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Abstract 

All drug trials of the Alzheimer’s disease (AD) have failed to slow the progression of dementia 
in phase III studies, and the most effective therapeutic strategy remains controversial due to the 
poorly understood disease mechanisms. For AD drug design, amyloid beta (Aβ) and its cascade 
have been the primary focus since decades ago, but mounting evidence indicates that the 
underpinning molecular pathways of AD are more complex than the classical reductionist 
models. 

Several genome-wide association studies (GWAS) have recently shed light on dark aspects of 
AD from a hypothesis-free perspective. Here, I use this novel insight to suggest that the amyloid 
cascade hypothesis may be a wrong model for AD therapeutic design. I review 23 novel genetic 
risk loci and show that, as a common theme, they code for receptor proteins and signal 
transducers of cell adhesion pathways, with clear implications in synaptic development, 
maintenance, and function. Contrary to the Aβ-based interpretation, but further reinforcing the 
unbiased genome-wide insight, the classical hallmark genes of AD including the amyloid 
precursor protein (APP), presenilins (PSEN), and APOE also take part in similar pathways of 
growth cone adhesion and contact-guidance during brain development. On this basis, I propose 
that a disrupted synaptic adhesion signaling nexus, rather than a protein aggregation process, 
may be the central point of convergence in AD mechanisms. By an exploratory bioinformatics 
analysis, I show that synaptic adhesion proteins are encoded by largest known human genes, and 
these extremely large genes may be vulnerable to DNA damage accumulation in aging due to 
their mutational fragility. As a prototypic example and an immediately testable hypothesis based 
on this argument, I suggest that mutational instability of the large Lrp1b tumor suppressor gene 
may be the primary etiological trigger for APOE/dab1 signaling disruption in late-onset AD. 

In conclusion, the large gene instability hypothesis suggests that evolutionary forces of brain 
complexity have led to emergence of large and fragile synaptic genes, and these unstable genes 
are the bottleneck etiology of aging disorders including senile dementias. A paradigm shift is 
warranted in AD prevention and therapeutic design. 
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Glossary: 

AD = Alzheimer’s disease; APP = Amyloid precursor protein; GWAS = Genome-wide 
association study; FAK = Focal adhesion kinase; PSD = Postsynaptic density; PSEN1/2 = 
Presenilin1/2; SFK = Src family kinase 

 

Introduction 

More than a century has passed since the first report of a presenile dementia case by Alois 
Alzheimer1, and the current understanding of AD pathophysiology borrows from identification of 
the Aβ peptide as the main constituent of senile plaques and subsequent discovery of APP and 
PSEN mutations in rare familial forms of AD2,3. These observations were compiled to the 
amyloid cascade hypothesis in the pre-genomic era4, which remains the central theory of AD 
etiopathogenesis and implicates Aβ and neurofibrillary tangles as the causes of disease. 

Nevertheless, due to methodological difficulties, Aβ species has hardly been validated as the 
causal force of neurodegeneration in humans. Despite the general support received from 
preclinical models, manipulating pathways of Aβ generation and clearance has yielded 
disappointing results in several clinical trials so far5. While a handful of clinical failures do not 
necessarily warrant disproval of a theory per se, overemphasis on a single disease model is a 
dangerous gamble and could be one of the many explanations for the lack of progress in AD 
therapeutic design6. 

Accuracy of the amyloid cascade hypothesis is a topic of ongoing debate7-12, and the long-
standing over-reliance on a potentially wrong model warrants development of independent 
mechanistic explanations for this prevalent cognitive disorder. For this aim, the novel genome-
wide insight into AD risk loci provides a strong basis, since in contrast to the neuropathological 
hallmarks including senile plaques and neurofibrillary tangles, which are of questionable 
etiological significance13, genetic risk factors temporally precede earliest stages of brain 
development, aging, and degeneration, and are expected to inform on causal events in the disease 
cascade. 

Genetic architecture of common late-onset AD is highly multifactorial and only partly 
understood. Although a number of susceptibility loci have been identified by genome-wide 
association studies14-19, mechanistic interpretation of these new observations have generally been 
under powerful influence of the amyloid cascade theory so far. In contrast, our report servers to 
provide an evidence-based framework for compiling the genetic pathways of AD within an Aβ-
independent domain. The rest of this manuscript is organized as follows; in the first section, I 
aim to comprehensively revisit roles of classical and novel genetic modifiers of AD risk in 
pathways of normal cell physiology. I show that APP, presenilins and APOE as well as 23 other 
AD risk genes converge to common pathways of cell-extracellular adhesion signaling, with 
important implications in synaptic circuit formation and neurite outgrowth navigation. In the 
second section, I provide bioinformatics evidence for interaction of aging with this genetic 
landscape by showing that even the insidious “normal” rate of DNA damage in aging cells may 
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disproportionately hamper synthesis of extremely large synaptic adhesion proteins in late life. 
Finally, several immediately testable predictions are provided for assessment of this new disease 
model. 

1.1 The APP family genes encode evolutionarily-conserved cell adhesion proteins 

Derailed catabolism of the APP protein and generation of an aggregation-prone Aβ species 
abstract the mainstream theory of AD pathophysiology, and several efforts have been made to 
block this cascade by means of Aβ immunotherapies or design of secretase inhibitors5. In 
contrast, three decades after successful cloning of the APP gene20, the potential physiological 
roles of its protein product remain under-explored and unknown. 

APP codes for a single-pass transmembrane protein and shows high expression levels at the site 
of neuronal growth cones, structures that form motile tips of the outgrowing axons and dendrites 
in the developing brain21. The Aβ peptide enhances interaction of neurites with extracellular 
adhesion molecules and promotes elongation of cell membrane projections22,23. The full-length 
and membrane-tethered form of the APP protein also interacts with the extra-cellular matrix 
adhesion molecules including laminin, heparan sulfate, fibronectin and collagen24-26. More 
specifically, interaction of APP with laminin24 and heparan sulfate27 has neurite-promoting 
effects, and this protein stimulates assembly of hippocampal connections28. On the other hand, 
antisense-downregulation of APP inhibits extension of neurites29. APP demonstrates a dose-effect 
in affecting growth cone adhesion and guidance30. Increased dosage of APP in Down syndrome 
results in emergence of faster advancing growth cones with promoted adhesive properties and 
larger sizes31. In contrast, knockdown of the APP gene in zebrafish results in neurite outgrowth 
disruption32. Intriguingly, although wild-type human APP can rescue this abnormal phenotype, 
the mutated APP gene of familial AD fails to substitute for the normal function of animal gene32. 

Several intracellular pathways are speculated to mediate the neurite-promoting effects of APP in 
neuronal membrane. The netrin pathway of neurite guidance incorporates APP as a co-receptor 
for cell signaling33. In this context, APP inactivation disrupts normal netrin signaling and 
diminishes axonal outgrowth34. APP also binds the extracellular reelin glycoprotein, which is a 
large adhesion molecule for guidance and migration of neurons35. Interaction of reelin with APP 
promotes outgrowth of hippocampal neurites35, and this functional interaction requires presence 
of another cell adhesion molecule, the α3β1-integrin, as well35. Of note, integrin receptors are the 
main component of focal adhesion complexes, and they co-localize with the APP protein36,37 at 
dynamic neuronal adhesion sites38. In line, interaction of integrin with APP modulates neuritic 
outgrowth39. Integrin also acts as an accessory reelin receptor for cell adhesion modulation and 
neuronal migration40-42, and therefore they functionally link two important AD risk genes, 
including APP and the APOE receptor pathway as shall be discussed later. 

In addition to influencing growth cone movement, the APP protein also coordinates spatial 
migration of neurons during brain development43. Triple-knockout of the APP family genes in 
mice results in a neuronal migration defect similar to human lissencephaly44. Further implicating 
a potential role in cell migration, two candidate extracellular ligands of the transmembrane APP 
protein including pancortin and lingo1 orchestrate migration of neural precursor cells45-47. It is 
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noteworthy that pathways of growth cone adhesion and cell movement are mechanistically 
convergent, since both of these biological motility events rely on specialized membrane 
protrusions, namely filopodia and lamellipodia, for changing extracellular adhesion forces and 
cell membrane reshaping. These membrane projections possess surface adhesion receptors, 
which control dynamic rearrangement of the intracellular actin cytoskeleton for changing cell 
polarity, shape and movement direction48. 

In close homology to canonical pathways of cell adhesion, mounting evidence indicates that the 
cytoskeletal system is an important point of convergence in the APP signaling axis. 
Transmembrane APP is selectively localized to the cytoskeletal-rich regions of neuronal growth 
cones at dynamic adhesion sites38,49, and the APP intracellular domain (AICD) reportedly affects 
rearrangement of the cellular actin cytoskeleton50. In this context, AICD interacts with a number 
of intracellular signal transducers, including Fe65, Tip60, KAI1, DISC1, dab1, X11, and Grb251-

53. All of these signal transducers influence pathways of cytoskeletal rearrangement and cell 
movement in diverse cellular mechanisms spanning cancer cell migration and brain 
development: 

• Fe65 and Tip60 affect the cytoskeletal system and moderate cancer cell migration54. 
• KAI1 suppresses cancer cell migration by influencing cytoskeletal assembly55,56. 
• DISC1 coordinates remodeling of the actin cytoskeleton in migrating neurons and growth 

cone-like protrusions57. Of note, this protein rescues neuronal migration defects caused 
by loss of the APP gene51. 

• Dab1 is a mandatory adaptor of the lipoprotein receptors axis in the APOE/reelin 
signaling pathway and controls remodeling of the actin cytoskeleton in neuronal 
migration58. 

• X11 is a recently discovered modulator of the reelin pathway and affects cell 
movement59. 

• Grb2 is an adaptor molecule which links various receptors including integrins with 
intracellular pathways of cytoskeletal plasticity, and thereby regulates cancer cell 
migration60,61. 

In line, there is also ample evidence for functional engagement of the APP family proteins in 
migration and invasion of various cancer cells through the cytoskeletal pathway62,63. Through a 
feedback-like mechanism, the cytoskeletal regulator Rac1 controls expression of the APP gene in 
primary hippocampal neurons64. This functional engagement in cell migration has probably been 
evolutionarily conserved, as the APP gene paralogue of Drosophila (APPL) has promoted the 
neuronal migration process since the earliest stages of nervous system evolution65. In line, 
phylogenetic evolution suggests that cell adhesion is the most consistent biological function of 
the APP family genes66. 

The cytoplasmic tail of APP is noteworthy in the evolutionary context, since it comprises a 
super-conserved NPxY amino acid motif in the form of 682YENPTY687 which has remained 
unchanged from roundworms to humans for more than 900 million years67. This consensus motif 
is known to mediate endocytic sorting of membrane receptors and their interaction with 
intracellular tyrosine-phosphorylated signaling adaptors68. Two mentioned intracellular adaptors 
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of the APP protein, including dab1 and Fe65, interact with this consensus motif in a 
phosphorylation-dependent manner69,70. Further implicating a signaling role, the 682Tyr residue of 
this APP motif undergoes phosphorylation and is essential to synaptogenesis71. 

In addition to neurodevelopmental roles, the APP protein is also evidenced to maintain its 
function in mature neurons. Mouse hippocampal neurons express the APP protein under 
physiological conditions72, and APP is present in close proximity to post-synaptic NMDA 
glutamate receptors. APP controls postsynaptic trafficking of these synaptic receptors and 
promotes neurotransmission73,74. Through its conserved NPxY motif, APP also interacts with the 
postsynaptic scaffold protein AIDA-175, which is a regulator of synaptic transmission and 
palsticity76. On the other hand, loss of the APP family genes disrupts synaptic function77, 
memory formation78, and causes an aging-related synaptic loss in mice79,80. APP and the other 
two members of this protein family form trans-synaptic adhesion dimers81. Cleavage of the APP 
protein changes synaptic adhesion and assembly82, and mutations in APP disrupt synaptic 
adhesion83. A more detailed review of the APP protein and its roles in neurophysiology is 
beyond the scope of this manuscript and the interested reader is referred to recent publications84-

86. 

1.2 The γ-secretase complex is a membrane-tethered enzyme for signaling of cell 
adhesion receptors 

PSEN1 and PSEN2 genes code for catalytic subunits of the transmembrane γ-secretase enzyme, 
and various mutations in these genes underpin autosomal-dominant forms of AD. As a 
mandatory step in Aβ40/42 generation, γ-secretase cleaves the APP protein at the γ-site. However, 
as a surprising finding, it was recently observed that some PSEN mutations of familial AD cause 
an almost complete loss of γ-secretase function87 and reduce generation of the putatively-
neurotoxic Aβ40, Aβ42 and Aβ43 species occasionally to undetectable levels88,89. In further 
contradiction, when knock-in mouse models were constructed using the mutated PSEN1 gene of 
familial AD, they were phenotypically similar to knockout strains lacking any γ-secretase 
function, with both of these strains demonstrating impaired hippocampal plasticity90. This novel 
line of evidence reinforces a loss-of-function impact for the PSEN mutations of familial AD, and 
may explain the paradoxical worsening of cognitive function and accelerated brain atrophy in the 
γ-secretase inhibitor trials of AD91,92. 

In contrast to the narrow focus on derailed pathways of APP catabolism, unbiased proteomic 
profiling reveals that the γ-secretase enzyme has a broad spectrum of substrate specificity to 
molecules with transmembrane signaling roles93,94. For instance, the γ-secretase cleaves the 
APOE/reelin receptors95, as well as DSG2, TREM2, ephrin, and notch3 receptors96, which are all 
coded by AD risk genes93,97-99. Moreover, loss of γ-secretase has functional implications in 
neurobiology, and results in erroneous axonal pathfinding due to impaired netrin signaling100. 
Importantly, loss γ-secretase also disrupts cell adhesion force generation101. 

Recent nanoscale microscopy has revealed that expression of the γ-secretase enzyme is 
selectively enriched in postsynaptic sites during normal synaptic maturation102. A synaptic role 
for the γ-secretase complex is further supported by its functional interaction with the glutamate 
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receptors, as well as δ-catenin and N-cadherin which are synaptic adhesion molecules102,103. In 
this context, cleavage of cell adhesion receptors by the γ-secretase modulates synaptic adhesion 
and neurotransmission103. Familial AD mutations of presenilin disrupt this modulatory effect104. 

1.3 The APOE-lipoprotein receptor axis coordinates contact-guidance of neuronal 
growth cones 

APOE4 is the strongest genetic risk factor of common late-onset AD, explaining ~6% of the 
disease risk105. In contrast, the only correlation of the APP locus with late-onset AD has been 
recently reported in an Icelandic cohort, showing that a rare protective variant explains less than 
0.6% of the disease risk at a sub-genome wide statistical level106, albeit this variant does not 
contribute to protecting from AD in the North American population due to the extremely low 
allele frequency107. Despite this highly disproportionate level of evidence, mechanistic 
interpretation of the strong APOE4 risk factor still mostly borrows from potential influences on 
pathways of Aβ clearance. 

The APOE molecule binds to the family of lipoprotein receptors and thereby moderates cellular 
uptake of lipoprotein particles in various organs. However, lipoprotein receptors are not simple 
cargo transporters, and stimulate a comprehensive nexus of intracellular second messenger 
signals108. For instance, the two lipoprotein receptors of the reelin pathway are shared with 
APOE, including APOEr2 and VLDLr receptors. Activation of these receptors by reelin triggers 
phosphorylation of the intracellular dab1 adaptor, which binds to the consensus NPxY motif of 
the receptor intracellular domain109. Through dab1 activation, the reelin pathway affects various 
aspects of cell physiology, among which cytoskeletal remodeling and neuronal migration are 
central110. Importantly, the reelin pathway guides extension of hippocampal neurites111 and 
coordinates outgrowth of the perforant path which forms the major input fibers to the 
hippocampal formation112. 

The APOE molecule shares its lipoprotein signaling receptors with reelin113, and mounting 
evidence indicates that APOE also undertakes a similar role in guiding outgrowth of developing 
neurites113-117. The neurite promoting effect of APOE is isoform-dependent, with the APOE3 
isoform being a more potent neurite outgrowth inducer than the APOE4 risk isoform115,117. 

Unlike reelin, the intracellular signaling pathway of the APOE molecule has been less 
investigated in neurons, but partly studied in other cells. In macrophages, APOE activates 
transducers of the reelin pathway including dab1 and PI3K118. In vascular pericytes, APOE 
affects rearrangement of the actin cytoskeleton and its knockdown deranges normal cell 
migration119. The APOE4 isoform also affects the proteomic signature of cytoskeletal regulators 
in peripheral nerves120. Taken together, this body of evidence suggests that the APOE molecule 
may signal through a reelin-like network by incorporating lipoprotein receptors and the 
cytoskeletal system for inducing cell adhesion and movement. 

In addition to the strong association of the APOE locus with AD, other risk loci further reinforce 
relevance of lipoprotein receptors and their signaling path in this disease. Variants within the 
reelin gene are the top genetic correlate of AD-type neuropathology in postmortem human 
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brains121. F-spondin (Spon1), which codes for a reelin domain-containing cell adhesion 
molecule, is correlated with the rate of cognitive decline in AD and also affects white matter 
microstructure in healthy humans122,123. Moreover, F-spondin interacts with the APP protein124, 
and this interaction serves to activate signaling of the reelin adaptor dab1 in ganglion cells125. 
Two new AD risk loci including Sorl1 and CLU respectively code for a lipoprotein receptor and 
a lipoprotein receptor ligand126,127. Sorl1 regulates cell migration127,128 and CLU activates various 
transducers of the reelin pathway including dab1 and PI3K/Akt in neurons129. 

Apparently unrelated to their roles in lipid metabolism, lipoprotein receptors interact with the 
major postsynaptic scaffold protein PSD95 and take part in synaptic architecture130-132. 
Expression of the lipoprotein receptors affects synaptic density in hippocampal and cortical 
neurons133. Moreover, lipoprotein and neurotransmitter receptors interact with each other130,132 
and activation of the lipoprotein receptor pathway by reelin promotes synaptic plasticity134-136. 
Specifically, a recent study shows that postsynaptic activity of APOEr2 is critical for dab1 
phosphorylation and insertion of AMPA glutamate receptors at postsynapse for long-term 
potentiation137. Lipoprotein receptors also share several intercellular signal transducers with the 
APP protein, including X11, dab1, and Fe65133,138, potentially reflecting convergent signaling 
pathways. 

1.4 AD susceptibility loci strongly implicate cell adhesion pathways 

Familial early-onset AD which is caused by APP or PSEN mutations constitutes less than one 
percent of diagnosed patients. In contrast, several genome-wide association studies have recently 
revealed the complex polygenic landscape of common late-onset AD14-19. Remarkably, the 
majority of late-onset AD risk genes engage in pathways of cell adhesion, migration and contact-
guidance: 

• DSG2 (Desmoglein-2, rs8093731) is a component of desmosomal cell adhesion 
complexes. DSG2 gene product interacts with β8-integrin and serves focal adhesion roles 
in endothelial cells and regulates cytoskeletal assembly139. DSG2 also controls cell 
motility, and its depletion affects migration of malignant melanoma cells140. 

• EPHA1 (rs11771145) codes for a member of the ephrin-A receptor family of neurite 
adhesion and guidance. EPHA1 moderates cell migration through integrin-linked kinase 
and the cytoskeletal remodeling pathway141,142. EPHA1 also affects invasion and 
metastasis of colorectal cancer cells143. 

• FRMD4A144 and FERMT2 (Kindlin-2, rs17125944) code for two members of the 
FERM domain family, which link integrin and focal adhesion kinase (FAK) with the 
intracellular actin cytoskeleton145,146. FERMT2 transduces cell adhesion signals and is 
engaged in malignant cell invasion147. 

• GAB2 (rs2373115), one of the earliest AD susceptibility loci to be discovered by 
genome-wide scan14,148, encodes a scaffolding protein acting downstream to the integrin 
signaling pathway. GAB2 regulates adhesion and migration of hematopoietic cells149 and 
also controls cytoskeletal remodeling in migrating breast cancer cells150. 
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• CASS4 (Hepl, rs7274581) controls focal cell adhesion151 and the CAS family members 
take part in axon guidance by interacting with integrin152. CASS4 also affects 
cytoskeletal reorganization and moderates cancer cell invasion151,153. 

• CD2AP (rs10948363) codes for an actin cytoskeleton binding protein154. CD2AP 
regulates focal adhesion of kidney podocytes at contact sites by linking membrane 
adhesion complexes with the intracellular actin cytoskeleton155. 

• PTK2B (Pyk2, rs28834970) is a focal adhesion signal transducer and affects cytoskeletal 
remodeling156,157. PTK2B coordinates integrin-dependent migration of T-cells158 and 
promotes invasion of malignant glioma cells159. 

• PICALM (rs10792832) is a clathrin adaptor protein and engages in membrane receptor 
trafficking160. Clathrin regulates endocytosis of synaptic vesicles and moderates 
trafficking of the glutamate receptors161. Unbiased gene-gene interaction analysis has 
revealed that the PICALM locus interacts with DOCK1 in AD162, which is an actin 
cytoskeleton regulator and affects cell movement163. 

• INPP5D (SHIP-1, rs35349669) is a key modulator of the PI3K pathway. This protein 
regulates platelet adhesion by affecting integrin signaling164. INPP5D also coordinates 
movement of neutrophils in response to focal contact and adhesion165. 

• NYAP1 (rs1476679) codes for a signal transducer of the PI3K pathway. NYAP1 acts 
downstream to signaling of the contactin5 synaptic adhesion molecule and controls 
cytoskeletal remodeling in outgrowing neurites166. Of note, contactin5 also binds the 
amyloid precursor-like protein 1167. 

• Amphysin II (BIN1, rs6733839) codes for a protein which binds to the cytoplasmic tail 
of integrin168 and neuronal focal adhesion kinase169 and is therefore probably involved in 
integrin-dependent cell adhesion. Moreover, Amphysin I, which has a high level of 
sequence similarity (71%) with this gene product, regulates outgrowth of hippocampal 
neurites170 and links endocytosis mechanisms to pathways of cytoskeletal remodeling171. 

• UNC5C172 (rs137875858) codes for a receptor of the netrin pathway of axon guidance173. 
The netrin pathway incorporates α3β1-integrin and the Down Syndrome Cell Adhesion 
Molecule (DSCAM) in neuronal migration process and neurite outgrowth, 
respectively174,175. 

• TPBG, a recently discovered AD risk gene19, modulates cell adhesion and 
movement176,177. TPBG localizes at focal adhesion sites in kidney podocytes and affects 
formation of actin stress fibers for cell remodeling178. Deletion of TPBG disrupts 
cadherin-dependent cell adhesion and suppresses cell migration179.  

• HBEGF19 (rs11168036) encodes a protein which promotes integrin-dependent cell 
adhesion180. HBEGF also regulates focal adhesion kinase and by rearranging the actin 
cytoskeleton moderates cell migration181. 

• USP6NL19 (RNTRE, rs7920721) modulates the integrin signaling axis and controls focal 
adhesion turnover, thereby acting as a "brake" in cell migration182. 

• TREM2 (rs75932628), a novel AD risk locus183, is known to interact with the plexin-A1 
adhesion molecule184, which is an axon guidance receptor. Interaction of plexin-A1 with 
the TREM family has been suggested to moderate cell adhesion and movement through 
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the cytoskeletal pathway185. The Plexin pathway also antagonizes the integrin signaling 
axis and inhibits cell movement186. 

• TTC3, a novel familial late-onset AD locus, maps to the Down syndrome critical 
region187. TTC3 modulates β1-integrin signaling in malignant cells188 and its increased 
levels affects assembly of the actin cytoskeleton and thereby disrupts neurite extension189.  

• PLCG2190 (rs72824905) codes for a phospholipase and is activated by integrin for cell 
migration191. Activation of PLCG2 downstream to the integrin pathway moderates 
adhesion of leukocytes192. 

• ABI3190 (rs616338) affects the cytoskeletal pathway and participates in formation of 
membrane protrusions for cell motility193. Its binding partner, the ABI3 binding protein, 
interacts with integrin at focal adhesion sites and suppresses malignant cell 
migration194,195. 

Taken together, the genetic architecture of AD strongly implicates various cell adhesion 
regulators and pathways of cytoskeletal plasticity. Further aiding in formulation of a unified 
disease model, many of these gene products cross-talk with the integrin pathway of focal 
adhesion. This convergence also strongly spotlights the Aβ-independent roles of the APP 
protein, γ-secretase and the APOE receptors in cell adhesion regulation and synaptic function. 

2 The hypothesis 

By using the unbiased genetic architecture of AD, our model puts the cell adhesion process at the 
center of disease pathways. Focal adhesion regulators including integrins coordinate cell 
migration, neurite outgrowth, and assembly of synaptic circuits in brain development. In the 
post-developmental brain, these canonical pathways also undertake pivotal roles in maintaining 
synaptic adhesion and plasticity196. Synaptic adhesion molecules form a dense scaffold at the 
postsynaptic density (PSD) sites and dendritic spines. This scaffold connects neurotransmitter 
receptors and ion channels with the intracellular actin cytoskeleton as well as the extracellular 
matrix, aiding in synaptic maintenance and dynamic remodeling. 

Synaptic adhesion molecules also act as mechano-chemical sensors and actively moderate 
trafficking of neurotransmitter receptors197. For instance, it has been shown that enhancing 
signaling of the synaptic integrin receptors by application of an agonist peptide modulates 
neurotransmission198 in a dose-dependent manner199. In this context, integrin affects 
rearrangement of the actin cytoskeleton and promotes budding of filopodia - structures that 
strengthen synaptic connections200. Remarkably, this is the same mechanism through which the 
integrin pathway coordinates growth-cone adhesion and pathfinding during synaptic circuit 
development201. It is noteworthy that the post-developmental role of cell adhesion pathways in 
synaptic physiology is not limited to integrins, and has been observed for several cell adhesion 
molecules (Fig. 1). 

I propose that the heritable component of AD is determined by genetic factors which coordinate 
growth cone adhesion and assembly of synaptic circuits in brain development. The same 
molecular machinery also takes part in post-developmental synaptic maintenance, plasticity and 
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functional resilience in later life. In this regard, any factor causing disruption of biological 
adhesion pathways in aging may lead to synaptic failure and cognitive decline. 
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Figure 1. Biological adhesion pathways transfer extracellular signals across the cell membrane, 
and affect cell polarity, movement and survival (top). Various pathways of extracellular adhesion 
signaling coordinate rearrangement of the actin cytoskeleton and thereby control reshaping of 
membrane projections for cell movement and plasticity (bottom). FAK: focal adhesion kinase; 
LRP: lipoprotein receptor; Shh: Sonic hedgehog. 
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3 Aging and Alzheimer’s disease 

Human aging is the strongest risk factor for various dementias including AD. Considering the 
high prevalence of AD in late life, this disease may represent a continuation of global aging 
process, and cellular disruptions which happen in “normal” aging may give rise to AD when 
accelerated7. An elegant work has recently revealed that frontal cortex cells of healthy humans 
accumulate ~37 new point mutations each year202, and these mutations may represent the final 
outcome of a broader DNA damage process. Loss of genomic integrity is one of the factors 
already implicated in AD etiopathogenesis, but its relevance to molecular disease pathways has 
not been elucidated12,203,204. 

From a statistical point of view, even if a fully random process causes accumulation of mutations 
in aging neurons, larger genes are expected to be disproportionately affected in late life. Suppose 
that the burden of 37 annual mutations is uniformly scattered at purely random genomic 
positions in neurons (5.7×10-9 mutations/base pair.year). In this scenario, approximately 1% 
copies of a median-sized human gene (29.6kbp) will acquire at least one somatic mutation in a 
65-year individual. In sharp contrast, the largest known human gene, CNTNAP2, which codes 
for a synaptic adhesion protein and is more than 80× larger than the median-sized gene, is 
expected to be highly vulnerable to somatic mutations, and only 42% of its copies are estimated 
to remain intact in the same individual (Fig. 2). This high variability in the risk of mutations is 
due to the statistical distribution of gene sizes, which spans three-orders of magnitude with a 
long tail encompassing extremely large genes (Fig. 3). 

  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 31, 2018. ; https://doi.org/10.1101/189712doi: bioRxiv preprint 

https://doi.org/10.1101/189712
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 
 

 

 

Figure 2. A simple binomial model in which somatic mutations take place at a fixed and uniform 
rate across the genome reveals that a median-sized human gene mostly survives the mutational 
burden of aging, with only ~1% of its copies being affected by any somatic mutation in a 65 
year-old subject. However, larger genes will have a significantly shorter half-lives set at the 6th 
and 7th decade of life; many of these large genes regulate synaptic adhesion and function with 
relevance to neurodegenerative disorders, and also act as fragile tumor suppressors. 
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Figure 3. Human gene length distribution has a long tail which extends towards a group of 
extremely-large genes in the megabase pair range (top). The arrow points to the giant APOE 
receptor, Lrp1b. Human gene size parameter closely follows a log-normal distribution (bottom) 
with parameters μ=ln(26.9kbp) and σ=1.4. The outlier bin near 1 kbp represents the large family 
of olfactory receptors that have gone through extreme evolutionary expansion. Scattered circles 
(top) and grey bars (bottom) show the subgroup of large genes used in functional enrichment 
analyses of this paper (>500kbp). 
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Why has the evolution in some cases selected for extremely large genes, although they are 
known to map to chromosomal fragile sites205 and possibly be more vulnerable to DNA damage? 
I was compelled to objectively investigate whether large human genes non-randomly take part in 
certain biological themes, cellular functions, and tissue types for a potential explanation of their 
exceptional evolutionary trajectory. For this aim, I size-sorted all of the protein-coding human 
genes (n=19,287 RefSeq genes that successfully mapped to DAVID indices), and considered the 
gene length threshold of >500kb for defining large human genes. This cut-off threshold resulted 
in consideration of 260 large human genes representing 1.3% of all protein-coding transcripts. 
Functional annotation profile, pathway enrichment, and tissue expression of this gene set of 
interest were investigated using a standard DAVID query206,207. 

Interestingly, the top overrepresented organs label for selective expression of these large genes 
were brain (p=1.4×10-19), followed by amygdala (p=3.1×10-5), and hippocampus (p=6.6×10-5). 
By showing strong enrichment statistics, homophilic cell adhesion via plasma membrane 
adhesion molecules was the most overrepresented biological process related to this gene set of 
interest (Table 1), and the most overrepresented cellular component was postsynaptic membrane 
(Table 2). All other enriched gene ontology terms further implicated pathways of nervous system 
development and physiology (Table 1). Among KEGG curated biological pathways, four 
pathways were found to be statistically enriched, including Glutamatergic synapse (hsa04724; 
corrected p=0.02), Axon guidance (hsa04360; corrected p=0.03), Cell adhesion molecules 
(hsa04514; corrected p=0.04), and Insulin secretion (hsa04911; corrected p=0.04). 

The strong selectivity of large human genes to brain, synapse and cell adhesion process is an 
enlightening observation, and I suggest that it may reflect existence of specialized natural 
selection forces for driving complexity of cognitive function in the evolutionary trajectory of 
organisms; these exceptionally large genes may have fostered adhesion and assembly of complex 
synaptic circuits in brain evolution. However, while larger genes may have promoted brain 
complexity, as an evolutionary bottleneck, they may also be inherently costlier to be maintained 
in late life due to limited DNA repair mechanisms, and such large synaptic genes may put 
modern humans at a neurobiological disadvantage when the burden of DNA damage is 
accumulated during the longer lifespan of modern humans. Importantly, since the average human 
life expectancy passed the 40-year milestone only two centuries ago208, there has been very weak 
evolutionary force for correcting the dementia-causing genomic variations. Taken together, rapid 
increase of brain complexity in parallel with extension of life expectancy may have recently 
unmasked a DNA maintenance and repair bottleneck in modern humans, which eventually 
presents as AD and potentially some other forms of senile disorders. 
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Table 1. Enrichment of large human genes (>500 kbp) in gene ontology: biological process 
annotations. 

Gene ontology term – biological process Gene 
count 

p-value Corrected 
p-value 

GO:0007156~homophilic cell adhesion via plasma membrane adhesion 
molecules 

19 1×10-11 1×10-8 

GO:0007157~heterophilic cell-cell adhesion via plasma membrane cell 
adhesion molecules 

11 2×10-9 1×10-6 

GO:0007155~cell adhesion 27 2×10-9 8×10-7 

GO:0007399~nervous system development 20 3×10-8 9×10-6 

GO:0007416~synapse assembly 10 2×10-7 5×10-5 

GO:0007411~axon guidance 14 4×10-7 9×10-5 

GO:0097120~receptor localization to synapse 5 5×10-6 9×10-4 

GO:0007165~signal transduction 37 6×10-6 1×10-3 

GO:0007612~learning 8 2×10-5 2×10-3 

GO:0051965~positive regulation of synapse assembly 8 3×10-5 3×10-3 

GO:0007158~neuron cell-cell adhesion 5 6×10-5 7×10-3 

GO:0007269~neurotransmitter secretion 7 8×10-5 9×10-3 

GO:2000463~positive regulation of excitatory postsynaptic potential 5 2×10-4 0.01 

GO:0097105~presynaptic membrane assembly 4 2×10-4 0.02 

GO:0051966~regulation of synaptic transmission, glutamatergic 5 3×10-4 0.02 

GO:0007420~brain development 11 4×10-4 0.03 

GO:0030534~adult behavior 5 5×10-4 0.03 

GO:0051491~positive regulation of filopodium assembly 5 5×10-4 0.03 

GO:0035176~social behavior 6 6×10-4 0.04 

GO:0007268~chemical synaptic transmission 12 6×10-4 0.04 

GO:0035418~protein localization to synapse 4 6×10-4 0.04 
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Table 2. Enrichment of large human genes (>500 kbp) in gene ontology: cellular component 
annotations. 

Gene ontology term – cellular component Gene 
count 

p-value Corrected 
p-value 

GO:0045211~postsynaptic membrane 22 2×10-12 5×10-10 

GO:0030054~cell junction 29 7×10-11 8×10-9 

GO:0005886~plasma membrane 100 3×10-10 3×10-8 

GO:0014069~postsynaptic density 18 8×10-10 5×10-8 

GO:0042734~presynaptic membrane 12 9×10-10 4×10-8 

GO:0030424~axon 16 6×10-7 2×10-5 

GO:0045202~synapse 14 2×10-6 6×10-5 

GO:0048786~presynaptic active zone 7 3×10-6 8×10-5 

GO:0016021~integral component of membrane 104 3×10-6 7×10-5 

GO:0043197~dendritic spine 10 1×10-5 3×10-4 

GO:0031225~anchored component of membrane 10 3×10-5 6×10-4 

GO:0043005~neuron projection 14 3×10-5 6×10-4 

GO:0042383~sarcolemma 8 2×10-4 3×10-3 

GO:0005856~cytoskeleton 16 2×10-4 4×10-3 

GO:0030425~dendrite 15 3×10-4 4×10-3 
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4 Predictions 

Due to a combination of heritable factors and environmental exposures, AD patients may suffer 
faster accumulation of DNA damage in their neuronal genomes. This argument may be testable 
by revealing correlations between the longitudinal trajectories of cognitive decline in aging 
humans and the burden of somatic mutations in neurons. More specifically, a number of synaptic 
adhesion genes may be exceptionally vulnerable to DNA damage in certain neuronal 
populations. As a prototypic example, I predict that mutational instability of the Lrp1b gene in 
amygdalar and hippocampal neurons may be increased in the typical “APOE-type” sporadic AD 
patients (Fig. 4): 

• Lrp1b has affinity to both APOE and APP209,210. 
• The Lrp1b gene demonstrates selective brain expression209 with hippocampal and 

amygdalar neurons showing the highest levels of Lrp1b transcription in humans211 (Fig. 
5). Lrp1b also interacts with the major postsynaptic scaffold protein, PSD95131 as well as 
the synaptic plasticity-regulating protein PICK1212. 

• Lrp1b is the largest member of the lipoprotein receptor family genes and at an extreme 
size of 1.9Mbp is the 8th largest human gene overall. Potentially due to its size and 
mapping to the chromosomal fragile site FRA2F, Lrp1b is among the ten most frequently 
deleted genes observed in a study of 3,131 cancer specimens213. 

• The Lrp1b gene product controls focal adhesion, cytoskeletal remodeling and cell 
migration214,215, pathways which align with the genetic architecture of AD. Lrp1b is also 
cleaved by the γ-secretase enzyme and its intracellular fragment affects cell anchorage 
and survival216. 

• Genetic variants of the Lrp1b locus are correlated with cognitive function in aging and 
AD217,218. 
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Figure 4. A simplified cascade of late-onset AD pathogenesis based on lipoprotein receptor 
signaling disruption. FAK: focal adhesion kinase; SFK: Src-family kinase. 
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Figure 5. Tissue expression profile of Lrp1b in various organs (a) shows strong specificity to 
brain in FANTOM5 database. Spatial expression of Lrp1b in various brain structures in six 
postmortem human brain samples of the Allen human brain atlas (b). Correlation of genetic 
variants in the Lrp1b locus with several MRI measures of brain volume (c) in the ENIGMA-2 
database219,220. Copy-number variation of the Lrp1b gene in 2,383 unique cancer tissue samples 
(d) shows a high probability of copy number loss in the 3` end of this gene. 
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I predict that AD-type cognitive decline is correlated with propagation of DNA damage and 
somatic mutations in certain synaptic genes including Lrp1b, and subsequent dysfunctions in 
their intracellular pathways involving synaptic adhesion and maintenance. Although previous 
models have already implicated oxidative stress and DNA damage mechanisms in AD12,203,204,221, 
high-throughput results do not support an oxidative etiology for the observed mutations. 
Oxidative stress typically causes G:C→T:A transversions due to formation of free radicals222,223. 
However, aging cells demonstrate a clock-like signature of somatic mutations with enrichment of 
C:G→T:A transitions224,225. Intriguingly, this fingerprint was recently observed as the dominant 
type of mutations in neurons223,226,227. The reason for aging-related preponderance of C:G→T:A 
transitions is currently unknown, but spontaneous cytosine deamination, transcriptional stress, 
and failure of certain DNA repair mechanisms including base and nucleotide excision repair are 
potential explanations228. 

It is noteworthy that Lrp1b only serves to provide one example of vulnerable synaptic genes in 
brain aging, and the true genetic landscape of AD and senile neurodegenerations is probably not 
reducible to the lipoprotein receptor axis (Fig. 6). Similar to loss of different tumor suppressor 
genes in various cancers which is caused by diverse DNA damage mechanisms, brain-wide 
expression of several unstable synaptic genes may underpin dementia heterogeneity in aging 
humans. For instance, the genome-wide landscape of the Parkinson’s disease implicates several 
genes of the synaptic vesicular trafficking system, including the extremely large tumor 
suppressor PARK2 mapping to the chromosomal fragile site FRA6E229. In this regard, 
dopaminergic neurons of substantia nigra are the most vulnerable structures in Parkinson’s 
disease, and they can be distinguished by selective expression of two tumor-suppressor genes 
with cell adhesion roles, including DCC230 and AJAP1231. 
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Figure 6. The proposed mechanisms of synaptic loss and neuronal death in AD. The extracellular 
matrix and cell adhesion molecules (A) modulate signaling of neuronal adhesion receptors (B). 
Cell adhesion pathways affect remodeling of synaptic actin cytoskeleton as well as other 
mediators of plasticity, e.g. various SH3 domain containing proteins (C). The postsynaptic 
density is anchored to the synaptic actin cytoskeleton through scaffolding proteins, e.g. PDZ 
domain containing proteins (D). Normal function and trafficking of the neurotransmitter 
receptors are controlled by cytoskeletal plasticity pathways (E) as well as membrane adhesion 
complexes (F). Disruption of cell adhesion pathways in AD impairs synaptic stability and causes 
dendritic spine loss (G), and may eventually lead to neuronal survival imbalance by triggering 
anoikis cascades (H). Selective vulnerability of genes with extremely large sizes or other features 
causing mutational instability may be the etiology of cell adhesion disruption in aging (I). 

 

5 Future perspectives 

Mice with distal truncation of Lrp1b have no apparent phenotype131, but a more proximally 
truncated Lrp1b causes early embryonic lethality232. Intriguingly, conditional knockout of the 
Lrp1 gene with 52% amino acid similarity to Lrp1b results in neurodegenerative changes in 
animals after 12 months of aging233. Conditional knockout of the Lrp1b gene and other 
modulators of the reelin/lipoprotein receptor signaling axis after completion of brain 
development may aid in modeling AD-type synaptic loss in animals.  

Since even the most aggressive forms of AD remain clinically silent for decades, accelerating the 
aging process in laboratory animals may be necessary, for instance by crossing AD models with 
transcription-coupled DNA repair defective strains234 or usage of mutagenic forces such as UV 
radiation. 
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Our hypothesis is not based on any form of etiological relevance for Aβ species, amyloid plaques 
or neurofibrillary tangles in causal disease pathways, and redefines these pathological features as 
bystander epiphenomena. Even the strong APOE risk locus of sporadic AD fails to explain ~94% 
of the disease variance. Therefore, single pathway therapeutic approaches may provide limited 
benefit in clinical trials. 

In conclusion, this proposal, the large gene instability hypothesis, implicates DNA damage 
accumulation and loss of fragile synaptic adhesion genes as the primary etiology of AD. A shift 
of paradigm is warranted in AD drug design from manipulating the protein aggregation process 
to genetic engineering strategies such as large capacity gene therapy vectors. 
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