiotics and to prevent invasion of the gut community by pathogens.
In particular, creating new therapies, whether those are drugs, engineered bacterial strains, or rationally
designed communities, will likely require an understanding of gut colonization at the level of individual
microbial genes. We also anticipate that these mechanisms may vary in health vs. disease, since, for
example, di�erent selective pressures are known to be present in in�amed versus healthy guts [15, 16].

One approach that has been used to link genetic features to a phenotype is to correlate the two using
observational data. Most typically, this approach is applied in the form of genome-wide association mapping,
in which phenotypes are correlated with genetic markers across individuals in a population. While we are
interested in comparing phenotypes and genetic features across, rather than within species, the approach
we take in this paper is conceptually similar. In order to perform association mapping, it is necessary to
account for population structure, that is, dependencies resulting from common ancestry; otherwise, spurious
discoveries can be made in genome-wide association studies [17]. Analogously, we expected it to be important
to choose a method that can account for the confounding e�ect of phylogeny when testing for associations
across species.

There is increasing interest in using phylogenetic information to make better inferences about associations
between microbes and quantities of interest. For example, co-conservation patterns of genes (�correlogs�)
have been used to assign functions to microbial genes [18], and genome-wide association studies have been
applied within a genus of soil bacteria [19]. Recent publications have also described techniques that use
information from the taxonomic tree to more accurately link clades in compositional taxonomic data to
covariates [20, 21, 22]. However, so far, only one study has attempted to associate genes with a preference
for the gut [23]. That study introduced a valuable method based on UniFrac and gene-count distances, which
compares how well gut- vs. non-gut-associated microbes cluster on the species tree compared to a composite
gene tree. This study also provides an important insight in the form of evidence of convergence of glycoside
hydrolase and glycosyltransferase repertoires among gut bacteria, suggesting horizontal gene transfer within
the gut community to deal with a common evolutionary pressure. The method described in that study,
though, requires a binary phenotype of gut presence vs. absence. Deciding which microbes are �gut� vs.
�non-gut� requires manual curation and can be somewhat subjective, as microbes have a continuous range
of prevalences and can appear in multiple environments; this binarization could also potentially decrease
power by excluding microbes with intermediate phenotypes. The method also requires multiple sequence
alignments and trees to be built for every gene family under analysis, which are computationally intensive
to generate over a large set of genomes.

We take a complementary approach and use a �exible technique, known as phylogenetic linear modeling,
to detect associations between microbial genotype and phenotype while accounting for the fact that microbes
are related to one another by vertical descent. Phylogenetic linear models have an extensive history in the
ecology literature dating back to seminal works by Felsenstein [24] and Grafen [25]. However, despite their
power, genome-scale applications of these models are still few in number [26] and have typically been used
to relate traits of macroorganisms (e.g., anole lizards [27]) to their genotypes. While there is a growing
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appreciation for the need to explicitly account for phylogeny in microbial community analyses [26, 28], we
believe ours is the �rst study to apply this class of methods to microbiome data.

Our approach to accounting for phylogenetic relationships is general and could be applied to measure
association of any quantitative trait with genotypes or other binary or quantitative characteristics. In this
study, we focus on phenotypes related to the ability of bacteria to colonize the human gut: 1. overall
prevalence in the guts of hosts from a speci�c population (e.g., post-industrialized countries), which we
expect to capture ease of transmission, how cosmopolitan microbes are, and how e�ciently they colonize the
gut; 2. a preference for the gut over other human body sites in the same hosts, which we expect to capture gut
colonization more speci�cally; and 3. a preference for the gut in disease (e.g., Crohn's disease) versus health.
We present a novel method to estimate these quantitative phenotypes for thousands of bacterial species
directly from existing shotgun metagenomics data, both obviating the need for us to draw a cuto� between
�gut� and �non-gut� microbes, and also giving us the necessary power to detect associations. Coupling these
phenotype estimates with phylogenetic linear models, we generate a compendium of thousands of bacterial
genes whose functions may be involved in colonizing the human gut.

2 Results

We present a phylogeny-aware method for modeling associations between the presence of speci�c genes
in bacterial genomes and quantitative traits that measure how common these species are in the human
microbiome. To apply phylogenetic linear modeling to the microbiome, we needed to solve three problems.
First, we had to show that these models controlled false positives and had reasonable power on large bacterial
phylogenies. Second, we needed to develop estimators that captured meaningful traits related to bacterial
colonization of humans for thousands of diverse bacterial species, most of which had not been directly
phenotyped. The third problem was to estimate genotypes (e.g., gene presence/absence) for each species.
The analysis framework we describe is quite general and could be easily extended to link other traits to
genotypes across the tree of life.

2.1 Phylogenetic linear models solve the problem of high false positive rates

when testing for associations on bacterial phylogenies

To test for associations between continuous traits and binary phenotypes across species, we use models with
the following form:

YT = β0 + β1,ggT + εT (1)

YT is the quantitative trait value of species T , β0 is a baseline level of YT , β1,g is the e�ect of gene g on YT ,
gT is an indicator variable (0 if the gene is absent in species T and 1 if present), and εT is the remaining
unmodeled variation in YT . The distribution of the residuals εT is the key di�erence between standard
and phylogenetic linear models. In the standard model, the residuals are assumed to be independent and
normally distributed. In the phylogenetic model, however, the residuals covary, with more closely-related
species having greater covariance (see Methods).

To explore the potential pitfalls of failing to correct for phylogenetic structure in cross-species association
tests, we generated a species tree for thousands of bacteria with genome sequences (see Methods). In order to
have a consistent operational de�nition of a microbial species, we used a set of previously de�ned bacterial
taxonomic units with approximately 95% pairwise average nucleotide identity across the entire genome
[29]. The methods we describe can be applied to other taxonomic levels or with other species de�nitions.
Using this species tree, we performed simulations for each of the four major bacterial phyla in the human gut
(Bacteroidetes, Firmicutes, Proteobacteria, and Actinobacteria). Speci�cally, we generated continuous traits
with phylogenetic signal along the species tree, and then, for each continuous trait, simulated a binary trait
for each species that was correlated with the continuous trait to varying degrees including no association.
We used levels of correlation spanning those we observe between prevalence of species in gut metagenomes
and presence/absence of genes (see below).

We then �t phylogenetic and standard linear models to the simulated data and tested for a relationship
between each binary trait and its corresponding continuous trait. For both standard and phylogenetic linear
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models, separate models were �t for each of the four phyla. The results were used to estimate false positive
rate (Type I error) and power (1 - Type II error) for the two methods across di�erent e�ect sizes.

These analyses showed that standard linear models result in many false positive associations. When the
binary trait was speci�ed to be wholly uncorrelated (i.e., under the null), p-values from the linear model
showed a strong anticonservative bias (Figure 1A-B, right) with many more signi�cant p-values than expected
under no correlation. In contrast, the phylogenetic linear model p-value distribution was �at and Type I
error was controlled appropriately (Figure 1A-B, left). This means that at the same p-value threshold,
linear models will identify many spurious relationships compared to phylogenetic linear models. Further,
our simulations with non-zero associations showed that the phylogenetic model has high power when applied
to gut bacterial phyla, even for small e�ect sizes (Figure 1C; see Methods). These results emphasize the
importance of using models that account for phylogenetic relationships in cross-species association testing
and demonstrate the feasibility of applying phylogenetic linear models to the human microbiome.

2.2 Estimating quantitative phenotypes from shotgun data

To apply phylogenetic linear modeling to the microbiome we sought to de�ne meaningful traits for thousands
of bacterial species, all of which have genome sequences but most of which have never been phenotyped. The
prevalence and speci�city of bacterial species in an environment, such as the human gut, are quantitative
traits that we hypothesized could be estimated directly from shotgun metagenomics data. The precise
taxonomic composition of a healthy gut microbiome can vary signi�cantly from person to person, indicating
that the ability of a microbe to colonize the gut is quantitative (and likely context-dependent, and stochastic).
This trait can be conceptualized di�erently depending on which aspects of colonization one wishes to capture.
We present metagenome-based estimators for two di�erent types of colonization trait parameters. These are
described in the context of our goal of studying the gut microbiome, but the approach is general and could
be used to quantify how well a given genotype discriminates species found in or speci�c to any environment.

The �rst trait is the probability of observing a species in an environment, that is, its overall prevalence.
Both genes relating to survival in the GI tract and genes relating to survival, persistence, and dispersal in
the outside environment are expected to correlate with overall prevalence. Prevalence can be estimated by
the frequency with which the species is observed in a sample from the environment, for example, using a
logit transform to enable linear modeling and pseudocounts to avoid estimates of 0 or 1 (see Methods).

The second type of quantitative trait is the environmental speci�city of a microbial species, which we
de�ne as the conditional probability that a sample is derived from a speci�c environment versus others, given
that the species is present in the sample. This parameter captures the power of a given microbe as a marker
to discriminate between two or more di�erent environments, such as di�erent body sites or types of hosts.
This is distinct from its overall prevalence in the environment.

We developed estimators for two examples of environmental speci�city for gut microbes. First, we
considered a phenotype de�ned as the conditional probability that a given body site is the gut and not
another body site, given that a particular species is present. The physical distance between body sites is
much smaller than the distance between hosts, and microbes from one body site are likely to be transiently
introduced to others. Hence, enrichment of a species in one body site over others is stronger evidence for
selection (versus dispersal) than is overall prevalence in that body site alone. We estimate this parameter
with a body-site speci�city score that uses metagenomics data to measure how predictive a particular microbe
is for the gut versus other body sites (e.g., skin, urogenital tract, oropharynx, or lung). The score is based
on a maximum a posteriori (MAP) estimate of the conditional probability of a sample being from the gut
given that a microbe is observed in the sample, and it utilizes Laplace regularization, as in the Bayesian
lasso [30], to perform a type of L1-norm penalization of parameter estimates (see Methods).

The second type of environmental speci�city we considered is the conditional probability that a host
has a disease given that a particular species is present. This disease-speci�c speci�city score is estimated
in a similar way to the body-site speci�city score (see Methods). We focus on Crohn's disease, a type of
in�ammatory bowel disease known to be associated with dramatic shifts in the gut microbiota and in gut-
immune interactions [31]. Genes associated with this disease-speci�c prevalence could illuminate di�erences
in selective pressures between healthy vs. diseased gut environments.
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2.3 Genes associated with species prevalence in healthy human gut metagenomes

We assembled a compendium of published DNA sequencing data from healthy human stool microbiomes
across �ve studies in North America, Europe, and China (433 subjects total). Multiple replicates from the
same individual were merged. Using the MIDAS 1.0 database and pipeline [29], we mapped metagenomic
sequencing reads from each subject to a panel of phylogenetic marker genes, and from these, estimated
species relative abundances. We then estimated the prevalence (probability of non-zero abundance) of each
species across these subjects, weighting each study equally (see Methods). Finally, we determined gene
presence for each species using its pangenome. This approach to genotyping could be elaborated to account
for metagenomic sequencing data and assemblies in future work (see Discussion). Our analysis framework
can also be applied to genotypes other than gene presence/absence (e.g., nucleotide or amino acid changes).

As expected, the most prevalent species overall included Bacteroides vulgatus, Bacteroides ovatus, and
Faecalibacterium prausnitzii, while the least prevalent included halophiles and thermophiles (Supplemental
File 1). Gut prevalence had a strong phylogenetic signal (Pagel's λ = 0.97, likelihood-ratio p < 10−22),
meaning that it was strongly correlated with the evolutionary relatedness of species. This emphasizes the
need for phylogeny aware modeling so that signal linking genes to prevalence will not be drowned out by
shared variation in gene content between closely-related species.

To demonstrate the e�ect of phylogenetic correlation empirically, we �t both a standard linear model and a
phylogenetic linear model for each of the four common gut phyla and all genes present in that phylum. These
models relate the logit-transformed prevalence of di�erent species in the phylum to a gene's presence/absence
in their pangenomes. The models have the following form:

logitP (T ) ≡ log

(
P (T )

1− P (T )

)
= β0 + β1,ggT + εT (2)

where P (T ) is the prevalence of species T , β1,g captures the association of gene g with P (T ) across species,
and the other terms are de�ned above. The unit of measurement is a species, and each species has a value
for P (T ) and gT . Recall that εT is the residual variation in logit-prevalence, which is independent and
normally distributed in the standard linear model but has a distribution encoding correlations proportional
to species relatedness in the phylogenetic linear model (see Methods). For both standard and phylogenetic
linear models, separate models were �t for each phylum. We modeled associations for 144,651 genes total
across the four phyla, �tting 381,846 models total (since some genes are present in multiple phyla).

We used the parameter estimates and their standard errors from �tted models to test null hypotheses
of the form H0 : β1,g = 0, meaning gene g is not associated with gut prevalence of species in a particular
phylum. The p-values were adjusted for multiple testing using the false discovery rate (FDR)(see Methods).
We found 9,830 genes positively associated with logit-prevalence within at least one phylum (FDR q ≤ 0.05)
using phylogenetic linear models. We observed that 75% of the signi�cant genes from these tests had e�ect
sizes larger than (Bacteroidetes) 0.93, (Firmicutes) 1.03, (Proteobacteria) 0.35, and (Actinobacteria) 2.04,
which are within the range of e�ect sizes for which phylogenetic linear models showed good performance in
simulations (see above).

With standard linear models our tests identi�ed 25,185 genes associated with gut prevalence, substan-
tially more than with phylogenetic linear models (17.4% versus 6.8% of total) and, based on our simulations,
likely including many false positives. The top results of phylogenetic versus standard linear models (Figure
2) illustrate the pitfalls of not correcting for phylogenetic correlation. Using the standard model, we recover
associations such as those seen in Figure 2A-B: a subunit of dihydroorotate dehydrogenase in Bacteroidetes
(Figure 2B) and in Firmicutes, a particular type of glutamine synthetase (Figure 2A). While these asso-
ciations might look reasonable at a �rst glance, on closer inspection, they depend on the fact that these
genes are near-uniformly present in entire clades of bacteria. These clades are, in general, more prevalent in
the gut compared to the rest of the species in the tree. However, any �ner structure relating to di�erences
between close neighbors is lost.

While this alone does not necessarily constitute evidence against these genes having adaptive functions in
the gut, we do expect that matched pheno- and genotypic di�erences between close phylogenetic neighbors
o�er stronger evidence for an association. An analogy can be drawn with genome-wide association mapping
in humans: models that do not account for correlations between sites caused by population structure, as
opposed to selective pressure, will tend to identify more spurious associations. In contrast, because the
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phylogenetic null model �expects� trait correlations to scale with the evolutionary distance between species,
this approach will tend to upweight cases where phylogenetically close relatives have di�erent phenotypes
and where distant relatives have similar phenotypes. This leads to the identi�cation of candidate genes that
capture more variation between close neighbors (Figure 2C-D). Thus, phylogenetic linear models will identify
genes whose presence in genomes is more frequently changing between sister taxa in association with a trait.

We provided further evidence that this trend is true in general by calculating the phylogenetic signal of
the top hits from each model using Ives and Garland's α [32]. This statistic captures the rate of transitions
between having and not having a binary trait (here, a gene) across a tree; higher values therefore correspond
to more disagreement between closely related species and lower values correspond to more agreement. Indeed,
across all four phyla, the linear model identi�ed gene families with signi�cantly lower Ives-Garland α than
the phylogenetic model (Figure 2E, linear model p < 10−16), indicating that these genes' presence versus
absence tended to be driven more by clade-to-clade di�erences (i.e., shared evolution).

These results show that standard linear models will identify genes that are truly important for colonizing
an environment, such as the healthy human gut, as well as other genes unrelated to the environment but
also common in clades with many species that are present in the environment. The latter set will likely
include many false positive associations from the perspective of understanding functions necessary for living
in the environment. Phylogenetic linear models overcome this problem by accounting for correlations due to
both phenotypes and genotypes being more similar amongst closely related species. These conclusions are
supported by our simulations and by an in vivo functional screen (see below).

2.4 Gene families associated with gut prevalence provide insight into coloniza-

tion biology

Several of the gene families that we observe to be associated with gut prevalence have previously been linked
to gut colonization e�ciency. For example, in Firmicutes, we noticed that several top hits were annotated as
sporulation proteins (e.g., �stage IV sporulation protein B�, FIG00004463, Figure 1C). Sporulation is known
to be a strategy for surviving harsh environments (such as acid, alcohol, and oxygen exposure) that is used
by many, but not all, members of Firmicutes. Resistance to oxygen (aerotolerance) is particularly important
because many gut Firmicutes are strict anaerobes [33], sporulation is known to be an important mechanism
of transmission and survival in the environment (reviewed in Swick et al. [34]), and sporulation ability has
been linked to transmission patterns of gut microbes [29]. Our result associating sporulation proteins to
gut prevalence provides further evidence for sporulation as a strategy that is generally important for the
propagation and �tness of gut microbes.

In Bacteroidetes, we observed an association between gut prevalence and the presence of a pair of
gene families putatively assigned to the GAD operon, namely, the glutamate decarboxylase gadB and the
glutamate/gamma-aminobutyric acid (GABA) antiporter gadC. These genes show a complex pattern of pres-
ence that is strongly correlated with gut prevalence (Figure 2D). Results from research in Proteobacteria,
where these genes were �rst described, shows that their products participate in acid tolerance. L-glutamate
must be protonated in order to be decarboxylated to GABA; export of GABA coupled to import of fresh
L-glutamate therefore allows the net export of protons, raising intracellular pH [35]. It was previously hy-
pothesized that this acid tolerance mechanism allowed bacteria to survive the harshly acidic conditions in
the stomach: indeed, if disrupted in the pathogen Edwardsiella tarda, gut colonization in a �sh model is
impaired [36]. Listeria monocytogenes with disrupted Gad systems also become sensitive to porcine gastric
�uid [37]. However, while it has previously been shown that gut Bacteroides do contain homologs for at
least one of these genes [35], their functional importance has not yet been demonstrated in this phylum.
Our results provide preliminary evidence that this system may be important in Bacteroidetes as well as in
Proteobacteria.

2.5 Using body sites as a control allows us to di�erentiate general dispersal

from a speci�c gut advantage

The previous analyses have focused on modeling the phenotype of overall prevalence in the human gut.
However, microbes could be prevalent in the gut for at least two main reasons. First, they could be speci�cally
well-adapted to the human gut; second, they could simply be very common in the environment (i.e., highly
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dispersed). The presence or absence of a gene family could enhance either of these properties. Some genes
might, for example, confer improved stress tolerance that was adaptive across a range of harsh conditions,
while others might allow, for example, uptake and catabolism of metabolic substrates that were more common
in the human gut than in other environments.

With this in mind, we analyzed the relative enrichment of microbes in the gut over other human body sites
in 127 individuals from the Human Microbiome Project study [38]. We chose other body sites as a control
because the physical distance between sites within a host is much smaller than the distance between people,
and microbes from one body site are likely to be commonly, if transiently, introduced to other body sites
(e.g., skin to oral cavity). To �nd speci�cally gut-associated genes, we used the phylogenetic linear model
to regress gene presence/absence on the logit-transformed conditional probability P (B = gut|T ), i.e., the
probability that a body site B was the human gut given that a particular species T was observed, which we
estimated using Laplace regularization (see Methods). We identi�ed 4,672 genes whose presence in bacterial
genomes was associated with those species being present in the gut versus other body sites in at least one
phylum (397 in Bacteroidetes, 1,572 in Firmicutes, 1,284 in Proteobacteria, and 1,507 in Actinobacteria).

Overall, the e�ect sizes for genes learned from this body site-speci�c model correlated only moderately
with those learned from the �gut prevalence� models (median R2 = 0.06, range −0.06�0.24), indicating that
these two quantitative phenotypes describe distinct phenomena. Additionally, the overlap between signi�cant
(q ≤ 0.05) hits for both models was small (median Jaccard index 0.054, range 0.011�0.089). These results
are not surprising given that our regularized estimates of gut speci�city were only moderately correlated with
overall gut prevalence (Spearman's ρ = 0.33, Supplemental Figure S1). This may arise from di�erent genes
being involved in dispersal or adaptation to many di�erent environments versus those involved in adaptation
speci�cally to the gut.

Indeed, when we compare enrichments for genes signi�cant in either the body site or overall prevalence
models alone (i.e., genes with q ≤ 0.05 in one model but q > 0.5 and/or wrong sign of e�ect size in the
other), we observe large functional shifts (Figure 3). For example, in the gut prevalence model, but not the
body site-speci�c model, Firmicutes were strongly enriched for �dormancy and sporulation� (q = 8.7×10−7).
Because sporulation is likely useful in a wide range of environments beyond the gut, this result seems intuitive.
Body site-speci�c results for Firmicutes were instead enriched for genes involved in �phosphate metabolism�
(q = 0.12) and in particular the term �high a�nity phosphate transporter and control of PHO regulon�
(q = 0.05).

We also observed biologically-justi�ed individual gene families that were signi�cant in the body site-
speci�c model but not the overall gut prevalence model. In Firmicutes, for example, carnitine dehydratase
and bile acid 7-alpha dehydratase were both signi�cant only in the body site-speci�c model, suggesting a
speci�c role for these genes within the gut environment. Indeed, bile acids are metabolites of cholesterol that
are produced by vertebrates and thus unlikely to be encountered outside of the host. While the metabolite
L-carnitine is made and used in organisms spanning the tree of life, it is particularly concentrated in animal
tissue and especially red meat, and cannot be further catabolized by humans [39], making it available to
intestinal microbes. Bile acid transformation by gut commensals is a well-established function of the gut
microbiome, with complex in�uences on health (reviewed in Staley et al. [40]).

In Bacteroidetes, we found that a homolog of the autoinducer 2 aldolase lsrF was signi�cant only in
the body site-speci�c model. Autoinducer 2 is a small signaling molecule produced by a wide range of
bacteria that is involved in interspecies quorum sensing. The protein lsrF, speci�cally, is part of an operon
whose function in Escherichia coli is to �quench� or destroy the AI-2 signal [41]. Further, an increase of
the AI-2 signal has been shown to decrease the Bacteroidetes/Firmicutes ratio in vivo in the intestines of
streptomycin-treated mice [42]. Degrading this molecule is therefore a plausible gut-speci�c colonization
strategy for gut Bacteroidetes. These discovered associations make the genes involved, including many genes
without known functions or roles in gut biology, excellent candidates for understanding how bacteria adapt
to the gut environment.

2.6 Deletion of gut-speci�c genes lowers �tness in the mouse microbiome

Beyond �nding evidence for the plausibility of individual genes based on the literature, we were interested
in whether more high-throughput experimental evidence supported the associations we found between gut
colonization and gene presence. To interrogate this, we used results from an in vivo transposon-insertion
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screen of four strains of Bacteroides. This screen identi�ed many genes whose disruption caused a competitive
disadvantage in gnotobiotic mice, as revealed by time-course high-throughput sequencing; 79 gene families
signi�cantly a�ected microbial �tness across all four strains tested [43]. Determining agreement with this
screen is somewhat complicated by the fact that we associated gene presence to gut speci�city across all
members of the phylum Bacteroidetes, and not only within the Bacteroides genus. Signi�cance of overlap
therefore depends on what we take as the null �background� set, the cuto� used for signi�cance, and the set
of results from the screen we choose as true positives (Supplementary Table S2).

Despite these complications, this analysis clearly showed that the 79 genes whose disruption led to lower
�tness in the murine gut across all four Bacteroides species were over-represented among our predictions for
gut-speci�c genes (odds ratio = 4.39, q = 8.3×10−3), and remained so if we only considered the gene families
that were present in all Bacteroides species (odds ratio= 7.02, q = 3.0 × 10−3) (Table 1). Interestingly, we
observed the opposite pattern for the overall prevalence model: the prevalence-associated genes we identi�ed
were actually depleted for genes found to be important in vivo (odds ratio = 0.18, q = 7.7×10−3). We believe
that this is because the body-site-speci�c model, like the experiment, focused speci�cally on colonization
e�ciency, while the overall gut prevalence model would have included genes involved in persistence and
dispersal in the environment and transfer between hosts. This experimental evidence supports the idea
that environment-speci�c phylogenetic linear models truly identify genes that are important for bacteria to
colonize an environment.

2.7 Proteobacterial gene families are associated with microbes more prevalent

in Crohn's disease

The above analyses were performed with respect to the gut of healthy individuals from the mainly post-
industrial populations of North America, Europe and China. However, we also know that taxonomic shifts
are common between healthy guts versus the guts of individuals from the same population with diseases
such as type 2 diabetes, colorectal cancer, rheumatoid arthritis, and in�ammatory bowel disease (reviewed
in Wang et al. [44]). One explanation for these results is that sick hosts select for speci�c microbial taxa,
as with the links previously observed between Proteobacteria and the in�ammation that accompanies many
disease states [45]. Since gut microbes have also been implicated in altering disease progression (reviewed
in Lynch and Pedersen [46]), identifying genes associated with colonizing diseased individuals may a�ord us
new opportunities for intervention.

To identify microbiome functions that could be involved in disease-speci�c adaptation to the gut, we
looked for genes that were present more often in microbes that discriminated case from control subjects.
Speci�cally, we compared n = 38 healthy controls from the MetaHIT consortium to n = 13 individuals with
Crohn's disease [47, 48]. Similar to our analysis of gut versus other body sites, we used the conditional proba-
bility that a subject had Crohn's disease given that we observed a particular microbe in their gut microbiome
P (CD|T ) (see Methods). We identi�ed 1,904 genes whose presence in bacterial genomes is associated with
Crohn's after correcting for phylogenetic relationships in at least one phylum (800 in Bacteroidetes, 272 in
Firmicutes, 529 in Proteobacteria, and 319 in Actinobacteria).

Three of our top Proteobacterial associations were annotated as �mbrial proteins, including one predicted
to be involved speci�cally in the regulation of type 1 �mbriae, or pili (FimE, association q = 4.0×10−6), cell
surface structures involved in attachment and invasion. Crohn's pathology has been linked to an immune
response to invasive bacteria, and adherent-invasive E. coli (AIEC) appear to be overrepresented in ileal
Crohn's [49]. In an AIEC E. coli strain isolated from the ileum of a Crohn's patient, type 1 pili were
required for this adherent-invasive phenotype [50]. Chronic infection by AIEC strains was also observed to
lead to chronic in�ammation, and to an increase in Th17 cells and a decrease in CD8+ T cells similar to
that observed in Crohn's patients [51].

An additional striking feature of the results was the number of Proteobacterial proteins associated with
greater risk of Crohn's that were annotated as being involved in the the type III, IV, VI, and ESAT secretion
systems (Fisher's test q = 0.13). On further investigation, we found that these proteins were actually all
predicted to be involved in conjugative transfer, a process by which gram-negative bacteria in direct physical
contact share genetic material. More speci�cally, many of these genes were homologs of those involved in
an �F-type� conjugal system for transferring IncF plasmids, which can be classi�ed as a variety of type
IV secretion system [52]. Previously, in a mouse model, gut in�ammation was shown to stimulate e�cient
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horizontal gene transfer in Proteobacteria by promoting blooms of Enterobacteriaceae and thus facilitating
cell-to-cell contact [53]. Future work will be required to determine whether this increased conjugation is a
neutral consequence of in�ammation, a causative factor, or provides a selective advantage in the in�amed
gut.

3 Discussion

The present analyses represent a �rst look into what can be learned by combining shotgun metagenomics
with phylogenetically-aware models. Several extensions to our work could be made in the future. First,
in addition to modeling prevalence, for instance, we could model abundance using a phylogenetic linear
model with random e�ects [54], potentially allowing us to learn what controls the steady-state abundance
of species in the gut. Additionally, we could also use these models to screen for epistatic interactions,
which would be near-intractable even in systems with well-characterized genetic tools, but for which a
subset of hypotheses could be validated by, e.g., comparing the �tness of wild-type microbes with double
knockouts. While controlling the total number of tests would still be important to preserve power, an
automated, computational approach to detecting gene interactions would still o�er important savings in
time and expense over developing a genome-wide experimental library of multiple knockouts per organism
under investigation.

Currently, these analyses estimate species abundance and gene presence/absence from available sequenced
isolate genomes. However, it has been estimated that on average 51% of genomes in the gut are from novel
species [29]. Especially for case/control comparisons, using information from metagenomic assemblies could
enable quanti�cation of species with no sequenced representatives, and would yield a more accurate estimate
of the complement of genes in the pangenome for species that do have sequenced representatives. This would
be particularly helpful in gut communities from individuals in non-industrialized societies that are enriched
for novel microbial species [29]. In fact, genes then could be treated as quantitative variables (e.g., coverage
or prevalence) rather than binary, which is possible for covariates in phylogenetic linear models and simply
changes the interpretation of the association coe�cient β1,g.

Another potential extension would be to model prevalence and environment-speci�c prevalence for taxa
other than the species clusters analyzed in this study. We focused on four prevalent and abundant phyla of
bacteria, but our methods could be applied more broadly as long as quantitative traits and genotypes could
be accurately estimated. Phylogenetic linear modeling could also be applied directly to genera or higher
taxonomic groups, although both traits and genotypes would be averages over more diverse sets of genomes,
which could result in associations with di�erent signs canceling out. As more genome and metagenome
data is generated for microbial populations over time, extensions of phylogenetic linear modeling (e.g., with
random e�ects [54]) may also be useful for studying associations between traits and evolving gene copy
number and single nucleotide variants at the strain level. This application would require accurate trees with
strains as leaves, each with estimates of a trait and genotype. Beyond prevalence, other traits will also be
interesting to investigate, especially experimentally measured phenotypes from high throughput screens and
other techniques that complement genomics.

In summary, using phylogenetic linear models, we were able to discover thousands of speci�c gene families
associated with quantitative phenotypes calculated directly from data: overall gut prevalence, a speci�city
score for the gut over other body sites, and a speci�city score for the gut in Crohn's disease versus health.
Importantly, we have shown through simulation and real examples that standard linear models are inadequate
for this task because of an unacceptably high false-positive rate under realistic conditions. Furthermore,
many of the results we found also have biological plausibility, both from the literature on speci�c microbial
pathways and from a high-throughput in vivo screen directly measuring colonization e�ciency. In addition
to these expected discoveries, we also found thousands of novel candidates for understanding and potentially
manipulating gut colonization. These results illustrate the potential of integrating phylogeny with shotgun
metagenomic data to deepen our understanding of the factors determining which microbes come to constitute
our gut microbiota in health and disease.
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4 Methods

4.1 Species de�nition

We utilized the previously published clustering of 31,007 high-quality bacterial genomes into 5,952 species
from the MIDAS 1.0 database [29] (http://lighthouse.ucsf.edu/MIDAS/midas_db_v1.0.tar.gz). These
species clusters are sets of genomes with high pairwise sequence similarity across a panel of 30 universal,
single-copy genes. The genomes in each species clustering have approximately 95% average genome-wide
nucleotide identity, a common �gold-standard� de�nition of bacterial and archaeal species [55]. These species-
level taxonomic units are similar to, but can di�er from, operational taxonomic units (OTUs) de�ned solely
on the basis of the 16S rRNA gene.

Taxonomic annotations for each species were drawn from the MIDAS 1.0 database. Some taxonomic
annotations of species in the MIDAS database were incomplete; these were �xed by searching the NCBI
Taxonomy database using their web API via the rentrez package [56] and retrieving the full set of taxonomic
annotations.

4.2 Pangenomes

Pangenomes for all species used in this study were downloaded from the MIDAS 1.0 database. As previously
described [29], pangenomes were constructed by clustering the DNA sequences of the genes found across
all strains of each species at 95% sequence identity using UCLUST [57]. Pangenomes were functionally
annotated based on the FIGfams [58] which were included in the MIDAS databases and originally obtained
from the PATRIC [59] database. Thus, each pangenome represents the set of known, non-redundant genes
from each bacterial species with at least one sequenced isolate.

4.3 Phylogenetic tree construction

The tree used for phylogenetic analyses was based on the tree from Nayfach et al. [29] based on an ap-
proximate maximum likelihood using FastTree 2 [60] on a concatenated alignment (using MUSCLE [61]) of
thirty universal genes. Thus, each tip in the tree represents the phylogenetic placement for one bacterial
species. For the current analyses, the tree was rooted using the cyanobacterium Prochlorococcus marinus as
an outgroup, and the tree was then divided by phylum, retaining the four most prevalent phyla in the human
gut (Bacteroidetes, Firmicutes, Actinobacteria, and Proteobacteria). One Actinobacterial species cluster,
the radiation-resistant bacterium Kineococcus radiotolerans SRS30126, was dropped from the tree because
it had an extremely long branch length, indicating an unusual degree of divergence. Finally, phylum-speci�c
trees were made ultrametric using the chronos function in the R package ape [62], assuming the default
�correlated rates� model of substitution rate variation.

4.4 Estimating species abundance across human associated metagenomes

Metagenome samples were drawn from healthy subjects in the Human Microbiome Project [38], the MetaHIT
consortium [47, 48], a study of glucose control [63], and a study of type 2 diabetes [64]. Accession numbers
were identi�ed using the aid of SRAdb [65] and downloaded from the Sequence Read Archive (SRA) [66].
The relative abundance of bacterial species in the metagenomes was estimated using MIDAS v1.0 [29], which
maps reads to a panel of 15 phylogenetic marker genes.

Accession IDs used can be found in Supplementary Table S3.

4.5 Modeling overall gut prevalence and environmental speci�city scores

Prevalence can be understood as the probability of observing a particular microbe in a given environment
e, P (T |E = e). (We use the term overall prevalence to refer speci�cally to the prevalence in the healthy gut
in this study.) Modeling prevalence as a probability provides an intuitive justi�cation of the logit transform,
which is used for the response variable in logistic and binomial regression. Because we integrated data from
multiple studies (see above) and did not want one study to dominate the results, instead of simply using
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the counts across all samples to determine the prevalence, we used weighted counts W (T,E = e), where the
weights came from the number of samples per study s ∈ S:

W (T,E = e) =

(∑
s∈S

# (E = e, S = s)

)(∑
s∈S

#(T,E = e, S = s)

#(E = e, S = s) · |S|

)

In order to avoid probabilities of 0 or 1, probabilities were based on prevalence with one additional �present�
and one additional �absent� pseudocount; this procedure is equivalent to a maximum a posteriori estimate
derived from placing a uniform Beta(1, 1) prior on a binomially-distributed parameter:

P (T |E = e) =
W (T,E = e) + 1

#(E = e) + 2

Beyond prevalence, we were also interested in environmental speci�city, or the discriminative power of
a given microbe among a given set of environments, such as body sites or disease states. Statistically, we
de�ne the environmental speci�city score to be the conditional probability P (E = e|T ) that, given that a
particular species T is observed in a sample, that the sample is from environment e ∈ E. By Bayes' rule, we
can see that:

P (E = e|T ) =
P (T |E = e)P (E = e)

P (T )
≡ P (T |E = e)P (E = e)∑

e P (T |E = e)P (E = e)
, e ∈ E (3)

This conditional probability can be estimated directly from the environment-speci�c prevalences P (T |E =
e) and the prior probabilities P (E = e) of a sample being taken from a given environment. However,
if we simply plug in the maximum-likelihood estimates of P (T |E = e) to the above equation, infrequent
observation of a species (for example, 0/38 in healthy subjects versus 1/13 in subjects with a disease) will
yield inappropriately extreme estimates of P (E|T ). We therefore use a regularized estimate of P (E = e|T )
that incorporates a prior centered on P (E = e).

More speci�cally, we use a maximum a posteriori (MAP) estimator of P (E = e|T ) with a Laplace prior
centered on logit(P (E = e)). Laplace regularization is used in the Bayesian Lasso to perform L1-norm
penalization of parameter estimates. We use it in a similar way, i.e., to reduce the variance in P (E = e|T )
by shrinking more uncertain estimates towards the prior, and to reduce the total number of species for which
P (E = e|T ) 6= P (E = e). The general form of MAP estimates is the following:

pMAP (D,Q) = argmaxpL (D|p)Lπ(D|p;Q) (4)

where p is the parameter being estimated, D represents the data (or su�cient statistics derived from it),
Q represents the set of hyperparameters (parameters of the prior distribution), L represents the likelihood
function of the distribution from which the data is assumed to be drawn, and Lπ represents the likelihood
of the prior distribution (without which the estimator reduces to the maximum-likelihood estimator). In our
case, we model the data as having the following distribution:

D ∼ Binomial(x, n)

x =
pt

q

logit(p) ∼ Laplace(q, b)

The parameter being estimated is p, corresponding to P (E = e|T ). We observe n, the number of samples
from environment e in the dataset (as well as k, the number of samples in environment e in which species T is
observed), and t, the weighted prevalence across classes P (T ) =

∑
e P (T |E = e)P (E = e) (here, P (T |E = e)

are maximum-likelihood estimates directly from the data). The hyperparameters of this model are b, a tuning
hyperparameter corresponding to the strength of regularization, and q, the prior probability P (E = e). In
the above formulation, we use x to represent the prevalence P (T |E = e); its value pt

q ≡
P (E=e|T )P (T )

P (E=e)
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follows from Bayes' rule. The MAP estimate of p = P (E = e|T ) is therefore obtained through the following
maximization:

p̂MAP ({n, k, t} , {q, b}) = argmaxp

[((
n

k

)(
pt

q

)k (
1− pt

q

)
n−k

)(
1

2b
exp(−|logit(p)− logit(q))

b

)]
(5)

To choose appropriate, dataset-speci�c values of b, which controls how much estimates of P (E = e|T ) are
shrunk back to the prior, we performed simulations based on these datasets, in which presence vs. absence
Pt,e of species t ∈ T across environments e ∈ E were modeled as follows:

Pt,e ∼ Binomial(xt,e, ne)

xt,e =

{
yt (e 6= e1)

logistic(logit(yt + Ft)) (e = e1)

Ft ∼

{
f · (2 · (Bernoulli(g))− 1) (t /∈ T0)

0 (t ∈ T0)

yt ∼ Beta(a, b)

In other words, for each species t in di�erent environments e, presence-absence Pt,e was modeled as a
binomial random variable. The success parameter from this binomial was drawn from a Beta distribution
with parameters a and b, which were �t from a single environment in the corresponding real dataset using
maximum-likelihood, thus ensuring that the simulated species had similar baseline prevalences as real species.
In species with no di�erence between environments t ∈ T0, the true prevalence xt was set to be equal
between the environment of interest e1 and all other environments; in species with true di�erences between
environments (t /∈ T0), in contrast, the e�ect size f was either added or subtracted from the logit-prevalence
(with the parameter g controlling the proportion of positive true e�ects). The number of null species ||T0||
was set to 25% of the total number of simulated species ||T ||, which was matched to the real dataset.

For a given simulated dataset and value of b, the false positive rate (FPRb) and the true positive rates
for F > 0 and F < 0 (TPRpos and TPRneg, respectively) were calculated:

FPRb = #(|P (E = e|t ∈ T0)− P (E = e)| > ε)/||T0||

TPRposb = #(P (E = e|Ft > 0)− P (E = e) > ε)/#(Ft > 0)

TPRnegb = #(P (E = e)− P (E = e|Ft < 0) > ε)/#(Ft < 0)

ε is a tolerance parameter set at P (E = e) · 0.005 to account for numerical error. The tuning parameter b
was then optimized according to the following piecewise continuous function, which increases from 0 to 1
until the false positive rate drops to 0.05 or lower (in order to guide the optimizer), and then increases above
1 in proportion to the average (geometric mean) of the positive and negative e�ect true positive rates:

argmaxb

{
1− FPRb FPRb > 0.05

1 +
√
TPRposb × TPRnegb FPRb ≤ 0.05

Given f = 2, for Crohn's disease, b was estimated at b = 0.14 and for the body site speci�city, b was
estimated at b = 0.19. (Changing f to 1 or 0.5, or changing g to 0.1 or 0.9, resulted in very similar estimates
of b.)

Calculating environmental speci�cities requires a prior P (E = e). In the case of the environmental
speci�city for Crohn's disease, this prior was from epidemiological data [67] and �xed at 0.002. In the
case of body site speci�city, we instead assumed an uninformative (i.e., uniform) prior across the body
sites considered (supragingival plaque, subgingival plaque, buccal mucosa, posterior fornix, tongue dorsum,
anterior nares, retroauricular crease, and gut, from the Human Microbiome Project [38]), meaning that in
the absence of other information, all body sites were considered to be equally likely. To avoid introducing
study e�ects, when computing the disease-speci�c conditional probabilities, we used only Crohn's cases and
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controls from the same MetaHIT cohort ([47, 68]), and when computing body site speci�cities, we used only
samples from the Human Microbiome Project [38].

This process can be visualized in Supplemental Figure S2. As an example, two species, one with very little
predictive power for Crohn's disease (Bacillus subtilis) and another with high predictive power (Bacteroides
fragilis), are compared. Without regularization, Bacillus subtilis actually appears to be a better predictor.
This is because with few observations in each condition, estimating the predictiveness of B. subtilis for
Crohn's, P (E = e|T ), is noisy. B. subtilis appears in 1 out of 13 Crohn's samples (0.077) versus 1 out of 38
(0.026) healthy samples, while B. fragilis appears in 13 out of 13 Crohn's samples (1.00) but also 24 out of
38 healthy samples (0.63) (Supplemental Figure S2a).

Unregularized, P (E = e|T ) = P (T |E = e)P (E = e)/P (T ). Since the prior for Crohn's P (E = e) is low,
P (E = e|T ) ≈ P (T |E = e)P (E = e)/P (T |E 6= e), meaning that the estimate is mainly determined by the
ratio of prevalences in each environment. Naively, B. subtilis is 2.9 times more likely to appear in Crohn's vs.
normal, while for B. fragilis that ratio is only 1.6. However, intuitively, we expect that the estimate for B.
fragilis would be much more stable to perturbation: removing one Crohn's observation of B. fragilis would
only drop the ratio from 1.6 to 1.5, while removing the lone Crohn's observation for B. subtilis takes the
ratio from 2.9 to zero. This di�erence in how con�dently P (E = e|T ) is estimated can be seen quantitatively
by comparing the likelihood distributions for the unregularized estimates of logit(P (E|T )) given the data
(Supplemental Figure S2C). The distribution for Bacillus subtilus is �atter (note y-axis) and more spread
out than the distribution for Bacteroides fragilis. Therefore, when we regularize using the Laplace prior
(Supplemental Figure S2d), the MAP estimate for B. subtilis, but not for B. fragilis, is dominated by the
peak at P (E = e), i.e., 0.002 (Supplemental Figure S2e). The tuning parameter b (discussed above) controls
the width of the Laplace prior.

4.6 Phylogenetic and non-phylogenetic linear models

Throughout the text, we used phylogenetic and non-phylogenetic linear models to identify FIGfam gene
families associated with presence of bacterial species in the human gut. The response variables in the
models we �t were logit-transformed probabilities. These probabilities fell into two categories: 1. the overall
probability of observing a particular species T in the gut P (T ) (i.e., prevalence), and 2. the conditional
probabilit y of a sample/subject coming from some particular state P (•|T ) (speci�cally, a given body site
or a given disease state) given an observation of this microbe.

Per-gene-family models were �t according to the following simple model. For each gene family (in this
case, FIGfams, a grouping of orthologous genes [58]) in each phylum, we �t a model of the following form:

log

(
P (T )

1− P (T )

)
= β0 + β1gt + εt (6)

where P (T ) is the prevalence of a species (equivalently, the estimated probability of observing that species), β
are model parameters, gt is an indicator variable that is 1 if species t has gene g in its sequenced pan-genome
and 0 otherwise, and εt are the residuals, i.e., the unmodeled variation in the species prevalence.

The phylogenetic and standard linear models are very similar, except for the assumptions about the
distribution of the residuals. In the standard linear model, the residuals are taken to be independently and
identically distributed as a normal distribution, i.e., εt ∼

iid
N(0, σ2). In the phylogenetic model, in contrast,

the residuals are not independent: rather, they are correlated based on the phylogenetic relatedness of the
species. They are therefore distributed εt ∼MVN(0,Σ) with the covariance matrix:

Σ =


σ2 σ1,2 · · · σ1,n
σ2,1 σ2

...
. . .

σn,1 σ2


where n is the number of species, σ2 is the overall variance, and σ1,2 is the shared variance between species
1 and species 2. Under the assumption of the phylogenetic model, this shared variance is proportional to the
distance between the last common ancestor of species 1 and 2 and the root of the tree; very closely-related
species have a common ancestor that is far from the root, while the last common ancestor of two unrelated
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species is the root node itself. This method was �rst described in Grafen [25]; for this study, we use the
implementation in the phylolm R package [69].

β1 parameters were tested for a signi�cant di�erence from 0 and the resulting p-values were converted to
q-values using Storey and Tibshirani's FDR correction procedure [70, 71].

To �nd genes associated speci�cally with prevalence in the gut as opposed to other body sites, or genes
speci�cally associated with prevalence in a particular disease state, we again used phylogenetic linear models,
this time using the logit-transform of the appropriate conditional probability:

log

(
P (•|T )

1− P (•|T )

)
= β0 + β1gt + εt (7)

4.7 Enrichment analysis

Enrichment analysis was performed using SEED subsystem annotations for FIGfams [72, 58]. Each subsystem
was tested for a signi�cant overlap with signi�cant hits from the linear models (q ≤ 0.05), given the set of
FIGfams tested, by Fisher's exact test. The p-values were corrected using the Benjamini-Hochberg procedure
[73] and an FDR of 25% was set for detecting signi�cant enrichments.

4.8 Overlap with in vivo results

Results of the screen were obtained from the Supplemental Material of Wu et al. (downloaded on 2017
May 3) [43]. We used the genes the authors identi�ed as having signi�cant e�ects in both diet conditions
in all species. Genes were mapped to FIGfams by matching identi�ers in the Supplemental Material to
genome annotations from PATRIC [59]. Signi�cance of overlap between these genes and the results for the
Bacteroidetes phylum from the body-site-speci�c or overall models was determined by Fisher's exact test.

4.9 Codebase

The code used to perform these analysis is available at http://www.bitbucket.com/pbradz/plr in the form
of an Rmarkdown notebook.
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Figure legends

Figure 1: Failing to account for tree structure results in an elevated false positive rate. Continuous
and binary traits were simulated across the trees for the four phyla under consideration. A-B show results
for the null of no true correlation between the continuous and binary traits. A) Histogram of p-values for
simulated traits on the Bacteroidetes tree, using phylogenetic (left) or standard (right) linear models. The
phylogenetic model distribution was similar to a uniform distribution, while the standard model was very
anticonservative, having an excess of small p-values. B) False positive rate (Type I error rate) at p = 0.05 for
the phylogenetic and standard models. C) Traits with varying levels of �true� association spanning values
we observed in real data were simulated, and power was computed using phylogenetic linear models.

Figure 2: Examples of hits from standard linear (blue highlights) and phylogenetic (orange
highlights) models. In each panel, the tree on the left is colored by species prevalence (black to orange),
while the tree on the right is colored by gene presence/absence (blue to black). Selected species are displayed
in the middle; lines link species with the leaves to which they refer. The color of the line matches the color
of the leaf. A-B) The standard model recovered hits that matched large clades but without recapitulating
�ne structure. C-D) The phylogenetic model recovered associations for which more of the �ne structure was
mirrored between the left-hand and right-hand trees, as exempli�ed by the species labeled in the middle. E)
Violin plots of Ives-Garland α, a summary of the rate of gain and loss of a binary trait across a tree, for genes
signi�cantly associated with prevalence in the standard (left, blue) and phylogenetic (right, orange) linear
models. Horizontal lines mark the median of the distributions. The phylogenetic (orange) and standard
linear (blue) models were signi�cantly di�erent for each phylum (Wilcox test for Bacteroidetes: 4 × 10−6;
Firmicutes: 7× 10−11; Proteobacteria: 2× 10−22; Actinobacteria: 2× 10−22).

Figure 3: Comparison of results from the overall prevalence and body-site speci�c models for
Firmicutes. FDR-corrected signi�cance (as − log10(q)) of the overall model is plotted on the horizontal
axis, whereas the same quantity for the body-site-speci�c model is plotted on the vertical axis. All FIGfams
signi�cant (q ≤ 0.05) in at least one of the two models are plotted as contour lines: FIGfams signi�cant
in the overall prevalence model (and possibly also the gut speci�c model) are plotted in orange, while
FIGfams signi�cant in the gut speci�c model (and possibly also the overall prevalence model) are plotted in
blue. Selected SEED subsystems are displayed as colored points (legend), and selected individual genes are
plotted as black points.

Figure 4: Genes involved in conjugative transfer are associated with Crohn's disease-enriched
species. The conjugation transcriptional regulator traR is plotted as an example. The left-hand tree is
colored by each species' disease speci�city score, i.e., the conditional probability of Crohn's given the obser-
vation of a given species (grey, which represents the prior, to orange, which represents a higher conditional
probability). The right-hand tree is colored by gene presence-absence (grey, meaning absent, or blue, meaning
present). The mirrored patterns drive the phylogeny-corrected correlation.
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Table 1: Assessment of agreement between the in vivo results from Wu et al. [43] and gut-
speci�c (�bodysite�) vs. gut prevalence (�overall�) phylogenetic models. The background sets for
enrichment tests were de�ned as follows: �all tested� (all gene families for which a phylogenetic model was �t),
�Bacteroides (core or variable)� (all gene families with at least one representative in Bacteroides genome clus-
ter pangenomes), �Bacteroides (core only)� (gene families that were present in all Bacteroides genome cluster
pangenomes), �Bacteroides (variable only)� (gene families present in some but not all Bacteroides genomes
clusters), and �Bacteroides thetaiotaomicron only� (only gene families present in Bacteroides thetaiotaomi-

cron). The p-values are from Fisher's exact tests. These comparisons have been excerpted from the full set,
which can be seen in Additional Table S2; q-values were calculated based on this full set of tests using the
Benjamini-Hochberg method [73].

Background set FDR MODEL p-value odds ratio q-value signi�cant

All tested (overall) 5% overall 3.19× 10−3 0.18 7.65× 10−3 TRUE

Bacteroides (core or variable) 5% overall 2.46× 10−12 0.05 2.46× 10−11 TRUE

Bacteroides (core only) 5% overall 1.00 0.00 1.00 FALSE

Bacteroides (variable only) 5% overall 7.20× 10−4 0.13 2.06× 10−3 TRUE

Bacteroides thetaiotaomicron only 5% overall 2.96× 10−6 0.09 1.48× 10−5 TRUE

All tested (overall) 25% overall 1.65× 10−2 0.37 3.41× 10−2 TRUE

Bacteroides (core or variable) 25% overall 1.98× 10−13 0.10 2.37× 10−12 TRUE

Bacteroides (core only) 25% overall 1.00 0.80 1.00 FALSE

Bacteroides (variable only) 25% overall 4.12× 10−4 0.18 1.45× 10−3 TRUE

Bacteroides thetaiotaomicron only 25% overall 6.04× 10−7 0.18 3.63× 10−6 TRUE

All tested (body site) 5% bodysite 3.58× 10−3 4.39 8.27× 10−3 TRUE

Bacteroides (core or variable) 5% bodysite 1.34× 10−1 2.00 2.44× 10−1 FALSE

Bacteroides (core only) 5% bodysite 1.14× 10−3 7.02 2.98× 10−3 TRUE

Bacteroides (variable only) 5% bodysite 6.25× 10−1 0.00 7.62× 10−1 FALSE

Bacteroides thetaiotaomicron only 5% bodysite 2.77× 10−1 1.64 4.49× 10−1 FALSE

All tested (body site) 25% bodysite 6.09× 10−4 3.86 1.86× 10−3 TRUE

Bacteroides (core or variable) 25% bodysite 8.88× 10−2 1.78 1.72× 10−1 FALSE

Bacteroides (core only) 25% bodysite 1.09× 10−2 3.47 2.33× 10−2 TRUE

Bacteroides (variable only) 25% bodysite 4.51× 10−1 1.55 6.15× 10−1 FALSE

Bacteroides thetaiotaomicron only 25% bodysite 4.38× 10−1 1.34 6.12× 10−1 FALSE

Supplementary �gures/tables

Table S1: Species prevalences, gut speci�cities, and Crohn's disease speci�cities for all genome
clusters (species) tested.

Table S2: Full assessment of whether genes linked to microbial �tness in an in vivo experiment
[43] were enriched for signi�cant hits of the body site-speci�c and overall gut prevalence
models. The di�erent sets of true positives were de�ned as: �Bacteroides� (genes in the screen signi�cantly
associated with �tness in all four strains), �BthetaDietIndep� (genes present in Bacteroides thetaiotaomicron

that had diet-independent �tness e�ects in the screen), and �BthetaAny� (same, but for diet-dependent as
well as -independent e�ects). The �background sets� were de�ned as follows: �all tested� (all gene families
for which a phylogenetic model was �t), �Bacteroides (core or variable)� (all gene families with at least one
representative in Bacteroides genome cluster pangenomes), �Bacteroides (core only)� (gene families that were
present in all Bacteroides genome cluster pangenomes), �Bacteroides (variable only)� (gene families present in
some but not all Bacteroides genomes clusters), and �Bacteroides thetaiotaomicron only� (only gene families
present in Bacteroides thetaiotaomicron). Two false discovery rates for each model were tested (5% and
25%). Fisher tests yielded p-values that were then converted to q-values using the Benjamini-Hochberg
approach [73].
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Table S3: SRA accession IDs used to estimate prevalence and environmental speci�city scores.

Figure S1: Estimates of logit-gut prevalence (x-axis) vs. logit-gut speci�city (y-axis), showing
only modest correlation.

Figure S2: Laplacian regularization reduces noise in estimating P (E|T ). Two species are compared,
one that was infrequently observed in both Crohn's disease cases and controls (Bacillus subtilis, right) and
one with a signi�cant bias for Crohn's disease cases (Bacteroides fragilis, left). A) Total counts across
subjects for Bacillus subtilis and Bacteroides fragilis. B) Likelihood function for P (T |E), or prevalence
in Crohn's disease. The maximum-likelihood value is given in the inset. C) Unregularized likelihood for
logit(P (E|T )), or the environmental speci�city of the microbe. Note that the maximum-likelihood value
(inset) was actually almost twice as large for Bacillus subtilis as for Bacteroides fragilis despite the relative
paucity of data for B. subtilis (compare Y-axes, which show that the distribution for B. subtilis is �atter).
D) Laplace prior around P (E) = 0.002 with width parameter b = 0.15 (optimized using simulation). E)
Log-likelihood plot for the posterior P (E|T ), obtained by taking the product of the prior distribution and
the unregularized distribution. The maximum a posteriori estimates are the modes of these distributions
(inset).
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