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Abstract

A classic problem in population genetics is the characterization of discrete population structure in the
presence of continuous patterns of genetic differentiation. Especially when sampling is discontinuous, the
use of clustering or assignment methods may incorrectly ascribe differentiation due to continuous processes
(e.g., geographic isolation by distance) to discrete processes, such as geographic, ecological, or reproductive
barriers between populations. This reflects a shortcoming of current methods for inferring and visualizing
population structure when applied to genetic data deriving from geographically distributed populations.
Here, we present a statistical framework for the simultaneous inference of continuous and discrete patterns
of population structure. The method estimates ancestry proportions for each sample from a set of two-
dimensional population layers, and, within each layer, estimates a rate at which relatedness decays with
distance. This thereby explicitly addresses the “clines versus clusters” problem in modeling population genetic
variation. The method produces useful descriptions of structure in genetic relatedness in situations where
separated, geographically distributed populations interact, as after a range expansion or secondary contact.
We demonstrate the utility of this approach using simulations and by applying it to empirical datasets of
poplars and black bears in North America.

Author summary

One of the first steps in the analysis of genetic data, and a principal mission of biology, is to describe and
categorize natural variation. A continuous pattern of differentiation (isolation by distance), where individuals
found closer together in space are, on average, more genetically similar than individuals sampled farther
apart, can confound attempts to categorize natural variation into groups. This is because current statistical
methods for assigning individuals to discrete clusters cannot accommodate spatial patterns, and so are forced
to use clusters to describe what is in fact continuous variation. As isolation by distance is common in nature,
this is a substantial shortcoming of existing methods. In this study, we introduce a new statistical method
for categorizing natural genetic variation - one that describes variation as a combination of continuous and
discrete patterns. We demonstrate that this method works well and can capture patterns in population
genomic data without resorting to splitting populations where they can be described by continuous patterns
of variation.
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Introduction

A fundamental quandary in the description of biological diversity is the fact that diversity shows both
discrete and continuous patterns. For example, reasonable people can disagree about whether two populations
are separate species because the process of speciation is usually gradual, and so there is no set point in
the continuous divergence of populations when they unambiguously become discrete species. The issue of
identifying meaningful biological subunits extends below the species level, as patterns of phenotypic and
genetic diversity within and among populations are shaped by continuous migration and drift, as well as
by more discrete events, such as geographic barriers, rapid expansions, bottlenecks, and rare long-distance
migration. Both discrete and continuous components are required to accurately describe most species’ patterns
of genetic relatedness.

From a practical standpoint, even while acknowledging continuous processes, we often need to identify
somewhat separable populations from which individuals are sampled [1]. Delineating populations is useful for
systematics and for informing conservation priorities [2–4]. Furthermore, we often need to identify subsets
of indivduals resulting from reasonably coherent evolutionary histories for downstream analyses to learn
about population history and adaptation. Conversely, the substantial information available from continuous,
geographic differentiation (e.g., adaptation along a climatic gradient) can be confounded by discrete historical
processes (e.g., admixture), requiring methods that can disentangle the two.

There have been many methods proposed to characterize population genetic structure, including generating
population phylogenies [5, 6], dimensionality-reduction approaches, such as principal components analysis
[7–10], and model-based clustering approaches (e.g., [11–20]), among others. Each of these methods perform
best in particular situations, but many can give misleading results when applied to data that show a continuous
pattern of differentiation, as that produced by geographic isolation by distance [9, 21, 22]. Here, we will focus
on model-based clustering, the most widely used class of approaches for population delineation. Existing
model-based clustering methods model each individual’s genotypes as random draws from a set of underlying,
unobserved population clusters, each with a characteristic set of allele frequencies, which are estimated. These
underlying frequencies are identical for all individuals assigned to a cluster, regardless of their spatial location.
Spatial information has been incorporated into some of these methods, by, for example, placing spatial priors
on cluster memberships [19,20], but this does not address the underlying issue that these methods assume
that allele frequencies are constant in a cluster across the species’ range.

Isolation by distance (IBD) refers to a pattern of increasing genetic differentiation with geographic
separation, which occurs when geographically restricted dispersal allows genetic drift to build up differentiation
between distant locations [21]. Theoretical work, mostly derived from “stepping-stone” models [23–25], gives
us some analytical predictions for isolation by distance [26–28], but substantial work remains to be done [29,30].
Given the generality of the circumstances that generate a pattern of isolation by distance, it is unsurprising
that isolation by distance is very widespread in nature [31,32].

The ubiquity of isolation by distance presents a challenge for models of discrete population structure, as it
is frequently difficult to determine whether observed patterns of genetic variation are continuously distributed
across a landscape, or instead are partitioned in discrete clusters. This problem can be compounded if
sampling is done unevenly or discretely across a population or species’ range, and has given rise to a debate
in the population genetic literature about how best to describe sets of individuals using continuous clines and
discrete clusters (e.g., [33, 34]).

Existing model-based clustering approaches can only describe continuous patterns of variation using
discrete clusters, and so tend to erroneously describe continuously distributed variation with multiple clusters
that show spatially autocorrelated cluster membership [22, 31]. In analyses of empirical datasets, which often
show strong isolation by distance, model-based clustering approaches will therefore tend to overestimate the
number of discrete clusters present.

To address this, we set out to develop a model-based clustering method that, when possible, uses isolation
by distance to explain observed genetic variation. With an explicit spatial component, discrete population
structure need only be invoked when genetic differentiation in the data deviates significantly from that
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expected given geographic separation. In this paper, we model genetic variation in genotyped individuals as
partitioned within or admixed across a specified number of discrete layers, within each of which relatedness
decays as a parametric function of the distance between samples. We also implement a cross-validation
approach for comparing and selecting models across different numbers of layers, and we demonstrate the utility
of our approach using both simulated and empirical data. The implementation of this method, conStruct
(for “continuous structure”), is available as an R package at https://github.com/gbradburd/conStruct.

Results

Data The statistical framework of our approach is conceptually similar to that in [35], [36], and [37],
although we use a somewhat different summary statistic than in this previous work. The model works
with allele frequencies at L unlinked, bi-allelic single nucleotide polymorphisms (SNPs) genotyped across N
samples. Each “sample” may be a single individual, a collection of individuals from a location, or frequencies
estimated from pooled sequencing. We write Ni for the number of chromosomes sequenced in the ith sample.
The sample frequency at locus ` in sample n, denoted fn,`, is calculated by first arbitrarily choosing one of
the observed alleles at locus ` to count, then dividing the number of observations of that counted allele by
the total number of chromosomes genotyped at that locus in sample n. The choice of allele does not affect
subsequent calculations, and so may be arbitrary. We then calculate the allelic covariance between samples
i and j, denoted Ω̂i,j , as the expected covariance of distinct individual alleles chosen from each of the two
samples at a random locus, coding the counted allele as ‘1’ (and the other as ‘0’). Concretely, this is

Ω̂i,j =
1

L

L∑
`=1

(
(fi,` − 1/2)(fj,` − 1/2)− δi,jf2

i,`/(Ni − 1)
)
, (1)

where δi,j = 1 if i = j and is 0 otherwise. Although we describe this as a covariance between individually

drawn alleles, Ω̂i,j is in fact also the covariance between the allele frequencies of a randomly chosen allele in
samples i and j, as long as i 6= j. The diagonal (where i = j) does not have this interpretation, and reflects
the covariance between individual alleles drawn from within the population.

This definition of covariance differs from the usual “genetic covariance” [38] in that (a) we do not subtract
locus means, and so to make the statistic invariant under choice of reference allele, (b) we randomly choose
an allele to count at each locus. We discuss the derivation of Eq. (1) further in “Allelic covariance”. As noted
in [39], this covariance has a close relationship to the pairwise genetic distance: if πi,j is the mean density
of sites at which random samples from i and j differ at a randomly chosen locus, then Ωi,j = (1− 2πi,j)/4.
Therefore, this allelic covariance is more affected in shape by singleton sites than the standard genetic
covariance, so it may be advisable to filter these prior to analysis if they are likely to contain a large
percentage of errors [40].

Continuous and discrete differentiation Clustering approaches to describing genetic variation are
useful because population history can often be meaningfully described on a coarse scale by interactions
between discrete “populations” whose relationships are delimited by patterns of glaciation, large-scale
migration, mountain ranges, and the like. Here we add a spatial component within each such discrete
historical component, which we refer to as a set of “layers” that overlay the modern map. We imagine each
layer as a geographically distributed population that extends over the entire sampled range of the populations.
As depicted in Figure 1, each sample is composed of a mixture of contributions from each of these layers,

with the relative contributions of each layer described by a set of “admixture proportions” (the w
(k)
i ). These

layers thus take the place of “clusters” in clustering methods, but we do not adopt this term, as “spatial
cluster” suggests a clustering in space, while our layers may contribute to genetic variation across the entire
geographic range.
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Within each of these layers, allele frequencies have positive covariance at geographically close locations,
but this covariance is allowed to decay as geographic distance increases. This pattern of spatial decay reflects
how migration between neighboring demes homogenizes allele frequency changes that arise locally due to
drift, but less effectively homogenizes geographic distant demes, resulting in a continuous pattern of isolation
by distance within each layer. There is a fixed amount of covariance between layers, irrespective of spatial
location. Within each layer, allele frequencies are expected to change gradually with distance, but observed
frequencies can change abruptly at many loci if the proportions of ancestry individuals derive from each layer
(the “admixture” proportions) do so as well.

To allow flexibility in the form of the decay of allelic covariance with geographic distance within each
layer, we define the covariance within layer k between samples i and j to be:

G
(k)
i,j = α

(k)
0

(
exp

(
−(α

(k)
D Di,j)

α
(k)
2

))
+ φ(k) (2)

where the superscript (k) denotes parameters specific to the kth layer. The quantity Di,j is the observed
geographic distance between samples i and j, and the α(k) parameters control the shape of the decay of
covariance with distance in the layer. Our choice of a powered-exponential decay, as parameterized by the αs,
is a flexible and standard choice in spatial statistics [41], and is not chosen to match a particular population
genetics model. The φ(k) is a parameter that describes the background covariance within the layer. If two

samples draw 100% of their ancestry from layer k, then their covariance under the model is G
(k)
i,j ; if they are

furthermore geographically very close (Di,j = 0) they will have covariance α
(k)
0 + φ(k). If the geographic

distance between them is very large, their covariance will be equal to the background level φ(k) within the
layer. The “shared drift” parameter φ(k) is analogous to the branch length connecting the kth population to
the population ancestral to all modeled layers (see for example [42,43]), although they cannot be directly
compared because we are modeling the allelic, rather than genetic, covariance. In “Model rationale” we lay
out a simple model of allele frequencies underlying this covariance model.

We then allow samples to draw their ancestry from more than one layer. The “admixture” proportion of

the ith sample in the kth layer, denoted w
(k)
i , gives the genome-wide proportion of alleles from sample i that

derive from layer k (and so
∑K
k=1 w

(k)
i = 1). A visual representation of the method is shown in Fig 1.

We can then describe the covariance between samples i and j across all K layers, Ωi,j , by summing their

within-layer spatial covariances (G
(k)
i,j in layer k), weighted by the relevant admixture proportions.

Ωi,j = γ +

K∑
k=1

w
(k)
i w

(k)
j G

(k)
i,j + δi,jηi. (3)

In this equation, w
(k)
i w

(k)
j is the proportion of alleles that both sample i and sample j have inherited from

layer k.
In addition to the admixture-weighted sum of the within-layer spatial covariances, this function contains

two terms, γ and δi,jηi. The first, γ, describes the global allelic covariance between all samples, and arises
because all samples share an ancestral mean allele frequency at each locus, which generates a base-line
covariance. In the final term, δi,j is an indicator variable that takes a value of 1 when i equals j and 0
otherwise, and ηi adds variance specific to sample i. This term on the diagonal of the parametric covariance
matrix captures processes shaping variance within the sampled deme, such as inbreeding and the sampling
process.

Likelihood and inference If the allele frequency deviations at each locus were independent between
loci and multivariate normally distributed across populations, their allelic covariance Ω̂ would be Wishart
distributed with degrees of freedom equal to L, the number of loci genotyped. We use this as a convenient
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Fig 1. Schematic of our method, using K = 3 as an example. Spatial autocorrelation of allele frequencies
within each layer is depicted by color gradients, and φ(k) denotes the covariance shared by samples with
ancestry entirely in the kth layer. Sampled populations on the landscape are inferred to be admixed between

these layers; the ith sample draws proportion w
(k)
i of its ancestry from layer k. For convenience, each layer is

depicted as a small square, but in fact, each layer exists everywhere in the sampled area, so the small dashed
circles on each layer show where the location of the highlighted admixed sample intersects each layer.
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approximation to the true distribution described above, and so define the likelihood of the allelic covariance
to be

P (Ω̂ | Ω) =W
(
LΩ̂ | Ω, L

)
, (4)

where W is the Wishart likelihood function. Statistical nonindependence between loci (linkage disequilibrium)
will decrease the effective number of degrees of freedom. One possible solution, which we have not yet found
necessary to implement, would be to estimate an effective number of loci by introducing a parameter to
modify the given degrees of freedom and thereby informally model linkage between loci (e.g., [39]).

We estimate the values of the parameters of the model using a Bayesian approach. Acknowledging the
dependence of the parametric covariance matrix Ω on its constituent parameters w,α, φ, η, γ and on the
(observed) geographic distances D with the notation Ω(w,α, φ, η, γ,D), we denote the posterior probability
density of the parameters as:

P
(
w,α, φ, η, γ | Ω̂

)
∝ P

(
Ω̂ | Ω(w,α, φ, η, γ,D)

)
P (w)P (α)P (φ)P (η)P (γ), (5)

where P (w), P (α), P (φ), P (η), and P (γ), are prior distributions. All parameters are given (half-)Gaussian
priors except for α2, which is uniform on (0, 2), and w, for which we use an independent Dirichlet of dimension
K for each sample (see Table 1 for specifics). Parameters are independent between layers. We use Hamiltonian
Monte Carlo as implemented in STAN [44–47] to estimate the posterior distribution on the parameters. Our
R package, conStruct (for “continuous structure”), functions as a wrapper around this inference machinery.

Relationship of this model to nonspatial structure models A nice feature of our approach is that
the model described in Eq. (3) contains a nonspatial assignment model as a special case (see “Models,

parameters, and priors” for a more in-depth discussion). By setting α
(k)
0 to zero for all k, we obtain a

nonspatial model in which each cluster has its own allele frequency at each SNP, and individuals draw a
proportion of their ancestry from each cluster. This model is very similar to that of STRUCTURE [11]
and related models (e.g., [14]); the main difference is that our likelihood assumes that allele frequencies are
normally distributed around their expectations, while the standard assignment methods assume that the error
is binomially distributed [48]. (We make this approximation for the substantial advantages in computational
speed.) The second small difference is that, in the original STRUCTURE model, allele frequencies at each
locus are independently drawn for each cluster [11], while in conStruct’s non-spatial model, it is more natural
to envision each cluster’s allele frequency as being drifted away from a single, global allele frequency. This
makes our model more closely related to the “F -model” prior for allele frequencies of [12]. As these differences
are relatively small, we can compare the fit of the different models — spatial vs. nonspatial, across different
values of K — by comparing their performance in a common framework. We also validate our claim that the
results of our nonspatial method are a close match to those of STRUCTURE-based approaches.

Choice of layer number and cross-validation There are a number of reasons why there is no true (or
right) number of layers for real datasets, discussed further in the Discussion. However, it is still important
to assess whether additional layers (larger K) meaningfully model patterns in the data or merely explain
spurious variation introduced by noise – in other words, whether additional model complexity provides
significant explanatory power. Toward that end, we have implemented a method for statistically comparing
conStruct results across different values of K and between the spatial and nonspatial models.

Several approaches have been used as model choice criteria for the number of discrete clusters in population
genetic data, including: comparisons of the likelihood of the data across different values of K, with various
criteria on how to choose a single value (e.g., [49]), or with information theoretic penalizations such as AIC or
BIC (e.g., [14]); or comparisons of the marginal likelihood, generated either via various approximations (e.g.,
[11]) or via a more rigorous and computationally intensive approach such as thermodynamic integration [50]
or inference using a Dirichlet process prior [17]. See [50] for a discussion of these approaches and comparison
between several methods.
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We use cross-validation (similar in spirit to [51]) to attack this problem. To do this, we use a “training”
partition of the data (in practice, a random 90% subset of the loci) to estimate the posterior distribution of the
parameters, and then calculate the log-likelihood of the remaining “testing” loci, averaged over the posterior.
Prediction accuracy of a particular model (e.g., value of K) is then measured using this log-likelihood,
averaged over a number of independent data partitions. The best model is judged to be the simplest one with
significantly better predictive accuracy than others (see “Cross validation” for more on our cross-validation
procedure). In general, larger values of K allow the model more flexibility, and thus increases the likelihood
of the training partition, but this improvement in the likelihood will plateau (or even peak), as above a
certain K the model only fits noise specific to the training data rather than generalizable patterns. At any
value of K, support for the spatial model over the nonspatial model means that isolation by distance is likely
a feature of the data.

Cross-validation provides a valuable summary of how much explanatory power is added by spatial structure
within each layer, and each additional layer. However, we remind users that “statistical significance does not
imply real-world significance’,’ and so small but statistically significant differences between models should
probably not be relied on too strongly.

Another way to describe the practical significance of additional layers is to calculate each layer’s relative
contribution to total covariance, and to choose a value of K where all layers have a contribution above
some cutoff (e.g. 0.1%). The Dirichlet prior on admixture proportions is quite harsh against intermediate
admixture values (see Table 1), encouraging the model to “not use” unnecessary layers if they are present in
the model, so that they will have a low contribution to overall covariance.

To calculate layer contributions, we use the following alternative description of our covariance model: the
genomes of any pair of individuals agree with some background probability at a locus, but this probability of
agreement is increased on any segment of genome that both have inherited from the same layer (the amount
it increases depends on how far apart they are geographically and on the decay of isolation by distance).
We use this characterization to quantify the relative contributions of each layer, by computing the average
contribution to increased probability of agreement as described in “Calculating layer contributions”). This
layer contribution is similar to the “ancestry contribution” proposed by [16]. However, each of our layers can
induce a different amount of covariance between samples embedded in them, so we take that into account
when calculating each layer’s contribution to the whole.

Simulations

To test the method, we first generated data using the coalescent simulator ms [52]. In each simulation, we
split a single ancestral population into K subpopulations τs units of coalescent time in the past, and at time
τe in the past, each of these discrete populations instantaneously colonized a separate 6× 6 square lattice of
demes. Migration on each lattice was to nearest neighbors (eight neighbors, including diagonals). Finally, at
time τa in the past, we collapsed those K discrete layers into a single grid of demes, choosing various amounts
of admixture from these different layers (see Fig 10). We collapsed the layers together using random, spatially
autocorrelated admixture proportions (see “Simulation details”). We simulated datasets using K = 1, 2,
and 3 layers; in each simulation we sampled 10,000 unlinked loci from each of 20 haploid individuals from
every deme. We then ran both spatial and nonspatial conStruct analyses on each simulated dataset with K
between 1 and 7, and compared predictive performance of the models using cross-validation. For comparison,
we also analyzed each simulated dataset using fastSTRUCTURE [16], using K = 2− 4.

With these simulations, spatial conStruct does not create spurious discrete groupings when there are
none: Figures 2, S5, and S10 show that subsequent layers beyond the number used for simulation are unused.
When data are simulated with K = 1 but analyzed with K > 1, the layers are present, but contribute very
little to any population. Even when the spatial model is run with K = 7, the inferred admixture proportions
are nearly identical to those estimated under the true value of K for each simulation. Moreover, the method
infers the true admixture proportions with high accuracy, tight precision, and good coverage (Figs S8 and
S13).
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Fig 2. Results for data simulated using K = 1, showing maps of admixture proportions estimated using the
nonspatial model for K = 2 through 4 (top row) and the spatial model for K = 2 through 4 (bottom row).
Since there is only a single layer in the simulation, the spatial model accurately depicts the data in all cases,
while the nonspatial model creates spurious clusters.

In contrast, the nonspatial model describes geographic variation using gradients of admixture between
more and more discrete clusters to better approximate the continuous, spatial patterns of relatedness (depicted
in Figs 2 and S1). The fastSTRUCTURE results are qualitatively similar, as shown in Figs S14-S16. Each
nonspatial cluster is in truth genetically more similar within itself than it is to other clusters, but we know
that these boundaries are arbitrary, because the data were simulated without them.

The spatial model’s better fit is reflected by increased predictive accuracy: as shown in Fig 3, across
all models and choices of K, the spatial model is correctly preferred over the nonspatial model. As desired,
predictive accuracy of the spatial model increases until the true value of K, and then plateaus or declines
(Figs 3, S3, S7, and S12), while predictive accuracy of the nonspatial model increases as subsequent clusters
are added.

The unimportance of spurious layers can be seen in plots of layer contributions (Figs 4, S6, and S11). In
the spatial analyses, once we pass the true K, subsequent layers add little in terms of (co)variance explained;
in contrast, additional clusters in the nonspatial analyses continue to contribute substantially.

Empirical Applications

To further demonstrate the utility of this method, we also applied conStruct to empirical population genomic
data from two systems: a contact zone between two poplar species in northwestern North America, and a
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Fig 3. Cross-validation results for data simulated under K = 1, K = 2, and K = 3, comparing the spatial
and nonspatial conStruct models (in blue and green, respectively) run with K = 1 through 7. The inset
plots zoom in on cross-validation results outlined in the dotted boxes. The spatial model shows better model
fit at every value of K.
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Fig 4. Results for data simulated using K = 1, showing layer/cluster contributions (i.e., how much each
layer/cluster contributes to total covariance), from conStruct runs using K = 1 through 7 for the spatial
model (left), and the nonspatial model (right). In each run of the nonspatial model, a single layer explained
nearly all the covariance (additional bars are present but not visible).
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large North American sample of black bears.

Poplars

Trees in the genus Populus (poplars, aspens, and cottonwoods) are distributed throughout the Northern
Hemisphere; species in the genus regularly co-occur and, where they do, they frequently hybridize [53,54].

Populus trichocarpa, the black cottonwood, and Populus balsamifera, the balsam poplar, have a broad
zone of overlap in the Pacific Northwest, where they are hypothesized to hybridize [55, 56]. Both species are
sampled over a large geographic region, and show spatial patterns of genetic and phenotypic variation [57,58],
making the system well-suited for application of our method. We organize the results of our analyses around
the following questions:

1. To what degree has hybridization blurred the boundaries between trichocarpa and balsamifera? (As an
extreme case, does genetic differentiation support these as separate species, as opposed to a single cline
of ancestry?)

2. Does the only significant boundary of population structure fall along the species boundary (if any), or
is there sub-structuring within species?

3. Does the strength of isolation by distance differ between inferred layers? This may indicate, e.g.,
different speeds of postglacial expansion or primary modes of dispersal.

We use data from [55], consisting of 434 individuals sampled from 35 drainages genotyped at just over
33,000 loci (map of the sampling shown in Fig S17). The number of individuals per drainage ranged between 1
and 50, with most sampling concentrated on trichocarpa drainages. The data were generated using RAD-seq,
and showed a strong pattern of bias in allelic dropout (the majority of missing data were from drainages with
only Populus balsamifera individuals). To ameliorate some of the problems that arise when there is a strong
bias in which data are missing, we dropped loci for which any data were missing, resulting in just over 20,200
loci retained for analysis. We then analyzed these data, grouped by drainage, using both the spatial and
nonspatial conStruct models, using K = 1 through 7, and compared these models using cross-validation.
For comparison, we also ran fastSTRUCTURE [16] using K = 1 through 7. The results of all these analyses
are shown in Figs 5 and 6, as well as in Figs S18 - S23 in the Supplementary Materials.

All models with K > 1 assigned the majority of each of the two species to distinct layers, with some
populations drawing ancestry from multiple layers. Based on cross-validation results, we view the K = 3
spatial model as a sufficient description of the data, with additional structure of uncertain significance. This
provides strong support for discrete population structure between the two species, with some admixture,
rather than a single, continuous cline of ancestry. At all values of K > 1, discrete population structure was
mostly partitioned along species lines; at values of K above 2, further discrete substructure was inferred
within the P. trichocarpa samples, with no substructure within balsamifera. There was also strong support for
isolation by distance in the dataset, but most of this signal seems to derive from the P. trichocarpa samples:
as seen in Figs 5d-f and S20, there is almost no isolation by distance within the balsamifera layer (αD ≈ 0).
Both points are in agreement with [59], who found low diversity within the region’s balsamifera, probably as
the result of a recent postglacial expansion.

A consistent split between layers within trichocarpa fell along the “no-cottonwood belt,” a region along
the central coast of British Columbia in which black cottonwood is absent (the break between yellow and red,
for K ≥ 3). The no-cottonwood belt is hypothesized to divide the species’ distribution into northern and
southern groups, which, in a provenance test, were experimentally shown to display differences in ecologically
relevant phenotypes (e.g., pathogen resistance, [60,61]). At higher values of K, drainages at the southern
tip of trichocarpa sampling begin to split out into their own layers, perhaps due to introgression from the
southern neighbors P. angustifolia or fremontii [55, 62]
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Fig 5. Maps of admixture proportions estimated for the Populus dataset using the spatial model for K = 2
through 4 (a-c), as well as the corresponding layer-specific covariance curves estimated under each model
(d-f).
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Fig 6. Cross-validation results for Populus dataset comparing the spatial and nonspatial conStruct models
run with K = 1 through 7. The first panel in each row shows all results; the second panel zooms in on the
results from analyses run with K = 2 through 7.

Both nonspatial conStruct and fastSTRUCTURE displayed the successive partitioning of space and the
clines of admixture seen in the simulation results. The details of each were somewhat different (Fig S19 vs.
Fig S23), and also differed across the replicate analyses.

Black bears

The American black bear, Ursus americanus, is endemic to North America and has a broad distribution across
the continent. During the last glacial maximum, black bears were confined to isolated glacial refugia, from
which they subsequently expanded to occupy their current range [63–66], likely leading to both continuous
and discrete patterns of genetic structure. We organize our results around the following questions:

1. How many distinct populations are reflected in modern patterns of genetic variation?

2. How strong is isolation by distance within each inferred group?

Distinct popualations likely represent different glacial refugia, and differing strengths of isolation by distance
might indicate different levels of habitat connectivity, dispersal behavior, or different postglacial histories.

We use data from [66], consisting of 95 individuals sampled across the United States and on the West
coast of Canada, genotyped at just under 22,000 bi-allelic loci. The distribution of missing data across
these individuals was uneven, with a few individuals representing most of the missing data, so we removed
individuals with greater than 4% missing data, resulting in a final dataset of 78 individuals. We then analyzed
these data, treating individuals as the unit of analysis, using both the spatial and nonspatial conStruct
models with a K of between 1 and 7, and compared these models using cross-validation. We also ran
fastSTRUCTURE [16] on the same dataset, using K = 2 through 4. The results of these analyses are shown
in Figs 7 - 9, as well as in Figs S24 - S28 in the Supplementary Materials.

The results partition the sampled bears into two main groups: one (red) to the east of the Rocky Mountains,
which also occurs in Alaska, the other primarily west of the Rockies (blue) (Fig 7a). The disjointed range of
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Fig 7. Maps of admixture proportions estimated for the black bear dataset using the spatial model (left)
and the nonspatial model (right) for K = 3. Pies show mean admixture results across individuals within
their diameter, and the admixture results for all individuals included within each group are shown in the plot
above.
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Fig 9. Layer/cluster contributions (i.e., how much total covariance is contributed by each layer/cluster), for
all layers estimated in runs using K = 1 through 7 for the spatial model (left), and for all clusters using the
nonspatial model (right). For each value of K along the x-axis, there are an equal number of contributions
plotted. Colors are consistent with Fig 7.

the blue layer likely reflects the fact that Canada was not sampled, and so the red layer may extend through
the intervening (unsampled) northern Great Plains and Canadian Shield, with the blue layer presumably
then stretching up into British Columbia.

Additional layers in the spatial model have strong statistical support up until around K = 5 or 6 (Fig
8), but additional spatial layers beyond K = 2 contribute little to total covariance (Fig 9). The locations
of admixed individuals are consistent with a scenario of postglacial expansion from two refugia, one in the
American Southwest and one in the American Southeast, meeting near the Northwest coast of North America
and the Cascade Range. However, lack of any samples from Canada and Mexico, and lack of denser sampling
across northern North America, make more detailed interpretations untrustworthy.

Results from the nonspatial model clearly exhibit the tendency of nonspatial clustering algorithms
to describe continuous spatial patterns of divergence using gradients of admixture between clusters. For
example, in Fig 7b, the third cluster (in gold) exhibits a clear East-West gradient that overlays the discrete
structure between the Southwest cluster and the Southeast. The results from fastSTRUCTURE are are not
identical to those obtained using the nonspatial model, but they do show the same tendency: e.g., at K = 3,
fastSTRUCTURE splits the westernmost Alaskan samples out of the cluster with the eastern samples, and at
K = 4, it splits them into their own cluster entirely (Fig S28).

Across all values of K for which we ran conStruct, we see strong support for the spatial model over the
nonspatial model (Fig 8). This pattern may resolve a discrepancy between our results and previous analyses
that split Alaskan and British Columbian bears out into their own cluster with an inferred Beringian glacial
refugium [64–66]. Our model, which explicitly incorporates a spatial decay of relatedness, allows somewhat
genetically differentiated individuals that are sampled far from one another to belong to the same layer,
instead of splitting these individuals out into successive clusters (e.g., Fig S24d vs S25d).
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Discussion

In this paper, we have presented a statistical framework, conStruct, for simultaneously modeling continuous
and discrete patterns of population structure. By employing the sensible default assumption that relatedness
ought to decay with geographic distance, even within a population, we avoid erroneously ascribing population
differentiation to discrete population clusters. To aid comparison between models, we present a cross-validation
approach as well as a way to describe the contribution of each spatial layer to the model (but caution against
overly strict interpretation of either).

The method performs well on simulated data: we accurately infer the admixture proportions used to
simulate the data and accurately pick the simulating model as the best model using our cross-validation
procedure. Two empirical applications of conStruct to samples of North American poplars and black bears
yield reasonable results, and demonstrate that, by acknowledging isolation by distance, real datasets can be
better described using fewer layers.

The proposed method combines the utility of model-based clustering algorithms with a biologically realistic
model of isolation by distance. We anticipate that conStruct will be useful for identifying populations and
determining samples’ ancestry in and across them, especially when the populations exhibit spatial patterns of
relatedness.

Comparison to nonspatial model-based clustering Above, we showed that (a) the nonspatial conStruct
model recapitulates results of other, commonly-used nonspatial clustering methods, and (b) conStruct can
concisely capture spatial structure, which will be common within populations. Given this, when should
methods without spatial capability be used? One advantage these have over conStruct is speed when the
number of samples is large. Although conStruct’s computation time is independent of the number of loci
included in the dataset (after the initial calculation of the allelic covariance), it currently scales poorly
with number of samples. The computationally limiting step is the inversion of the parametric covariance,
which scales more than quadratically with the number of samples, whereas computation time for, e.g.,
STRUCTURE, scales linearly with number of samples. Our speed, on datasets with large sample sizes,
could be improved by adopting rank-one updates to the inverse of the covariance matrix (e.g., [67, 68]) when
updating a sample’s admixture proportions, which alters only a single row/column of the covariance matrix.
We have not implemented this yet, as it would likely mean losing the ability to do efficient, Hamiltonian
Monte Carlo sampling of our parameters.

For a relatively small number of samples, conStruct can be much faster than other nonspatial clustering
methods. On a desktop machine, using a single 4.2 GHz Intel Core i7 processor, an analysis of the black
bear dataset (78 samples, 21,000 loci) running conStruct’s spatial model with 4 layers for 5,000 MCMC
iterations (which was more than sufficient for convergence) took 2.8 hours. On the same machine and
dataset, a fastSTRUCTURE run with K = 4 took 90.2 hours. However, for a large number of samples,
fastSTRUCTURE (or ADMIXTURE) would be much faster.

Choosing the “best” number of layers Although we recognize the utility of choosing a single, “best”
value of K, and using only that analysis to communicate results, we emphasize that the choice of best K is
always relative to the data in hand and the questions to be answered. From a statistical perspective, unless
the data were generated under the model itself, the support for larger values of K is likely to increase with
increasing amounts of data. In the limit of infinite data, the best value of K may be the number of samples
included in the dataset [69].

From a biological perspective, it is important to stress that patterns of relatedness between individuals
and populations are shaped by complex spatial and hierarchical processes. All individuals within a species
(and indeed, all individuals across all species), are related to one another in some way, and summarizing that
relatedness with a single value of K may be reductive or misleading. We therefore encourage users to perform
analyses across different values of K and observe which layers split out at what levels (this is conceptually
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similar to taking successively shallower cross-sections of the population phylogeny), and also to take the
results of the proposed cross-validation procedure with a large grain of salt. Calculating layer contributions
may also be a useful heuristic, as it can reveal layers with statistical support but small biological import.

Although we believe our model adds spatial realism to the groups used by clustering methods, it is
important to note that the layers detected by our method do not necessarily correspond to distinct, ancestral
populations; nor does a non-zero admixture proportion indicate that admixture (i.e. gene flow) must have
occurred. Both groupings and admixture proportions should be viewed as hypotheses that should be subject
to further testing (see [70] for an in-depth discussion of these points).

Implications for management and conservation Because isolation by distance is common, a likely
result of applying conStruct to existing data is that some populations previously identified using nonspatial
clustering methods may be collapsed into each other. This “lumping” might better reflect biological reality,
but may also have implications for management decisions and conservation policy, both of which are often
predicated on the identification of discrete “management units” (MUs) identified using genetic data [2–4].

It is therefore important to stress that individuals sampled from the same conStruct layer may be quite
genetically diverged from one another, perhaps especially at loci underlying adaptive traits, and that a
conStruct layer may still contain multiple distinct MUs worthy of independent protections. Alternatively,
the inclusion of multiple MUs into a single conStruct layer may occur if these populations are currently
(or were recently) exchanging migrants, and thus might emphasize the importance of maintaining habitat
corridors between demes, or of implementing an integrated conservation plan across multiple demes within a
layer.

Caveats and considerations There are a few important caveats to consider in the interpretation of
conStruct results. First, we have modeled allelic covariance within a layer as a spatial process. Although
there is flexibility built into the model about the shape of that covariance, inference may be misleading if the
sampling geography departs radically from the way the sampled organisms disperse (or have dispersed) on
their landscape. For example, if we were to run a conStruct analysis using geographic distances between
sampled individuals of greenish warblers [71] or Ensatina salamanders [72] — two canonical examples of rings
species — we might get misleading results. This is because distance between locations on either side of the
species’ distributions (across the Tibetan plateau and the Central Valley, respectively) is not representative
of the path traversed in the coalescent of a pair of alleles sampled at those locations.

A second caveat is that, in some instances, membership in the same layer may not mean that samples
are particularly related. If covariance within a layer decays sharply with distance, and the layer-specific
relatedness parameter φ(k) is low, individuals separated by a large spatial distance may be in the same layer
but have very low pairwise relatedness. It is possible that this is happening in Fig S18. At K = 3, the
southernmost populations of P. trichocarpa are in the gold layer, whose other neighbors are to the north,
with an intervening group of populations in the red layer, and at K = 5, those southernmost samples split
out and become their own layer. Again, we encourage users to run analyses across multiple values of K, and
to examine the spatial covariance functions within layers when interpreting results.

Extensions and future directions There are several ways in which the model described in this paper
might be extended or improved. For example, we currently assume that all layers within a model are equally
unrelated (a star population phylogeny, although the branches can have different lengths thanks to the φ(k)

parameter), similar to the F-model of [12]. However, we could extend the existing model by implementing a
relatedness structure between the layers by, for example, estimating a population phylogeny between them
(e.g, [6]).

In addition, here we have assumed that samples have known geographic coordinates, and that they draw
ancestry from layers only at those sampled locations. A natural extension would be to attempt to “geo-locate”
the ancestry of samples without geographic coordinates [35]. We could also imagine letting samples draw
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ancestry from other geographic coordinates, as we have done in a previous approach [37] to model long
distance dispersal. We could even allow entire layers to bud off of a particular location on another layer. This
would enable more explicit modeling of range expansion or domestication, in which a set of individuals are
thought to have ancestry that originated from a particular geographic location embedded in a larger pattern
of isolation by distance.

A final direction would be to model relatedness within a layer as a spatiotemporal process, in which
covariance decays both with distance in space and in time. As the number of genotyped historical or ancient
samples increases, it is becoming possible to ask whether there is genetic continuity at a point in space across
time, or whether populations are being replaced [73–77]. However, we expect allele frequencies to change
through time in a population, even without replacement, simply due to drift. Therefore, a natural way to test
for population replacement is to estimate the rates at which relatedness within a layer decays with time in
the same way we do in the current model with space, in which case a change in discrete population structure
across space is comparable to population replacement across time.

Materials and Methods

Model rationale

Drift, admixture, and space

Here we sketch a simple model of allele frequencies and their covariances, to justify the form given in the
main text.

Drift We first provide a simple model of allele frequencies within a layer. Imagine a sample i that draws
all of its ancestry from layer k. The allele frequency in sample i at locus `, denoted Fi,`, can be written as
the sum

Fi,` = ε` + ∆
(k)
` + ∆

(k,i)
` + ∆

(i)
` . (6)

The first term is the ancestral allele frequency ε` shared by all samples; the second is the deviation from that
ancestral frequency due to drift in the ancestral population of the kth layer, which is shared by all samples
within the layer. The third term is the deviation of the ith sample away from the kth layer mean due to the
spatial process of drift and migration within the layer. The final term is the deviation specific to the ith
sample, which captures drift not shared by all samples at the population level (i.e., subpopulation-specific
drift due to, e.g., inbreeding). We will assume that these four deviations are all uncorrelated with each other.

If we have two samples i and j drawn from layer k, their covariance across loci will be

Var(ε) + Var
(

∆(k)
)

+ Cov(∆
(k,i)
` ,∆

(k,j)
` ) + δi=jVar

(
∆(i)

)
, (7)

where the quantity δi=j is an indicator variable that equals 1 when i is equal to j and 0 otherwise, as in Eq.
(3).

Admixture The model above describes the simple case in which samples draw 100% of their ancestry
from only a single layer each. To accommodate admixture between layers, we model sampled genomes as
drawn from allele frequencies that are weighted averages of the local frequencies in each layer from which

they draw ancestry. The weights, w
(k)
i , describe the “admixture proportion” of sample i in layer k. (Note

that
∑K
k=1 w

(k)
i = 1 for each i.) These can be interpreted as the proportion of the genome in the ith sample

that came from the kth layer (or the probability that an allele at a locus is drawn from layer k). The allele
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frequency in the ith sample at the `th locus can therefore be written as:

Fi,` = ε` +
∑
K

w
(k)
i

(
∆

(k)
` + ∆

(k,i)
`

)
+ ∆

(i)
` , (8)

and so the covariance between i and j across loci is

Ωi,j = Var(ε) +
K∑
k=1

w
(k)
i w

(k)
j

(
Var

(
∆(k)

)
+ Cov(∆

(k,i)
` ,∆

(k,j)
` )

)
+ δi=jVar(∆i). (9)

Space Under our nonspatial model, we assume that Cov(∆
(k,i)
` ,∆

(k,j)
` ) = 0, so that the only additional

covariance between i and j (above that induced by a shared ancestral frequency at each locus) is due to
the drift in the ancestral population of their layer (the variance of which is φ(k)). Under our spatial model
we assume that some of the covariance in allele frequencies between i and j decays as a function of the
geographic distance between the pair, Di,j , so that

Cov(∆
(k,i)
` ,∆

(k,j)
` ) = α

(k)
0 ×

(
exp

(
−(α

(k)
D Di,j)

α
(k)
2

))
. (10)

We note that this form is chosen for its flexibility, and not because it matches any explicit population genetic
model of isolation by distance.

Allelic covariance

To see how to arrive at our empirical variance-covariance expression (Eq. (1)) pick a random locus and let A
and B be randomly drawn alleles at that locus from populations i and j respectively. If i = j, then these
are chosen without replacement. Suppose these are each coded as ‘0’ or ‘1‘ (where ‘0’ denotes a reference
allele), but we randomly “flip” this coding, so that we let X = A and Y = B with probability 1/2, but

otherwise we let X = 1−A and Y = 1−B. We then let Ω̂i,j = cov[X,Y ]. Sampling without replacement
makes the statistic insensitive to sample size, and random allele flipping makes it independent of the choice
of reference allele. By conditioning on the flip, and using the fact that E[X] = E[Y ] = 1/2, Eq. (1) comes
from the observation that

cov[X,Y ] = E[(A− 1/2)(B − 1/2)]. (11)

The factor of δi,j/(Ni − 1) comes from the fact that if i = j, then E[AB] is the probability that both alleles
drawn without replacement are reference, which is f2

i n/(n− 1).

Likelihood If allele frequency deviations are well approximated by a Gaussian, their sample allelic covariance
is a sufficient statistic, so that calculating the likelihood of their sample allelic covariance is the same as
calculating the probability of the frequency data up to a constant. We can therefore model the covariance of
the sample allele frequencies, Ω̂, as a draw from a Wishart distribution with degrees of freedom equal to the
number of loci L across which the sample allelic covariance is calculated:

Ω̂ ∼ W (LΩ, L) (12)

where W is the Wishart likelihood function.
A benefit of directly modeling the sample allelic covariance is that, after the initial calculation of the

sample covariance matrix, the computation time of the likelihood is not a function of the number of loci, so
inference can theoretically be done using whole genome data.
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Parameter Description Prior

γ
global covariance due to shared an-
cestral frequency

γ ∼ N (µ = Var(f̄), σ = 0.5)

α
(k)
0

controls the sill of the covariance
matrix in layer k α

(k)
0 ∼ N (µ = 0, σ = 1)

α
(k)
D

controls the rate of the decay of
covariance with distance in layer k α

(k)
D ∼ N (µ = 0, σ = 1)

α
(k)
2

controls the shape of the decay of
covariance with distance in layer k α

(k)
2 ∼ U(0, 2)

ηi
the nugget in population i (popu-
lation specific drift parameter)

ηi ∼ N (µ = 0, σ = 1)

φ(k) layer-specific shared drift in layer
k

φ(k) ∼ N (µ = 0, σ = 1)

wi
admixture proportions sample i
draws across K layers

wi ∼ Dir(α1...αK = 0.1)

Table 1. List of parameters used in the conStruct model, along with their descriptions and priors. The
mean of the Normal prior on γ, Var(f̄), is the variance of the sample mean allele frequencies across loci.

Models, parameters, and priors

Spatial versus nonspatial In this paper, we discuss two types of models, spatial and nonspatial, each of
which can be implemented with different numbers of layers/clusters. The spatial model is parameterized as
in Eq. (9), and the nonspatial model is a special case of the spatial model with all α parameters is set to 0.
The nonspatial model therefore has 3K fewer parameters than the spatial model, because there are three α
parameters that describe the continuous differentiation effect of distance in each layer.

Single layer Each of these models can be run with a single layer (K = 1), in which case the layer-specific
covariance parameter φ(k) and the global covariance parameter γ become redundant. The single-layer model
is therefore a special case of the multi-layer model, in which we set φ to zero. For the spatial model, the
single-layer parametric covariance is:

Ωi,j = Var(ε) + α
(k)
0 ×

(
exp

(
−(α

(k)
D Di,j)

α
(k)
2

))
+ δi=jVar(∆i), (13)

and for the nonspatial model, it is:

Ωi,j = Var(ε) + δi=jVar(∆(i)). (14)

Priors We use a Bayesian approach to parameter inference. A table of all parameters, their descriptions,
and their priors is given in Table 1.

Cross validation

We employ Monte Carlo cross-validation approach for model comparison [78]. This procedure generates a
mean predictive accuracy for each model and each value of K, as well as a confidence interval around that
mean, which can then be used for model comparison or selection. Briefly, we follow the following procedure:

1. For each of X replicates:
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(a) partition the allele frequency data into a 90% “training” partition (F x1 ) and a 10 %“testing”
partition (F x2 )

(b) run our inference procedure on the training partition to estimate model parameters θmk for:

i. m: the spatial and the nonspatial model

ii. k: the number of layers/clusters 1 through K

(c) calculate the mean log likelihood of the testing data partition over the posterior distribution of
training-estimated parameters for each model (L̄(F x2 | θmk), henceforth L̄xmk)

(d) generate standardized mean log likelihoods, Zxmk, across models:

i. identify the highest mean log likelihood, L̄max
xmk

ii. subtract L̄max
xmk from L̄xmk across all models, such that the standardized log likelihood, Zxmk,

of the best model is 0, and less than 0 for all inferior models.

2. For each model (i.e., each combination of m and k) calculate the mean (Z̄mk) standardized log likelihood
of the testing data partition across X replicates, as well its standard error (SEZ̄mk

) and 95% confidence
interval (Z̄mk ± 1.96× SEZ̄mk

).

Calculating layer contributions

Let A and B be randomly chosen alleles from samples i and j respectively, at a randomly chosen locus (if
the two populations are the same, then choose without replacement). Then, if we let U = 2(A− 1/2) and
V = 2(B − 1/2), since U and V take the values ±1, so as in Eq. (11),

E[UV ] = P{U = V } − P{U 6= V }
= 2P{U = V } − 1

= 2P{A = B} − 1

To translate, P{U = V } is the probability that the alleles from our two focal samples agree with each other,
while P{U 6= V } is the probability that they disagree. This implies that E[UV ] = 1− 2πij , where πij is the
probability that two randomly chosen alleles differ, which is the genetic divergence.

Now, here is a generative model that gives us the form of the covariance we have postulated. To decide
whether or not A and B will agree, first each sample randomly chooses a layer: call these layers I and J .

The probability that A chooses layer k is P(I = k) = w
(k)
i , the ith sample’s admixture proportion in the kth

layer. The same holds true for B. If they do not choose the same layer, the probability that they agree is pγ .

If they do choose the same layer, then they agree with a probability pγ + q
(k)
ij that depends on their distance

apart. By the above, the probability of agreement is P{A = B} = 2 cov[A,B] + 1/2, and so

pγ = (2(γ + δijηi) + 1/2)

q
(k)
ij =

(
2α

(k)
0 exp

(
−
(
α

(k)
D Dij

)α(k)
2

)
+ 2φ(k) + 1/2

)
.

One way to summarize the contribution of each layer is to partition the probability of agreement into
contributions due to agreement “in” each layer. So, the contribution from layer k to agreement between i

and j is w
(k)
i w

(k)
j q

(k)
ij /(pγ +

∑K
k=1 w

(k)
i w

(k)
j q

(k)
ij ), which is the probability, given that they agree, that they

agree thanks to layer k. Similarly, the “background” contribution is pγ/(pγ +
∑K
k=1 w

(k)
i w

(k)
j q

(k)
ij ). Because

our signal comes from variation in covariance, we omit the pγ terms. Stated in this way, this quantity is the
relative contribution of the kth layer to the (model-based) kinship coefficient between i and j.
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This suggests defining the overall contribution of layer k to agreement, ξ(k), to be the average of that
quantity over i and j:

ξ(k) =
N∑
i=1

N∑
j=i

w
(k)
i w

(k)
j

(
2α

(k)
0

(
exp

(
−(α

(k)
D Di,j)

α
(k)
2

))
+ 2φ(k) +

1

2

)
, (15)

which is that layer’s contribution to agreement between samples summed over the upper triangle (excluding
the diagonal) of the covariance matrix. We define the contribution of the kth layer, Ξ(k), as the relative
contribution of the kth layer to total agreement:

Ξ(k) =
ξ(k)

K∑
k=1

ξ(k)

. (16)

This is the quantity that is plotted in, e.g., Figures 4 and 9.

Simulation details

We wished to simulate data under a model that had some biological realism, but at the same time had
unambiguous true admixture proportions (so as to test the behavior of the method). This second requirement
precluded scenarios of, e.g, recent secondary contact between populations expanding out of different refugia,
which would have more biological realism, but no unambiguous ancestry proportions for admixed populations.
Here, we describe in more detail the procedure we use to simulate our test dataset, using a cartoon schematic
with K = 2 as an example (Fig 10).

Using the program ms [52], we generated discrete population structure by simulating K distinct populations,
each of which split from a common ancestor τs units of coalescent time in the past, without subsequent
migration between them. Then, to generate continuous differentiation within each population, at time τe
in the past, each of these discrete populations instantaneously colonizes an independent lattice of demes,
for which we use a stepping stone model with symmetric migration to nearest neighbors (eight neighbors,
including diagonals).

Finally, at time τa in the past we generate a single dataset by collapsing those K discrete lattices into a
single grid of demes that are admixed to various degrees from these different layers. We wish to simulate
realistic patterns of admixture (and thereby set a more difficult test for the method), by generating spatially
autocorrelated admixture proportions in each diverged population. To do so, we first place K equidistant
points on the circle centered on our lattice. These points serve as “foci” of ancestry in each of the K layers.
We then calculate the distance from each deme in the sampled lattice to each of these K foci, and draw
admixture proportions for each deme from a Dirichlet distribution for which the concentration parameter for
deme i in layer k is inversely proportional to the distance between deme i and focus k. This creates a pattern
in which the admixture proportions in a given layer decreases with the distance from that layer’s focus, as
might be expected if a spatial process were mediating admixture between diverged populations.
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Fig 10. Schematic of how we simulate datasets with continuous and discrete differentiation, using K = 2 as
an example. Going forward in time, the K populations split from a common ancestor at time τs, then
expand to each colonize a lattice of demes with nearest-neighbor symmetric migration at time τe, then finally
at time τa collapse into a single lattice consisting of demes with ancestry entirely in one or the other of the
populations, or admixed between them.
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Fig S1. Map of admixture proportions estimated using a nonspatial model for K = 2 through 7. The data
were simulated using one layer with nearest-neighbor symmetric migration between demes.
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Fig S2. Map of admixture proportions estimated using a spatial model for K = 2 through 7. The data were
simulated using one layer with nearest-neighbor symmetric migration between demes.
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Fig S3. Cross-validation results for data simulated under K = 1, comparing the spatial and nonspatial
conStruct models run with K = 1 through 7. The right panel zooms in on just the spatial cross-validation
results.
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Fig S4. Map of admixture proportions estimated using a nonspatial model for K = 2 through 7. The data
were simulated using two layers with nearest-neighbor symmetric migration between demes.
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Fig S5. Map of admixture proportions estimated using a spatial model for K = 2 through 7. The data were
simulated using two layers with nearest-neighbor symmetric migration between demes.
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Fig S6. Layer/cluster contributions (i.e., how much total covariance is contributed by each layer/cluster),
for all layers estimated in runs using K = 1 through 7 for the spatial model (left), and for all clusters using
the nonspatial model (right). Data were simulated using K = 2. For each value of K along the x-axis, there
are an equal number of contributions plotted.
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Fig S7. Cross-validation results for data simulated under K = 2, comparing the spatial and nonspatial
conStruct models run with K = 1 through 7. The right panel zooms in on just the spatial cross-validation
results.
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Fig S8. Plot of conStruct ability to correctly estimate admixture proportions on simulated data. Results
are from an analysis with a spatial model using K = 2.
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Fig S9. Map of admixture proportions estimated using a nonspatial model for K = 2 through 7. The data
were simulated using three layers with nearest-neighbor symmetric migration between demes.
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Fig S10. Map of admixture proportions estimated using a spatial model for K = 2 through 7. The data
were simulated using three layers with nearest-neighbor symmetric migration between demes.

37

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 15, 2017. ; https://doi.org/10.1101/189688doi: bioRxiv preprint 

https://doi.org/10.1101/189688
http://creativecommons.org/licenses/by-nd/4.0/


1 2 3 4 5 6 7

la
ye

r 
co

nt
rib

ut
io

n

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 2 3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

number of layers

Layer contributions (K=3)

Fig S11. Layer/cluster contributions (i.e., how much total covariance is contributed by each layer/cluster),
for all layers estimated in runs using K = 1 through 7 for the spatial model (left), and for all clusters using
the nonspatial model (right). Data were simulated using K = 3. For each value of K along the x-axis, there
are an equal number of contributions plotted.
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Fig S12. Cross-validation results for data simulated under K = 3, comparing the spatial and nonspatial
conStruct models run with K = 1 through 7. The right panel zooms in on just the spatial cross-validation
results.
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Fig S13. Plot of conStruct ability to correctly estimate admixture proportions on simulated data. Results
are from an analysis with a spatial model using K = 3.
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Fig S14. Map of admixture proportions estimated using fastSTRUCTURE [16] for K = 2 through 4. The
data were simulated using one layer with nearest-neighbor symmetric migration between demes.
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Fig S15. Map of admixture proportions estimated using fastSTRUCTURE [16] for K = 2 through 4. The
data were simulated using two layers with nearest-neighbor symmetric migration between demes.
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Fig S16. Map of admixture proportions estimated using fastSTRUCTURE [16] for K = 2 through 4. The
data were simulated using three layers with nearest-neighbor symmetric migration between demes.
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Fig S17. Map of the sampled Populus populations included in the analysis. The color of the sampling
location denotes the putative species.
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Fig S18. Maps of admixture proportions estimated for the Populus dataset using the spatial model for
K = 2 through 7.
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Fig S19. Maps of admixture proportions estimated for the Populus dataset using the nonspatial model for
K = 2 through 7.
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Fig S20. Plots showing the layer-specific parametric covariance curves estimated for the Populus data using
the spatial conStruct model run with K = 1 through 6. Line colors are consistent with layer colors in Fig
S18. Points are colored by the species they are a covariance between: black on black points are sample
covariances between populations of Populus balsamifera; green on black points are sample covariances
between balsamifera and trichocarpa; green on green points are sample covariances between trichocarpa and
trichocarpa.
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Fig S21. Plots showing the cluster-specific parametric covariances estimated for the Populus data using the
nonspatial conStruct model run with K = 1 through 6. Line colors are consistent with cluster colors in Fig
S19. Points are colored by the species they are a covariance between: black on black points are sample
covariances between populations of Populus balsamifera; green on black points are sample covariances
between balsamifera and trichocarpa; green on green points are sample covariances between trichocarpa and
trichocarpa.
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Fig S22. Layer/cluster contributions (i.e., how much total covariance is contributed by each layer/cluster),
for all layers estimated in runs using K = 1 through 7 for the spatial model (left), and for all clusters using
the nonspatial model (right). For each value of K along the x-axis, there are an equal number of
contributions plotted. Colors are consistent with Figs S18, S20, S19, and S21.
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Fig S23. Maps of admixture proportions estimated for the Populus dataset using fastSTRUCTURE [16] for
K = 2 through 7.
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Fig S24. Map of admixture proportions estimated for the bear dataset using the spatial model for K = 2
through 7.
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Fig S25. Map of admixture proportions estimated for the bear dataset using the nonspatial model for
K = 2 through 7.

50

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 15, 2017. ; https://doi.org/10.1101/189688doi: bioRxiv preprint 

https://doi.org/10.1101/189688
http://creativecommons.org/licenses/by-nd/4.0/


0 1 2 3 4

0.
16

0.
18

0.
20

0.
22

0.
24

0 1 2 3 4

0.
16

0.
18

0.
20

0.
22

0.
24

0 1 2 3 4

1
2

3
4

0 1 2 3 4

1
2

3

0 1 2 3 4

1
2

3
4

0 1 2 3 4

0
1

2
3

4

geographic distance

al
le

le
 fr

eq
ue

nc
y 

co
va

ria
nc

e

geographic distance

al
le

le
 fr

eq
ue

nc
y 

co
va

ria
nc

e

Fig S26. Plots showing the layer-specific parametric covariance curves estimated for the black bear data
using the spatial conStruct model run with K = 1 through 6.
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Fig S27. Plots showing the cluster-specific parametric covariances estimated for the black bear data using
the nonspatial conStruct model run with K = 1 through 6.
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Fig S28. Maps of admixture proportions estimated for the black bear dataset using fastSTRUCTURE [16]
for K = 2 through 4.
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