Telomere repeats induce domains of H3K27 methylation in Neurospora

Kirsty Jamieson ${ }^{1,3}$, Kevin J. McNaught ${ }^{1,3}$, Tereza Ormsby ${ }^{1}$, Neena A. Leggett ${ }^{1}$, Shinji Honda ${ }^{2}$ and Eric U. Selker ${ }^{1 *}$<br>${ }^{1}$ Institute of Molecular Biology, University of Oregon, Eugene, OR, USA 97403-1229<br>${ }^{2}$ Faculty of Medical Sciences, University of Fukui, Fukui, 910-1193 Japan<br>${ }^{3}$ These authors contributed equally to this work<br>*Corresponding author. Email: selker@uoregon.edu

Keywords: facultative heterochromatin/H3K27/telomere repeats/chromosome rearrangements/Polycomb/PRC2/telomerase/position effect


#### Abstract

Development in higher organisms requires selective gene silencing, directed in part by di-/trimethylation of lysine 27 on histone H3 (H3K27me2/3). Knowledge of the cues that control formation of such repressive Polycomb domains is extremely limited. We exploited natural and engineered chromosomal rearrangements in the fungus Neurospora crassa to elucidate the control of H3K27me2/3. Analyses of H3K27me2/3 in strains bearing chromosomal rearrangements revealed both position-dependent and position-independent facultative heterochromatin. We found that proximity to chromosome ends is necessary to maintain, and sufficient to induce, transcriptionally repressive, subtelomeric H3K27me2/3. We ascertained that such telomere-proximal facultative heterochromatin requires native telomere repeats and found that a short array of ectopic telomere repeats, (TTAGGG) ${ }_{17}$, can induce a large domain ( $\sim 225 \mathrm{~kb}$ ) of H3K27me2/3. This provides an example of a cis-acting sequence that directs H3K27 methylation. Our findings provide new insight into the relationship between genome organization and control of heterochromatin formation.


## INTRODUCTION

Methylation of lysine 27 on histone H3 (H3K27me) has emerged as an important repressive mark of the Polycomb group (PcG) system, which is critical for development in higher organisms. PcG proteins were initially discovered in Drosophila melanogaster as repressors of homeotic (HOX) genes during early embryogenesis (Lewis 1978) and play integral roles in the maintenance of cellular identity and differentiation in a variety of eukaryotes. Moreover, dysfunction of the PcG system commonly leads to disease, including cancer (Piunti and Shilatifard 2016; Conway et al. 2015). Biochemical work demonstrated that PcG proteins form two distinct histone-modifying complexes known as Polycomb Repressive Complex 1 and 2 (PRC1 and PRC2) (Müller et al. 2002; Wang et al. 2004). PRC1 mono-ubiquitinates lysine 119 on histone H2A (H2AK119ub1) with its E3-ubiquitin ligase subunit, Ring1, while PRC2 catalyzes mono-, di-, and trimethylation of histone H3 lysine 27 (H3K27me1/2/3) by its SET-domain component, EZH2 (Müller et al. 2002; Wang et al. 2004). PRC2, but not PRC1, is widely conserved in eukaryotes, including the filamentous fungus Neurospora crassa, but is absent in some simple eukaryotes such as the well-studied yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe (Jamieson et al. 2013). H3K27me2/3 covers approximately 7\% of the $N$. crassa genome, including about 1000 fully-covered genes, all of which are transcriptionally quiescent (Jamieson et al. 2013; Galazka et al. 2016). The greater than 200 H3K27me2/3 domains, which range from 0.5-107 kb, are widely distributed throughout the genome but are enriched at subtelomeric regions (Jamieson et al. 2013), as also reported for other fungi (Schotanus et al. 2015; Dumesic et al. 2015; Studt et al. 2016; Connolly et al. 2013).

In D. melanogaster, DNA regulatory regions known as Polycomb Response Elements (PREs) recruit PcG proteins to specific chromatin targets to maintain transcriptional silencing (Steffen and Ringrose 2014). In vertebrates and other organisms, however, the mechanism by which PcG proteins are directed to particular loci is elusive (Bauer et al. 2015). We show that the control of H3K27 methylation is fundamentally different from that of epigenetic marks in constitutive heterochromatin. Not only is the genomic distribution of H3K27 methylation much more plastic than that of H3K9 methylation (Jamieson et al. 2016; Mathieu et al. 2005; Deleris et al. 2012; Lindroth et al. 2008; Reddington et al. 2013; Hagarman et al. 2013; Wu et al. 2010),
but also, unlike DNA methylation and methylation of histone H3K9, which are faithfully methylated de novo when introduced at arbitrary ectopic genomic sites (Miao et al. 1994; Selker et al. 1987), we show that H3K27 methylation is often position-dependent. We further demonstrate that telomere repeats underpin the observed position effect on H3K27me by showing that loss of telomerase abolishes subtelomeric $\mathrm{H} 3 \mathrm{~K} 27 \mathrm{me} 2 / 3$ and that artificial introduction of telomere repeats at an interstitial site triggers deposition of H3K27me2/3. That is, telomere repeats themselves are both necessary for subtelomeric H3K27me2/3 and sufficient to trigger ectopic H3K27 methylation at internal chromosomal sites.

## RESULTS

Analyses of classical chromosome rearrangements suggest that proximity to a chromosome end is key to subtelomeric H3K27 methylation

To search for cis-acting sequences that trigger facultative heterochromatin formation in $N$. crassa, perhaps analogous to PREs in D. melanogaster, we dissected a 47 kb H3K27me2/3 domain on linkage group (LG) VIL. A series of eight, partially overlapping, three kb fragments from this domain were separately targeted to both the his-3 and the csr-1 euchromatic loci in a strain in which we had deleted the endogenous $\mathrm{H} 3 \mathrm{~K} 27 \mathrm{me} 2 / 3$ domain (Figure S1A). H3K27me2/3 chromatin immunoprecipitation (ChIP) followed by qPCR demonstrated the absence of de novo H3K27me2/3 within all eight segments when transplanted to either his-3 or csr-1 (Figures S1B and C).

To address the possibility that the failure to induce $\mathrm{H} 3 \mathrm{~K} 27 \mathrm{me} 2 / 3$ in the transplantation experiments was simply due to the size of the test fragments, we utilized strains with large chromosomal rearrangements (Perkins 1997). We first examined translocations that involved the H3K27me2/3 domain on LG VIL that we had dissected, starting with UK3-41, an insertional translocation strain that has an approximately 1.88 Mb segment of LG VR inserted into a distal position on LG VIL (Figure 1A). The translocation shifted most of LG VIL to a more interior chromosomal position. Interestingly, H3K27me2/3 ChIP-seq of UK3-41 showed an absence of H3K27me2/3 in the region that was displaced from the chromosome end (lost H3K27me2/3; indicated in orange in Figure 1A). This result is consistent with our finding that transplantation
of segments from this region did not induce methylation at his-3 or csr-1 and suggests that the normal methylation of this subtelomeric domain is position-dependent.

These results raised the question of whether H3K27me2/3 in this domain absolutely depends on its normal location, or whether the methylation would occur if the region were moved near another chromosome end. To address this possibility, we utilized OY350, a quasiterminal translocation that transfers a distal segment of LG VIL to the end of LG IR (Figure 1B). Analysis of OY350 by H3K27me2/3 ChIP-seq showed that the translocated LG VIL domain preserved its normal H3K27me2/3 distribution when placed adjacent to the adoptive telomere. This finding supported the hypothesis that H3K27me2/3 in this domain depends on its proximity to the chromosome end and suggested that this requirement is non-specific; the different chromosome end apparently substituted for the native one. A similar situation was observed on LG VIR in OY320 (Figure 1F).

The results described above suggested that proximity to a chromosome end may be sufficient to induce H3K27me. Interestingly, in addition to consistent losses of previously subtelomeric $\mathrm{H} 3 \mathrm{~K} 27 \mathrm{me} 2 / 3$ in the examined genomic rearrangements, we identified new H3K27me2/3 domains at novel subtelomeric regions. Striking examples of de novo H3K27me2/3 were independently observed in seven genome rearrangements at their new chromosome ends (Figures 1B-E and S4A-C; marked in green). These novel domains of H3K27me2/3 extended an average of approximately 180 kb into the new subtelomeric regions. The only apparent exception concerns translocation UK2-32 (Figure S4A), which involved the left end of LG $V$ with approximately one Mb of tandemly repeated rDNA that is not shown in the $N$. crassa genome assembly. Altogether, our survey of chromosomal translocations strongly suggests that chromosome ends promote the deposition of H 3 K 27 me on neighboring chromatin.

## Identification of position-independent H3K27-methylated domains

While domains of НЗК27me2/3 are enriched near the ends of chromosomes in $N$. crassa, substantial domains are also found elsewhere. To examine the possibility of positionindependent H3K27me2/3 residing within LG VIR, we examined the distribution of H3K27me2/3
in two translocations that effectively moved LG VIR to the middle of a chromosome. ALS159 is a reciprocal translocation that shifted wild-type LG VIR approximately 4.5 Mb away from the new telomere (Figure 1C). Although the shifted segment lost the H3K27me2/3 that was previously closest to the chromosome end, the more internal H3K27me2/3 was unaffected by the translocation (Figure 1C). Similarly, when LG VIR was inserted in the middle of LG III in OY329 (Figure 1D), most of the H3K27me2/3 on LG VIR was retained. Again, the H3K27me2/3 that was originally closest to the telomere was lost, however, consistent with the idea that subtelomeric H3K27me2/3 domains depend on their proximity to the chromosome ends.

To determine if the retention of $\mathrm{H} 3 \mathrm{~K} 27 \mathrm{me} 2 / 3$ from LG VIR was unique, we examined the position-dependence of two other H3K27me2/3 domains. In translocation NM149, approximately 600 kb of LG IIL was translocated onto the end of LG VR, effectively shifting the native right arm of LG V about 600 kb away from the chromosome end (Figure 1E). Like the behavior of LG VIR in ALS159 and OY329, losses of H3K27me2/3 occurred in the most distal section of LG VR, but most H3K27me2/3 was retained, even when moved away from the chromosome end. In addition, a large H3K27me2/3 domain on LG IIIR was shifted approximately 450 kb away from the chromosome end in OY320, yet it did not incur losses (Figure 1F). Taken together, these findings demonstrate that some H3K27me2/3 domains can be maintained when translocated to internal chromosomal sites, i.e. some H3K27me domains appear to be position-independent.

## Cis-trans test on H3K27 methylation in a segmental duplication strain reveals position effect

The observation that some chromosomal segments that are normally marked with H3K27me2/3 lose the mark when translocated to another genomic location suggested that H3K27me2/3 can be position-dependent. It remained formally possible, however, that the loss of H3K27me2/3 was an indirect effect of the translocation, perhaps due to an altered transcriptional program. To examine the possibility that one or more trans-acting factors could be responsible for the loss of H3K27me2/3 in OY329, we crossed this strain, which is in an Oak Ridge (OR) background, to a highly polymorphic wild-type strain, Mauriceville (MV), to obtain progeny with a segmental duplication, i.e. with the OR translocated LG VIR domain inserted into

LG II in a strain that also contained the corresponding region on the native LG VI of MV (Figure 2A). The high density of single nucleotide polymorphisms (SNPs) in the MV background allowed us to separately map the H3K27me2/3 distribution in the translocated (OR) segment and the wild-type (MV) segment (Pomraning et al. 2011). SNP-parsed H3K27me2/3 ChIP-seq showed that the duplicated chromosomal segments have distinct $\mathrm{H} 3 \mathrm{~K} 27 \mathrm{me} 2 / 3$ profiles (Figure 2B). The previously subtelomeric H3K27me2/3 that was lost in OY329 did not return in the duplication strain, nor was the loss in this region recapitulated on the native LG VIR of MV. The independent behavior of these homologous segments suggests that the loss of H3K27me2/3 in OY329 was not a result of trans-acting factors, but rather was a result of the translocation itself, i.e. it is a bona fide position effect.

## Altered gene expression in regions with changed H3K27me2/3

Considering that H3K27me2/3 normally marks transcriptionally quiescent chromatin in $N$. crassa (Jamieson et al. 2013), it was of obvious interest to ascertain whether ectopic H3K27me2/3 resulting from chromosomal translocations could cause gene silencing. To determine if the loss or gain of $\mathrm{H} 3 \mathrm{~K} 27 \mathrm{me} 2 / 3$ in the translocation strains activated or repressed gene expression, respectively, we performed poly-A mRNA sequencing on wild-type and seven translocation strains (ALS159, AR16, OY329, OY337, OY350, UK2-32, and UK3-41). Figures 3A and $B$ show gene expression and associated H3K27me2/3 levels in the wild-type and translocation OY350 strains at representative regions where former subtelomeres were moved and new ones created. The gain of H3K27me2/3 on LG VIL in OY350, due to formation of a novel subtelomere, coincided with reduced transcript levels relative to wild-type (Figure 3A). Conversely, the loss of H3K27me2/3 on LG IR in OY350, due to shifting the subtelomeric region, was associated with an increase in transcript abundance compared to wild-type (Figure 3B). Results of qPCR analyses of select genes confirmed these findings (Figure S3). Indeed, a comprehensive analysis of poly-A mRNA-seq data from all seven translocation strains showed increases in gene expression at previously subtelomeric regions that lost H3K27me2/3 and decreases in gene expression at novel subtelomeres that gained H3K27me2/3 (Figure 3C).

These findings demonstrate that chromosomal rearrangements can cause marked changes in both H3K27me2/3 and gene expression of the affected regions.

## Loss of telomerase abolishes subtelomeric H3K27me2/3

Our analyses of translocation strains demonstrated that domains of H3K27me2/3 can be position-dependent and suggested that a feature of chromosome ends directly or indirectly recruits H3K27me2/3 to subtelomeric regions. To investigate the basis of this, we utilized a mutant lacking the single telomerase reverse transcriptase (tert) that is responsible for all (TTAGGG) ${ }_{n}$ telomere repeats normally found on all $N$. crassa chromosome ends (Wu et al. 2009). Southern analysis of the tert strain using a (TTAGGG) ${ }_{n}$ probe revealed major reductions in the hybridization signals and showed that the majority of telomere fragments present in wild-type were either undetectable or greatly reduced in the mutant (Figure 4A). In S. pombe, the majority of trt1- (yeast homologue of $N$. crassa tert) survivors have circularized their chromosomes (Nakamura et al. 1998). To determine if $N$. crassa tert survivors also have circular chromosomes, we designed outwardly directed PCR primers to amplify sequences near the ends of each chromosome and tested whether fragments were generated by fusions of the right and left chromosome ends. Indeed, the tert genomic DNA, but not control DNA from a wild-type strain, supported amplification using the divergent primer pairs, confirming intrachromosomal fusions (Figure 4B).

We performed H3K27me2/3 ChIP-seq to determine whether the subtelomeric domains of $\mathrm{H} 3 \mathrm{~K} 27 \mathrm{me} 2 / 3$ were retained or lost in the tert strain and found clear evidence of loss of H3K27 methylation from chromosome ends (Figure 4C). With the exception of LG V, which is unique in that one of its ends is capped with approximately 150 copies of the approximately 9 kb rDNA repeat (Butler and Metzenberg 1990), all chromosomes lost their subtelomeric H3K27me2/3 domains, which typically extend tens of thousands of bp from their ends. Internal H3K27me2/3 domains were not noticeably altered (Figures 4C and S5). Sequencing of tert input DNA from the ChIP showed no reduction in coverage near the chromosome ends, confirming that the losses of H3K27me2/3 ChIP signal observed in tert are not caused by chromosome
degradation. We conclude that either (TTAGGG) ${ }_{n}$ telomere repeats or linear chromosome ends are required for position-dependent domains of H3K27me2/3 in N. crassa.

## Internal telomere repeats are sufficient to induce de novo H3K27me2/3

To determine if the presence of telomere repeats is sufficient to trigger the deposition of H3K27 methylation, telomere repeats, oriented in either direction, were targeted to the csr-1 locus. Due to the repetitive nature of these sequences and our cloning strategy, strains containing a variable number of (TTAGGG) repeats could be obtained through homologous recombination. Sequencing of inserted DNA in eight independent transformants revealed that the number of inserted telomere repeats ranged from 5 to 17. Native $N$. crassa telomeres have an average of 20 repeats (Wu et al. 2009). H3K27me2/3 ChIP-qPCR demonstrated that ectopic telomere repeats are sufficient to induce local H3K27me2/3 (Figure 5A). Even insertion of (TTAGGG) ${ }_{8}$ triggered some methylation and insertion of (TTAGGG) ${ }_{17}$ led to a high level of H3K27me2/3. ChIP-seq on the (TTAGGG) ${ }_{17}$ strain revealed new peaks as far as 170 kb from the insertion site and the semi-continuous H3K27me2/3 domain spanned approximately 225 kb including 30 genes (Figure 5B). This is comparable to the size of subtelomeric H3K27me2/3 domains that were lost in the tert strain.

## DISCUSSION

The proper distribution of the facultative heterochromatin mark, H3K27me2/3, deposited by PRC2, is necessary for appropriate gene expression in a variety of plants, animals and fungi (Wiles and Selker 2016). Unfortunately, the control of H3K27 methylation remains largely unknown. In D. melanogaster, DNA elements known as PREs are important to define domains of H3K27me and associated silencing, but even in this organism, PREs are neither sufficient in all genomic contexts, nor fully penetrant (Cunningham et al. 2010; Horard et al. 2000). In addition, it was recently found that deletion of a well-studied PRE in D. melanogaster did not significantly affect either gene silencing or H3K27 methylation at its native locus (De et al. 2016). The control of H3K27 methylation is less defined in mammals, in which only a few
candidate PRE-like elements have been identified (Basu et al. 2014; Sing et al. 2009; Woo et al. 2010).

We took advantage of a relatively simple eukaryote bearing H3K27me, the filamentous fungus $N$. crassa, to explore the control of this chromatin mark. Conveniently, H3K27me is nonessential in this organism, in spite of being responsible for silencing scores of genes (Klocko et al. 2016; Jamieson et al. 2013). Unlike the situation with constitutive heterochromatin in $N$. crassa (Miao et al. 1994; Selker et al. 1987), we demonstrated that not all facultative heterochromatin is entirely controlled by underlying sequence elements; transplanted genesized segments of a H3K27me domain do not, in general, become faithfully H3K27-methylated. However, translocations of large chromosomal segments revealed two distinct classes of transcriptionally repressive H3K27me domains, position-dependent and position-independent. Mechanistic insights from subsequent experiments defined these classes as telomere repeatdependent and telomere repeat-independent H3K27me. The identification of telomere repeats as potent signals for H3K27 methylation represents a major advance in our understanding of facultative heterochromatin formation in eukaryotes.

Our study took advantage of a collection of spontaneous and UV-induced chromosome rearrangement strains of $N$. crassa that were primarily collected and characterized by David Perkins (Perkins 1997). We surveyed representative rearrangement strains in which chromosomal regions containing domains of H3K27me were translocated to novel genomic positions. Strikingly, ChIP-seq revealed multiple cases in which subtelomeric H3K27me2/3 domains completely lost this modification when moved to an interior chromosomal location. Indeed, no exceptions to this rule were found. Generation and analysis of a segmental duplication strain containing differentially marked translocated and normal segments confirmed that the changed distribution of H3K27me2/3 was a bona fide position effect rather than an effect of a trans-acting factor (Figure 2). Moreover, new subtelomeric regions gained H3K27me2/3 over sequences that were previously devoid of this mark (Figure 1). We conclude that proximity to a chromosome end, per se, somehow induces deposition of H3K27me2/3 in domains that can span hundreds of kilobases. Analyses of polyA+ mRNA from the strains revealed losses of gene expression associated with the new H3K27me2/3 and gains in gene
expression in regions that lost this mark; i.e. the changes in $\mathrm{H} 3 \mathrm{~K} 27 \mathrm{me} 2 / 3$ were reflected in underlying gene expression levels (Figure 3).

Although gene silencing near chromosome ends, sometimes dubbed "telomere position effect" (TPE) has been observed in fungi (Kyrion et al. 1993; Nimmo et al. 1994; Castaño et al. 2004; Smith et al. 2008; Shaaban et al. 2010), D. melanogaster (Doheny et al. 2008), Mus musculus (Pedram et al. 2006), and human cells (Baur et al. 2001), previous studies did not implicate H3K27me. Interestingly, the extent of heterochromatin spreading from telomeres in $N$. crassa is substantially greater than previously reported. This could be due to the conspicuous absence of canonical subtelomere sequences in N. crassa (Wu et al. 2009; Mefford and Trask 2002; Arnoult et al. 2012; Pryde and Louis 1999). Not all organisms that exhibit TPE have H3K27 methylation machinery, but in D. melanogaster, which does, systematic analysis of PcG mutants demonstrated they do not disrupt telomere silencing (Doheny et al. 2008). In human cells, TPE is thought to be mediated by histone deacetylation, H3K9 methylation, and heterochromatin protein HP1 $\alpha$ (Tennen et al. 2011; Arnoult et al. 2012). Although the phenomenon of TPE has been studied for decades, our findings may reflect the first documented case of H3K27memediated TPE.

The ability of chromosome ends to induce large domains of H3K27me2/3 in chromosomal translocation strains motivated us to investigate the role of telomere sequences in the establishment of facultative heterochromatin. We found that deletion of tert, the sole telomerase reverse transcriptase gene, results in a dramatic loss of H3K27me2/3 at subtelomeres, concomitant with loss of (TTAGGG) $n$ repeats and chromosome circularization (Figure 4). To directly test the possibility that telomere repeats can trigger domains of H3K27me2/3, we inserted an array of telomere repeats at an interstitial site and used ChIP to check induction of H3K27me2/3. We found that, indeed, even a 48 bp array, (TTAGGG) 8 , could induce some local H3K27me2/3. Remarkably, a 102 bp array, (TTAGGG) ${ }_{17}$, induced an H3K27me2/3 domain that covered approximately 225 kb , including 30 genes (Figure 5). These results strongly suggest that wild-type subtelomeric $\mathrm{H} 3 \mathrm{~K} 27 \mathrm{me} 2 / 3$ is dependent on telomere repeats. The recruitment of PRC2 to telomere repeats may be a widespread phenomenon, considering that enrichment of H3K27 methylation at telomeres has been observed in fungi
(Jamieson et al. 2013; Schotanus et al. 2015; Dumesic et al. 2015; Studt et al. 2016), plants (Baker et al. 2015; Vaquero-Sedas et al. 2012) and animals (Wirth et al. 2009). Indirect recruitment of PRC2 by telobox-binding transcription factors (Xiao et al. 2017) and direct binding of PRC2 to G-quadruplex RNA resulting from transcription of telomere repeats (Wang et al. 2017) represent possible molecular mechanisms.

In addition to telomere repeats capping the ends of chromosomes, telomere repeat-like elements are scattered interstitially in the genomes of many organisms (Ruiz-Herrera et al. 2008). In N. crassa, interstitial telomere sequences are rare, limited to less than four tandem repeats, and are not preferentially associated with H3K27me2/3 regions. While S. cerevisiae and S. pombe lack PRC2 components and H3K27me, their internal telomere repeat-like elements can promote heterochromatin formation (Zofall et al. 2016; Duan et al. 2016). The genome of Nicotiana tabacum also has heterochromatic internal telomere repeats, but they lack the H3K27 methylation present at genuine telomeres (Majerová et al. 2014). Curiously, insertion of about 130 telomere repeats in Chinese ovary cells failed to significantly alter local transcription (Kilburn et al. 2001). It should be interesting to study the effects of terminal and interstitial telomere repeats on heterochromatin formation in a variety of organisms.

We inferred the existence of position-independent H3K27 methylation from our observation that some $\mathrm{H} 3 \mathrm{~K} 27 \mathrm{me} 2 / 3$ domains were unaffected when moved to ectopic chromosomal locations (e.g. see domains on LG IIIR in OY320, LG VR in NM149, and LG VIR in ALS159 and OY329; Figure 1). The recapitulation of normal H3K27me2/3 profiles at ectopic chromosomal sites is consistent with the possibility that these chromosomal regions contain cis-acting signals that trigger the deposition of H3K27 methylation, perhaps comparable to PREs in $D$. melanogaster. It will be of interest to define the presumptive elements responsible for such position-independent H3K27me. While there is no consensus sequence for PREs in D. melanogaster, they are composed of unique combinations of binding sites for a variety of factors (Judith A Kassis 2013). One DNA-binding factor known to affect PcG silencing in D. melanogaster, GRH, has an obvious homolog in $N$. crassa and could be a candidate for helping establish or maintain position-independent domains of $\mathrm{H} 3 \mathrm{~K} 27 \mathrm{me} 2 / 3$ via sequence-specific interactions (Blastyák et al. 2006; Nevil et al. 2017; Paré et al. 2012). It remains possible that
deposition of H3K27 methylation at position-independent domains is not directed by sequencespecific elements. In this context, it is worth noting that inhibition of transcription, caused by either exposure to RNA polymerase II inhibitors (Riising et al. 2014) or deletion of a transcriptional start site (Hosogane et al. 2016) was found to promote the deposition of H3K27me in mammalian cells. Conceivably, the position-independent domains of H3K27me2/3 in $N$. crassa could be directed by blocs of inherently low-expressing genes or by some other feature of the region, such as its location in the nucleus, which may be controlled by yet undefined factors. The fact that only about $10 \%$ of H3K27me2/3-marked genes are upregulated when the sole H3K27 methyltransferase is removed supports the notion that transcriptional shut-off may precede PRC2 recruitment (Klocko et al. 2016; Jamieson et al. 2013). Still, low transcriptional activity cannot entirely explain the targeting of PRC2 in $N$. crassa since many low-expressed genes are not H3K27 methylated.

Genome rearrangements are a common occurrence in malignant cells and can drive tumorigenesis through the creation of gene fusions, enhancer hijacking and oncogene amplification (Hnisz et al. 2016). Our findings suggest that genome rearrangements associated with cancer may additionally impact gene expression through effects on facultative heterochromatin. Indeed, there are already some reports of human diseases being driven by position effects (Surace et al. 2014; Guilherme et al. 2016). A great deal of research has focused on how characteristics of local chromatin influence translocation breakpoint frequencies (Hogenbirk et al. 2016), but the effects of the resulting translocations on chromatin state are still ill-defined. Altogether, our work shows that changes in genome organization can have sweeping effects on both the distribution of an epigenetic mark and gene expression. Thus, chromosome rearrangements may have unappreciated roles in evolution and cancer etiology.
bioRxiv preprint doi: https://doi.org/10.1101/189258; this version posted September 15, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

## MATERIALS AND METHODS

## Strains, media and growth conditions

N. crassa strains are listed in Table S1 and were grown and maintained according to standard procedures (Davis 2000). All genome rearrangement strains are available through the Fungal Genetics Stock Center (www.fgsc.net).

## Deleting and targeting segments of LG VIL

A strain containing a 47.4 kb deletion of LG VIL (N4933) was constructed by homologous recombination using primers listed in Table S2 (Colot et al. 2006). For his-3 constructs, segments from LG VIL were PCR-amplified from wild-type (N3752) genomic DNA with primers containing restriction enzyme sites (Table S2) and directly cloned into pCR (Life Technologies TA Cloning Kit), subcloned into the his-3-targeting vector pBM61 (Table S3) and transformed into N. crassa strain N5739 (Margolin et al. 1997). For csr-1 replacements, segments from LG VIL were PCR-amplified from wild-type (N3752) genomic DNA with primers containing homology to the $5^{\prime}$ and $3^{\prime}$ flanks of the csr-1 locus (Table S2). Amplified segments were subsequently assembled by PCR ("PCR-stitched") to the 5 ' and 3 ' flanks of the csr- 1 locus respectively. Stitched PCR products were co-transformed into N. crassa strain N2931 and transformants were selected on cyclosporin A-containing medium (Bardiya and Shiu 2007).

## Knocking-out tert

The nat1 gene with the trpC promoter was amplified by PCR using the pAL12-Lifeact as the template with primers 3902 and 1369. The 5' and $3^{\prime}$ flanking fragments of the tert gene were amplified by PCR with primers 3406-3409, which have specific 29-bp overhang sequence with the 5' and 3' nat1 gene with the trpC promoter. The three PCR products were gel-purified, combined and PCR-stitched with primers 3406 and 3409 to construct the knockout cassette. The cassette was gel-purified and transformed into a $\Delta m u s-51$ strain (N2929) by electroporation and resulting strains were crossed with a mus-51 ${ }^{+}$strain (N3752) to recover progeny with the wild-type allele of mus-51.

## Targeting telomere repeats to csr-1

Concatamers of telomere repeats were amplified in a polymerase chain reaction lacking template as previously described (Wu et al. 2009). Resulting PCR products of $\sim 500 \mathrm{bp}$ were gelpurified and cloned into the pCR4-TOPO TA vector (Life Technologies TOPO TA Cloning kit for Sequencing). Telomere repeats from the cloning vector were PCR-stitched separately to $5^{\prime}$ and 3 'flanks of the csr-1 locus. Stitched PCR products were co-transformed into strain N5739 and transformants were selected on cyclosporin A-containing medium (Bardiya and Shiu 2007).

## ChIP and preparation of libraries

ChIP was performed as previously described (Jamieson et al. 2016). An anti-H3K27me2/3 antibody (Active Motif, 39535) was used for all experiments. ChIPs for Figures 1 and 3, and Figures S1-3 were performed in biological triplicate. Real-time qPCR was performed as previously described (Jamieson et al. 2013). ChIP-seq libraries were also prepared as previously described (Jamieson et al. 2016), except N51, N6089, N6228 and N6383 libraries were subjected to eight cycles of amplification. Sequencing was performed using the Illumina NextSeq 500 using paired-end 100 nucleotide reads for input chromatin and some ChIP experiments. The remainder of the ChIP experiments were sequenced using the Illumina HiSeq 2000 using single-end 100 nucleotide reads or the NextSeq500 using single-end 75 nucleotide reads. All sequences were mapped to the corrected N. crassa OR74A (NC12) genome (Galazka et al. 2016) using Bowtie2 (Langmead and Salzberg 2012). ChIP-seq read coverage was averaged over 100 bp sliding (50 bp increment) windows with BEDTools (Quinlan and Hall 2010) and normalized to wild-type by library size. ChIP-seq data were visualized with Gviz (Hahne and Ivanek 2016). Normalized H3K27me2/3 ChIP-seq data was displayed using a 350 or 500 bp sliding widow unless otherwise specified.

## RNA isolation and preparation of libraries

RNA isolation and poly(A)-RNA enrichment, RNA-seq library preparation, and subsequent differential expression analysis were performed with replicate samples as previously described (Klocko et al. 2016). RNA-seq data were visualized with Gviz(Hahne and Ivanek 2016).

## Translocation breakpoint analyses

Incongruous-paired and split-read alignments for input DNA samples were found using bwamem. The discordant and split-read alignments were analyzed with LUMPY v0.2.9 to determine the location of chromosomal breakpoints (Layer et al. 2014). A list of predicted breakpoints with a minimum call weight of five was generated and calls with an evidence set score $<0.05$. The chromosomal breakpoints were compared to mapping data determined by recombination mapping (Perkins 1997), RFLP coverage and inverse PCR (http://hdl.handle.net/10603/68) to remove calls that were not associated with the translocation of interest. PCR analyses of genome rearrangements ALS159, NM149, OY329 and UK3-41 were consistent with predicted breakpoint patterns.

## Southern analysis

Southern hybridization analyses were performed as previously described (Miao et al. 2000). $N$. crassa telomere restriction fragments were examined as described previously with a HindIII/Notl double digest (Wu et al. 2009). Primers used to make probe are listed in Table S2.

## SNP Mapping

ChIP-seq data for the duplication strain was converted into fasta format, trimmed to 70 nt , and filtered for 70 nt long reads using FASTX-Toolkit (http://hannonlab.cshl.edu/fastx_toolkit). Processed data was SNP-parsed with Hashmatch (Filichkin et al. 2010) using the MauricevilleOakridge SNPome (fasta file listing both versions of each SNP) (Pomraning et al. 2011). The SNPome file was modified to align with read lengths of 70 nt . Reads with perfect alignment to either genome were kept and allocated into two files according to SNP mapping. Each file was then converted back into fastq format using SeqTK 1.0 (https://github.com/lh3/seqtk) and remapped with Bowtie2 to the genome corresponding with its SNP alignment. H3K27me2/3 profiles were displayed in IGV (Thorvaldsdottir et al. 2013) to examine the individual H3K27me2/3 profiles for wild-type and rearranged chromosome segments.

## Data availability

All ChIP-seq and RNA-seq data, as well as whole genome sequence data, will be available from the NCBI Gene Expression Omnibus (GEO) database (accessions: ).

## ACKNOWLEDGMENTS

We thank Heejeung Yoo for genotyping csr-1 targeting strains. This study was supported by a National Institutes of Health grant (GM093061) to EUS and a grant to S.H. from the Japanese Program to Disseminate Tenure Tracking System, Ministry of Education, Culture, Sports, Science and Technology.

## COMPETING INTERESTS

The authors declare no financial or non-financial competing interests.

## REFERENCES

Arnoult N, Van Beneden A, Decottignies A. 2012. Telomere length regulates TERRA levels through increased trimethylation of telomeric H3K9 and HP1 $\alpha$. Nature Structural \& Molecular Biology 19: 948-956.

Baker K, Dhillon T, Colas I, Cook N, Milne I, Milne L, Bayer M, Flavell AJ. 2015. Chromatin state analysis of the barley epigenome reveals a higher-order structure defined by H3K27me1 and H3K27me3 abundance. Plant J 84: 111-124.

Bardiya N, Shiu PKT. 2007. Cyclosporin A-resistance based gene placement system for Neurospora crassa. Fungal Genet Biol 44: 307-314.

Basu A, Dasari V, Mishra RK, Khosla S. 2014. The CpG island encompassing the promoter and first exon of human DNMT3L gene is a PcG/TrX response element (PRE). ed. R. Feil. PLoS ONE 9: e93561.

Bauer M, Trupke J, Ringrose L. 2015. The quest for mammalian Polycomb response elements: are we there yet? Chromosoma 125: 1-26.

Baur JA, Zou Y, Shay JW, Wright WE. 2001. Telomere position effect in human cells. Science 292: 2075-2077.

Blastyák A, Mishra RK, Karch F, Gyurkovics H. 2006. Efficient and specific targeting of Polycomb group proteins requires cooperative interaction between Grainyhead and Pleiohomeotic. Molecular and cellular biology 26: 1434-1444.

Butler DK, Metzenberg RL. 1990. Expansion and contraction of the nucleolus organizer region of Neurospora: changes originate in both proximal and distal segments. Genetics 126: 325333.

Castaño I, Pan S-J, Zupancic M, Hennequin C, Dujon B, Cormack BP. 2004. Telomere length control and transcriptional regulation of subtelomeric adhesins in Candida glabrata. Mol Microbiol 55: 1246-1258.

Colot HV, Park G, Turner GE, Ringelberg C, Crew CM, Litvinkova L, Weiss RL, Borkovich KA, Dunlap JC. 2006. A high-throughput gene knockout procedure for Neurospora reveals functions for multiple transcription factors. PNAS 103: 10352-10357.

Connolly LR, Smith KM, Freitag M. 2013. The Fusarium graminearum histone H3 K27 methyltransferase KMT6 regulates development and expression of secondary metabolite gene clusters. ed. H.D. Madhani. PLOS Genet 9: e1003916.

Conway E, Healy E, Bracken AP. 2015. PRC2 mediated H3K27 methylations in cellular identity and cancer. Curr Opin Cell Biol 37: 42-48.

Cunningham MD, Brown JL, Kassis JA. 2010. Characterization of the Polycomb Group Response Elements of the Drosophila melanogaster invected Locus. Molecular and cellular biology 30: 820-828.

Davis RH. 2000. Neurospora: contributions of a model organism. Oxford University Press.
De S, Mitra A, Cheng Y, Pfeifer K, Kassis JA. 2016. Formation of a Polycomb-domain in the absence of strong Polycomb response elements. PLOS Genet 12: e1006200.

Deleris A, Stroud H, Bernatavichute Y, Johnson E, Klein G, Schubert D, Jacobsen SE. 2012. Loss of the DNA methyltransferase MET1 Induces H3K9 hypermethylation at PcG target genes and redistribution of H 3 K 27 trimethylation to transposons in Arabidopsis thaliana. ed. A.C. Ferguson-Smith. PLOS Genet 8: e1003062.

Doheny JG, Mottus R, Grigliatti TA. 2008. Telomeric position effect--a third silencing mechanism in eukaryotes. PLoS ONE 3: e3864.

Duan Y-M, Zhou BO, Peng J, Tong X-J, Zhang Q-D, Zhou J-Q. 2016. Molecular dynamics of de novo telomere heterochromatin formation in budding yeast. J Genet Genomics 43: 451465.

Dumesic PA, Homer CM, Moresco JJ, Pack LR, Shanle EK, Coyle SM, Strahl BD, Fujimori DG, Yates JR III, Madhani HD. 2015. Product Binding Enforces the Genomic Specificity of a Yeast Polycomb Repressive Complex. Cell 160: 204-218.

Filichkin SA, Priest HD, Givan SA, Shen R, Bryant DW, Fox SE, Wong WK, Mockler TC. 2010. Genome-wide mapping of alternative splicing in Arabidopsis thaliana. Genome Res 20: 4558.

Galazka JM, Klocko AD, Uesaka M, Honda S, Selker EU, Freitag M. 2016. Neurospora chromosomes are organized by blocks of importin alpha-dependent heterochromatin that are largely independent of H3K9me3. Genome Res 26: 1069-1080.

Guilherme RS, Moysés-Oliveira M, Dantas AG, Meloni VA, Colovati ME, Kulikowski LD, Melaragno MI. 2016. Position effect modifying gene expression in a patient with ring chromosome 14. J Appl Genet 57: 183-187.

Hagarman JA, Motley MP, Kristjansdottir K, Soloway PD. 2013. Coordinate regulation of DNA methylation and H3K27me3 in mouse embryonic stem cells. ed. J.G. Knott. PLoS ONE 8: e53880.

Hahne F, Ivanek R. 2016. Visualizing genomic data using Gviz and Bioconductor. Methods Mol Biol 1418: 335-351.

Hnisz D, Weintraub AS, Day DS, Valton A-L, Bak RO, Li CH, Goldmann J, Lajoie BR, Fan ZP, Sigova AA, et al. 2016. Activation of proto-oncogenes by disruption of chromosome
neighborhoods. Science 351: 1454-1458.
Hogenbirk MA, Heideman MR, de Rink I, Velds A, Kerkhoven RM, Wessels LFA, Jacobs H. 2016. Defining chromosomal translocation risks in cancer. Proc Natl Acad Sci USA 113: E3649-56.

Horard B, Tatout C, Poux S. 2000. Structure of a polycomb response element and in vitro binding of polycomb group complexes containing GAGA factor. Molecular and cellular ....

Hosogane M, Funayama R, Shirota M, Nakayama K. 2016. Lack of Transcription Triggers H3K27me3 Accumulation in the Gene Body. Cell Rep 16: 696-706.

Jamieson K, Rountree MR, Lewis ZA, Stajich JE, Selker EU. 2013. Regional control of histone H3 lysine 27 methylation in Neurospora. Proc Natl Acad Sci USA 110: 6027-6032.

Jamieson K, Wiles ET, McNaught KJ, Sidoli S, Leggett N, Shao Y, Garcia BA, Selker EU. 2016. Loss of HP1 causes depletion of H3K27me3 from facultative heterochromatin and gain of H3K27me2 at constitutive heterochromatin. Genome Res 26: 97-107.

Judith A Kassis JLB. 2013. Polycomb Group Response Elements in Drosophila and Vertebrates. Advances in genetics 81: 83-118.

Kilburn AE, Shea MJ, Sargent RG, Wilson JH. 2001. Insertion of a telomere repeat sequence into a mammalian gene causes chromosome instability. Molecular and cellular biology 21: 126135.

Klocko AD, Ormsby T, Galazka JM, Leggett NA, Uesaka M, Honda S, Freitag M, Selker EU. 2016. Normal chromosome conformation depends on subtelomeric facultative heterochromatin in Neurospora crassa. Proc Natl Acad Sci USA 113: 15048-15053.

Kyrion G, Liu K, Liu C, Lustig AJ. 1993. RAP1 and telomere structure regulate telomere position effects in Saccharomyces cerevisiae. Genes \& development 7: 1146-1159.

Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nat Methods 9: 357-359.

Layer RM, Chiang C, Quinlan AR, Hall IM. 2014. LUMPY: a probabilistic framework for structural variant discovery. Genome Biol 15: 1-19.

Lewis EB. 1978. A gene complex controlling segmentation in Drosophila. Nature 276: 565-570.
Lindroth AM, Park YJ, McLean CM, Dokshin GA, Persson JM, Herman H, Pasini D, Miró X, Donohoe ME, Lee JT, et al. 2008. Antagonism between DNA and H3K27 methylation at the imprinted Rasgrf1 locus. ed. B. Van Steensel. PLOS Genet 4: e1000145.

Majerová E, Mandáková T, Vu GTH, Fajkus J, Lysak MA, Fojtová M. 2014. Chromatin features of plant telomeric sequences at terminal vs. internal positions. Front Plant Sci 5: 593.

Margolin BS, Freitag M, Selker EU. 1997. Improved plasmids for gene targeting at the his-3 locus of Neurospora crassa by electroporation. Fungal Genetics Reports 34-36.

Mathieu O, Probst AV, Paszkowski J. 2005. Distinct regulation of histone H3 methylation at lysines 27 and 9 by CpG methylation in Arabidopsis. The EMBO Journal 24: 2783-2791.

Mefford HC, Trask BJ. 2002. The complex structure and dynamic evolution of human subtelomeres. Nature Reviews Genetics 3: 91-102.

Miao VP, Singer MJ, Rountree MR, Selker EU. 1994. A targeted-replacement system for identification of signals for de novo methylation in Neurospora crassa. Molecular and cellular biology 14: 7059-7067.

Miao VPW, Freitag M, Selker EU. 2000. Short TpA-rich segments of the $\zeta-\eta$ region induce DNA methylation in Neurospora crassa. Journal of molecular biology 300: 249-273.

Müller J, Hart CM, Francis NJ, Vargas ML, Sengupta A, Wild B, Miller EL, O'Connor MB, Kingston RE, Simon JA. 2002. Histone methyltransferase activity of a Drosophila Polycomb group repressor complex. Cell 111: 197-208.

Nakamura TM, Cooper JP, Cech TR. 1998. Two modes of survival of fission yeast without telomerase. Science.

Nevil M, Bondra ER, Schulz KN, Kaplan T, Harrison MM. 2017. Stable binding of the conserved transcription factor grainy head to its target genes throughout Drosophila melanogaster development. Genetics 205: 605-620.

Nimmo ER, Cranston G, Allshire RC. 1994. Telomere-associated chromosome breakage in fission yeast results in variegated expression of adjacent genes. The EMBO Journal 13: 3801-3811.

Paré A, Kim M, Juarez MT, Brody S, McGinnis W. 2012. The functions of grainy head-like proteins in animals and fungi and the evolution of apical extracellular barriers. PLoS ONE 7: e36254.

Pedram M, Sprung CN, Gao Q, Lo AWI, Reynolds GE, Murnane JP. 2006. Telomere position effect and silencing of transgenes near telomeres in the mouse. Molecular and cellular biology 26: 1865-1878.

Perkins DD. 1997. Chromosome rearrangements in Neurospora and other filamentous fungi. Adv Genet 36: 239-398.

Piunti A, Shilatifard A. 2016. Epigenetic balance of gene expression by Polycomb and COMPASS families. Science 352: aad9780 1-15.

Pomraning KR, Smith KM, Freitag M. 2011. Bulk segregant analysis followed by high-throughput sequencing reveals the Neurospora cell cycle gene, ndc-1, to be allelic with the gene for
ornithine decarboxylase, spe-1. Eukaryotic Cell 10: 724-733.
Pryde FE, Louis EJ. 1999. Limitations of silencing at native yeast telomeres. The EMBO Journal 18: 2538-2550.

Quinlan AR, Hall IM. 2010. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26: 841-842.

Reddington JP, Perricone SM, Nestor CE, Reichmann J, Youngson NA, Suzuki M, Reinhardt D, Dunican DS, Prendergast JG, Mjoseng H, et al. 2013. Redistribution of H3K27me3 upon DNA hypomethylation results in de-repression of Polycomb target genes. Genome Biol 14: R25.

Riising EM, Comet I, Leblanc B, Wu X, Johansen JV, Helin K. 2014. Gene silencing triggers polycomb repressive complex 2 recruitment to CpG islands genome wide. Molecular cell 55: 347-360.

Ruiz-Herrera A, Nergadze SG, Santagostino M, Giulotto E. 2008. Telomeric repeats far from the ends: mechanisms of origin and role in evolution. Cytogenetic and Genome Research 122: 219-228.

Schotanus K, Soyer JL, Connolly LR, Grandaubert J, Happel P, Smith KM, Freitag M, Stukenbrock EH. 2015. Histone modifications rather than the novel regional centromeres of Zymoseptoria tritici distinguish core and accessory chromosomes. Epigenetics \& Chromatin 8: 1.

Selker EU, Jensen BC, Richardson GA. 1987. A portable signal causing faithful DNA methylation de novo in Neurospora crassa. Science 238: 48-53.

Shaaban M, Palmer JM, El-Naggar WA, El-Sokkary MA, Habib E-SE, Keller NP. 2010. Involvement of transposon-like elements in penicillin gene cluster regulation. Fungal Genetics and Biology 47: 423-432.

Sing A, Pannell D, Karaiskakis A, Sturgeon K, Djabali M, Ellis J, Lipshitz HD, Cordes SP. 2009. A vertebrate Polycomb response element governs segmentation of the posterior hindbrain. Cell 138: 885-897.

Smith KM, Kothe GO, Matsen CB, Khlafallah TK, Adhvaryu KK, Hemphill M, Freitag M, Motamedi MR, Selker EU. 2008. The fungus Neurospora crassa displays telomeric silencing mediated by multiple sirtuins and by methylation of histone H3 lysine 9. Epigenetics \& Chromatin 1: 5.

Steffen PA, Ringrose L. 2014. What are memories made of? How Polycomb and Trithorax proteins mediate epigenetic memory. Nat Rev Mol Cell Biol 15: 340-356.

Studt L, Rösler SM, Burkhardt I, Arndt B, Freitag M, Humpf H-U, Dickschat JS, Tudzynski B. 2016. Knock-down of the methyltransferase Kmt6 relieves H3K27me3 and results in induction of cryptic and otherwise silent secondary metabolite gene clusters in Fusarium fujikuroi.

Environ Microbiol 18: 4037-4054.
Surace C, Berardinelli F, Masotti A, Roberti MC, Da Sacco L, D'Elia G, Sirleto P, Digilio MC, Cusmai R, Grotta S, et al. 2014. Telomere shortening and telomere position effect in mild ring 17 syndrome. Epigenetics \& Chromatin 7: 1.

Tennen RI, Bua DJ, Wright WE, Chua KF. 2011. SIRT6 is required for maintenance of telomere position effect in human cells. Nat Commun 2: 433.

Thorvaldsdottir H, Robinson JT, Mesirov JP. 2013. Integrative Genomics Viewer (IGV): highperformance genomics data visualization and exploration. Brief Bioinformatics 14: 178-192.

Vaquero-Sedas MI, Luo C, Vega-Palas MA. 2012. Analysis of the epigenetic status of telomeres by using ChIP-seq data. Nucleic Acids Res 40: e163-e163.

Wang H, Wang L, Erdjument-Bromage H, Vidal M, Tempst P, Jones RS, Zhang Y. 2004. Role of histone H2A ubiquitination in Polycomb silencing. Nature 431: 873-878.

Wang X, Goodrich KJ, Gooding AR, Naeem H, Archer S, Paucek RD, Youmans DT, Cech TR, Davidovich C. 2017. Targeting of Polycomb Repressive Complex 2 to RNA by short repeats of consecutive guanines. Molecular cell 65: 1056-1067.

Wiles ET, Selker EU. 2016. H3K27 methylation: a promiscuous repressive chromatin mark. Curr Opin Genet Dev 43: 31-37.

Wirth M, Paap F, Fischle W, Wenzel D, Agafonov DE, Samatov TR, Wisniewski JR, Jedrusik-Bode M. 2009. HIS-24 linker histone and SIR-2.1 deacetylase induce H3K27me3 in the Caenorhabditis elegans germ line. Molecular and cellular biology 29: 3700-3709.

Woo CJ, Kharchenko PV, Daheron L, Park PJ, Kingston RE. 2010. A region of the human HOXD cluster that confers polycomb-group responsiveness. Cell 140: 99-110.

Wu C, Kim Y-S, Smith KM, Li W, Hood HM, Staben C, Selker EU, Sachs MS, Farman ML. 2009. Characterization of chromosome ends in the filamentous fungus Neurospora crassa. Genetics 181: 1129-1145.

Wu H, Coskun V, Tao J, Xie W, Ge W, Yoshikawa K, Li E, Zhang Y, Sun YE. 2010. Dnmt3adependent nonpromoter DNA methylation facilitates transcription of neurogenic genes. Science 329: 444-448.

Xiao J, Jin R, Yu X, Shen M, Wagner JD, Pai A, Song C, Zhuang M, Klasfeld S, He C, et al. 2017. Cis and trans determinants of epigenetic silencing by Polycomb repressive complex 2 in Arabidopsis. Nature Genetics 81: 83.

Zofall M, Smith DR, Mizuguchi T, Dhakshnamoorthy J, Grewal SIS. 2016. Taz1-Shelterin promotes facultative heterochromatin assembly at chromosome-internal sites containing late replication origins. Molecular cell 62: 862-874.

## FIGURE LEGENDS

Figure 1. Chromosomal rearrangements are associated with altered H3K27me2/3. (A-F) Schematics show the movement (magenta curved arrows) of translocated segments and the resulting chromosomal rearrangements for six translocation strains. ChIPs were done on biological triplicates and pooled for sequencing. Blue and dashed lines distinguish source of chromosome while arrowheads indicate directionality of rearranged segments. H3K27me2/3 ChIP-seq tracks of WT and translocation strains are displayed above chromosome diagrams with zoom-in sections in boxes. H3K27me2/3 signals that were lost in translocation strains are shown in orange, H3K27me2/3 signals gained are indicated in green and invariant H3K27me2/3 signals are shown in black. Circles indicate centromeres. Gains and losses of H3K27me2/3 were confirmed by qPCR (Figure S2).

Figure 2. A segmental duplication confirms H3K27me2/3 position effect. (A) Diagram of a cross between the OY329 (Oak Ridge) insertional translocation strain and a polymorphic wildtype strain (Mauriceville), resulting in a strain bearing a duplicated chromosomal segment (outlined by rectangles). H3K27me2/3 ChIP-seq tracks (single experiment) and chromosomes are shown in black for the Oak Ridge strain and blue for Mauriceville. Solid and dashed lines indicate chromosome source. (B) Expanded view of the duplicated chromosome segment in parental strains and duplication-containing offspring along with associated SNP-parsed H3K27me2/3 profiles.

Figure 3. Altered gene expression reflects changes in H3K27me2/3. (A) Reduced gene expression in novel subtelomeric region (LG VIL) that gains H3K27me2/3 in translocation OY350. The top panel displays H3K27me2/3 ChIP-seq reads of OY350 (green) normalized to the corresponding the non-translocated segment in WT (black). The bottom panel shows
normalized mRNA-seq read counts (counts/1000) for genes (gray arrows) in the region for WT (black) and OY350 (green). ChIP-seq data are from pooled biological triplicates; RNA-seq data are from biological duplicates (B) Shifting a normally subtelomeric region to an internal position in translocation OY350 results in loss of H3K27me2/3 on LG IR and increased gene expression. The top panel displays H3K27me2/3 ChIP-seq reads of OY350 (orange) normalized to WT (black). The bottom panel shows normalized mRNA-seq read counts (counts/1000) for genes (gray arrows) in the region for WT (black) and OY350 (orange). (C) A box plot summarizes the relationship between gain (green) or loss (orange) of H3K27me2/3 in seven chromosomal translocation strains (ALS159, AR16, OY329, OY337, OY350, UK2-32, and UK3-41) and associated gene expression changes ( $\log _{2}[$ translocation/WT]) within the corresponding domains. The control (gray) represents gene expression in regions that do not exhibit changes in H3K27me2/3.

Figure 4. Loss of tert disrupts chromosome ends and abolishes subtelomeric H3K27me2/3. (A)
Southern hybridization of genomic DNA from WT and tert strains digested with HindIII/NotI reveals loss of chromosome ends marked with the telomere repeats (TTAGGG) ${ }_{n}$, which was used as the probe. The ethidium bromide (EtBr) image demonstrates equal loading of WT and tert genomic DNA. (B) Circularization of chromosomes was demonstrated by generation of PCR products with outwardly directed primers near chromosome ends in a tert strain, but not a WT strain. (C) H3K27me2/3 ChIP-seq of tert (single sample; blue track) compared to WT (pooled biological triplicates; black track). Sequence coverage of the tert ChIP input (gray track) is also shown.

Figure 5. Telomere repeats targeted to the csr-1 locus induce an approximately $\mathbf{2 2 5} \mathbf{~ k b}$ H3K27me2/3 domain. (A) qPCR analyses (biological triplicates) of H3K27me2/3 ChIP with strains containing 8 or 17 telomere repeats at the csr-1 locus, with WT strain as a control (means displayed; error bars show standard deviation; asterisks represent $p<0.05$ and $p<0.01$ respectively). Level of H3K27me2/3 normalized to Telomere 1L. (B) H3K27me2/3 ChIP-seq of full WT LG I (pooled biological triplicates; black track). Black circle indicates the centromere, csr-

1 position is indicated by vertical line, and arrows at chromosome ends indicate $5^{\prime}$ to $3^{\prime}$ polarity of telomere repeats. Expansion below shows the extent and shape of the H3K27me2/3 domain induced in the $\Delta c s r-1::(T T A G G G)_{17}$ strain (single sample; green track) compared to WT (black track). Site of csr-1 replacement with telomere repeats indicated below ChIP-seq tracks. Genes are displayed as black bars.

Figure S1. Three kilobase segments from a natural H3K27me2/3 domain are insufficient to trigger de novo H3K27me2/3 at ectopic loci. (A) Distribution of H3K27me2/3 (black), genes (gray) and H3K9me3 (blue, inverted) are displayed for the left subtelomere of LG VI (Jamieson et al. 2013). The red bar indicates the region deleted for the transplantation experiments. The eight three kb segments (expanded below the black bar) were targeted to the his-3 and csr-1 loci. Green vertical bars represent the locations of qPCR primer pairs used in H3K27me2/3 ChIP experiments. H3K27me2/3 ChIP-qPCR indicates the absence of ectopic H3K27me2/3 in strains containing regions 1-8, each separately targeted to (B) his-3 and (C) csr-1. Each ChIP experiment was performed in biological triplicate; qPCR analyses were performed on each sample in technical triplicate. Bars represent means of biological triplicates and error bars show standard deviation. Primers are listed in Table S2.

Figure S2. qPCR validation of H3K27me2/3 ChIP-seq data from translocation strains. The gains and losses of H3K27me2/3 in ChIP-seq experiments were confirmed by ChIP-qPCR at representative regions for UK3-41 (A), OY350 (B), ALS159 (C), OY329 (D), NM149 (E), OY337 (F), UK2-32 (G), and AR16 (H). Each ChIP experiment was performed in biological triplicate; qPCR analyses were performed on each sample in technical triplicate. Bars represent means of biological triplicates and error bars show standard deviation. Primers are listed in Table S2.

Figure S3. qPCR validation of RNA-seq expression changes in translocation OY350. The effects of gain of $\mathrm{H} 3 \mathrm{~K} 27 \mathrm{me} 2 / 3(\mathrm{~A})$ and loss of $\mathrm{H} 3 \mathrm{~K} 27 \mathrm{me} 2 / 3(\mathrm{~B}, \mathrm{C})$ on associated gene expression levels were verified by qPCR. Gene expression levels were normalized to housekeeping gene, NCU02840. qPCR analyses were performed on each sample in technical triplicate. Bars
represent means of biological triplicates and error bars show standard deviation. Primers are listed in Table S2.

Figure S4. H3K27me2/3 profiles of additional strains containing chromosomal rearrangements. Chromosome rearrangements and H3K27me2/3 ChIP-seq (pooled biological triplicates) profiles are shown for translocations UK2-32 (A), AR16 (B) and OY337 (C). Magenta curved arrows illustrate the movement of chromosomal segments in the translocations. Blue and dashed lines distinguish chromosome sources while arrows indicate the directionality of translocated segments. Light gray lines highlight regions of uncertainty with respect to the locations of breakpoints based on available genetic evidence (see Methods). Solid red line indicates chromosome deletions. H3K27me2/3 ChIP-seq tracks of WT and translocation strains are displayed above chromosome diagrams. H3K27me2/3 that was lost in a translocation strain is highlighted in orange in the corresponding WT track while new H3K27me2/3 is indicated in green. Conserved H3K27me2/3 is shown in black. Circles indicate centromeres. Dark gray bars indicate 500 kb .

Figure S5. Whole genome view of H3K27me2/3 ChIP-seq in WT and tert. H3K27me2/3 ChIPseq for all seven $N$. crassa chromosomes is displayed for WT (pooled biological triplicates; black track) and tert (single sample; blue). The y -axis is number of reads averaged over 25 bp windows. Open black or blue circles indicate location of centromeres.

Table S1. List of strains

| Strain | Genotype |
| :---: | :---: |
| N51 (FGSC 2225) | mat $A$; Mauriceville |
| N625 | mat a; his-3 |
| N2931 |  |
| N3752 (FGSC 2489) | mat A; Oak Ridge |
| N4730 |  |
| N4933 | mat a; $\Delta 47.4 \mathrm{~kb}:: \mathrm{hph}^{+}$ |
| N5100 (FGSC 1614) | mat $a ; \ln ($ IL->IR $)$ AR16 |
| N5101 (FGSC 2100) | mat A; T(IV->VI)ALS159 |
| N5102 (FGSC 3670) | mat ; $^{\text {T }}$ (VI->III)OY329 |
| N5547 | mat a; mmus-52::bar $^{+}$; $447.4 \mathrm{~kb}:: h^{\text {b }}{ }^{+}$ |
| N5683 | mat ${ }^{\text {; }}$ his-3 ${ }^{+}:: 1 ; 447.4 \mathrm{~kb}: \mathrm{hph}^{+}$ |
| N5684 | mat $A$; his-3 ${ }^{+}:: 2 ; 447.4 \mathrm{~kb}: \mathrm{hph}^{+}$ |
| N5685 | mat A; his-3 ${ }^{+}:: 3 ; \Delta 47.4 \mathrm{~kb}:$ hph $^{+}$ |
| N5686 | mat $A$; his-3 ${ }^{+}:: 4 ; 447.4 \mathrm{~kb}: \mathrm{hph}^{+}$ |
| N5687 | mat ; $^{\text {his-3 }}{ }^{+}:: 5 ; \Delta 47.4 \mathrm{~kb}:$ hph $^{+}$ |
| N5688 | mat ${ }^{\text {; }}$ his-3 ${ }^{+}:: 6 ; \Delta 47.4 \mathrm{~kb}: \mathrm{hph}^{+}$ |
| N5689 | mat ; $^{\text {his-3 }}{ }^{+}:: 7 \Delta 47.4 \mathrm{~kb}:: \mathrm{hph}^{+}$ |
| N5690 | mat A; his-3 ${ }^{+}: 8 ; 847.4 \mathrm{~kb}:: \mathrm{hph}^{++}$ |
| N5695 | mat a; $\Delta c s r-1:: 1 ; \Delta 47.4 \mathrm{~kb}:: \mathrm{hph}^{+}$ |
| N5696 | mat a; $\Delta c s r-1:: 2 ; \Delta 47.4 \mathrm{~kb}:: h p h^{+}$ |
| N5697 | mat a; $\Delta c s r-1:: 3 ; \Delta 47.4 \mathrm{~kb}:: \mathrm{hph}^{+}$ |
| N5698 | mat A; $\Delta c s r-1:: 4 ; \Delta 47.4 \mathrm{~kb}: \mathrm{:hph}^{+}$ |
| N5699 | mat A; $\Delta c s r-1:: 5 ; \Delta 47.4 \mathrm{~kb}: \mathrm{:hph}^{+}$ |


| N5700 | mat a; $\Delta c s r-1:: 6 ; \Delta 47.4 \mathrm{~kb}:: \mathrm{hph}^{+}$ |
| :---: | :---: |
| N5701 | mat a; $\Delta c s r-1:: 7 ; \Delta 47.4 \mathrm{~kb}:: \mathrm{hph}^{+}$ |
| N5702 | mat A; $\Delta c s r-1:: 8 ; \Delta 47.4 \mathrm{~kb}:: \mathrm{hph}^{+}$ |
| N5739 | mat A; his-3; $\Delta 47.4 \mathrm{~kb}: \mathrm{:hph}^{+}$ |
| N5857 (FGSC 1483) | mat $\mathrm{A} ; \mathrm{T}(\mathrm{II}-\mathrm{V}) \mathrm{NM} 149$ |
| N5858 (FGSC 3668) | mat A; T(II->IV)OY337, al-2 |
| N5859 (FGSC 7294) | mat $A$; T(IVR->VL)UK2-32 |
| N5862 (FGSC 4641) | mat ${ }^{\text {; }}$ T(VIL->IR)OY350 |
| N5863 (FGSC 3635) | mat $\mathrm{A} ; \mathrm{T}$ (VI->III) OY 320 |
| N5865 (FGSC 2643) | mat A; T(II->III)AR16 |
| N5866 (FGSC 6869) | mat A; inl; T(VR )UK3-41 |
| N6089 | mat a; $\mathrm{Dp}(\mathrm{VI}->\mathrm{III}) \mathrm{OY} 329$ |
| N6093 (FGSC 3671) | mat a; T(VI->III)OY329 |
| N6228 | mat ; $^{\text {- }}$ tert: ${ }^{\text {anat- }}{ }^{+}$ |
| N6381 |  |
| N6383 | mat a; mus-52::bar $^{+}$; $\Delta c s r-1::(\mathrm{TTAGGG})_{17}$ |
| N6984 | mat a; ${\text { mmus-52:: } \text { bar }^{+} \text {; } \Delta c s r-1::(\text { TTAGGG) }}_{8}$ |
| N6985 |  |
| N6986 |  |
| N6987 |  |

Table S2. List of primers

| Primer | Description | Sequence |
| :--- | :--- | :--- |
| 3325 | Construction of his- $3^{+}:: 1$ (N5683) | CGGGATCCCCGGATCGAACGGCGGATGG <br> (BamHI) |
| 3326 | Construction of his- $3^{+}:: 1$ (N5683) | GCTCTAGATGAGCTCCTTCCCCCACGGT <br> (Xbal) |
| 3327 | Construction of his- $3^{+}:: 2$ (N5684) | CGGGATCCCGTGGGTTCCAGTGCGTCCC <br> (BamHI) |
| 3328 | Construction of his- $3^{+}:: 2$ (N5684) | GCTCTAGATGGCAAGCGCCGACATGTGA <br> (Xbal) |
| 3329 | Construction of his- $3^{+}:: 3$ (N5685) | GGGCCCAGGGAACAGGCGCAGTGCAG <br> (Apal) |
| 3330 | Construction of his- $3^{+}:: 3$ (N5685) | GACTAGTTGGCGCGCTTGACCAGCAAA <br> (Spel) |


| 3331 | Construction of his- $3^{+}:: 4$ (N5686) | GACTAGTTCCCGGAACGGCCACTCCAT (Spel) |
| :---: | :---: | :---: |
| 3332 | Construction of his- $3^{+}:: 4$ (N5686) | GCTCTAGAGTGCTGCCAAGGCCCGACAT (Xbal) |
| 3297 | Construction of his-3 ${ }^{+}$::5 (N5687) | GGAATTCCAAAGGATCGCGCCCGGAGG (EcoRI) |
| 3333 | Construction of his-3 ${ }^{+}$::5 (N5687) | CGGGATCCACGACGGGAAGACGAGGGGT (BamHI) |
| 3334 | Construction of his- $3^{+}:: 6$ (N5688) | GGGCCCGGGAGTGTGGCGCTGTGGAC (Apal) |
| 3335 | Construction of his- $3^{+}:: 6$ (N5688) | GACTAGTAGCAGCATCTCGGGTCCGGT (Spel) |
| 3301 | Construction of his- $3^{+}:: 7$ (N5689) | GGAATTCGGCATGCCCAGGGATTGGGG (EcoRI) |
| 3336 | Construction of his- $3^{+}:: 7$ (N5689) | GCTCTAGAGACGGAACGGTGACAGGCGG (Xbal) |
| 3303 | Construction of his- $3^{+}:: 8$ (N5690) | GGAATTCTGGTTCGCGGACGAGGGCTA (EcoRI) |
| 3337 | Construction of his- $3^{+}:: 8$ (N5690) | CGGGATCCGGCTATTGCTGCCAGCCGGT (BamHI) |
| 4654 | $3^{\prime}$ csr-1 RP | AACACCTCCGTCGCCATAAACTCC |
| 4655 | 5' csr-1 FP | GGCCCCTGGTTTACTGAGGGC |
| 4721 | 5' csr-1 RP | TGCAGCCATTGACGACATTGC |
| 4722 | $3^{\prime}$ csr-1 FP | TGGATTTCCTGCGCTGCACAC |
| 4723 | Construction of $\Delta c s r-1:: 1$ (N5695) | GCAATGTCGTCAATGGCTGCACCGGATCG AACGGCGGATGG |
| 4724 | Construction of $\Delta c s r-1:: 1$ (N5695) | GTGTGCAGCGCAGGAAATCCATGAGCTCC TTCCCCCACGGT |


| 4725 | Construction of $\Delta c s r-1:: 2$ (N5696) | GCAATGTCGTCAATGGCTGCACGTGGGTTC CAGTGCGTCC |
| :---: | :---: | :---: |
| 4726 | Construction of $\Delta c s r-1:: 2$ (N5696) | GTGTGCAGCGCAGGAAATCCATGGCAAGC GCCGACATGTGA |
| 4727 | Construction of $\Delta c s r-1:: 3$ (N5697) | GCAATGTCGTCAATGGCTGCAAGGGAACA GGCGCAGTGCAG |
| 4728 | Construction of $\Delta c s r-1:: 3$ (N5697) | GTGTGCAGCGCAGGAAATCCATGGCGCGC TTGACCAGCAAA |
| 4729 | Construction of $\Delta c s r-1:: 4$ (N5698) | GCAATGTCGTCAATGGCTGCATCCCGGAAC GGCCACTCCAT |
| 4730 | Construction of $\Delta c s r-1:: 4$ (N5698) | GTGTGCAGCGCAGGAAATCCAGTGCTGCC AAGGCCCGACAT |
| 4731 | Construction of $\Delta c s r-1:: 5$ (N5699) | GCAATGTCGTCAATGGCTGCACAAAGGATC GCGCCCGGAGG |
| 4732 | Construction of $\Delta c s r-1:: 5$ (N5699) | GTGTGCAGCGCAGGAAATCCAACGACGGG AAGACGAGGGGT |
| 4733 | Construction of $\Delta c s r-1:: 6$ (N5700) | GCAATGTCGTCAATGGCTGCAGGGAGTGT GGCGCTGTGGAC |
| 4734 | Construction of $\Delta c s r-1:: 6$ (N5700) | GTGTGCAGCGCAGGAAATCCAAGCAGCAT CTCGGGTCCGGT |
| 4735 | Construction of $\Delta c s r-1:: 7$ (N5701) | GCAATGTCGTCAATGGCTGCAGGCATGCCC AGGGATTGGGG |
| 4736 | Construction of $\Delta c s r-1:: 7$ (N5701) | GTGTGCAGCGCAGGAAATCCAGACGGAAC GGTGACAGGCGG |
| 4737 | Construction of $\Delta c s r-1:: 8$ (N5702) | GCAATGTCGTCAATGGCTGCATGGTTCGCG GACGAGGGCTA |
| 4738 | Construction of $\Delta c s r-1:: 8$ (N5702) | GTGTGCAGCGCAGGAAATCCAGGCTATTG CTGCCAGCCGGT |
| 4784 | qChIP his-3 \& csr-1 targeting P1Fwd | AATGCAAGGTCCCGAACACT |
| 4785 | qChIP his-3 \& csr-1 targeting P1Rev | TGGCTGTCGCAATTACCAGT |


| 4786 | qChIP his-3 \& csr-1 targeting P2Fwd | GACCAAGCATGCGTTAGCTG |
| :---: | :---: | :---: |
| 4787 | qChIP his-3 \& csr-1 targeting P2Rev | ACCCAAGGTGGGTGTGTTTT |
| 4788 | qChIP his-3 \& csr-1 targeting P3Fwd | CCGTTTGAGCTGGTCTTCCT |
| 4789 | qChIP his-3 \& csr-1 targeting P3Rev | TGACGGATGCTCTTTGTCCC |
| 4790 | qChIP his-3 \& csr-1 targeting P4Fwd | CAACCAGCTTGACGGCTTTC |
| 4791 | qChIP his-3 \& csr-1 targeting P4Rev | TACCGTAGGTGCCCTGTGTA |
| 3317 | qChIP his-3 \& csr-1 targeting P5Fwd and deletion analysis | CCCCTTCCTGCCGTGGGAGA |
| 3562 | qChIP his-3 \& csr-1 targeting P5Rev and deletion analysis | TCAGCAGGCATAGTCAAGACTGGT |
| 4782 | qChIP his-3 \& csr-1 targeting P6Fwd | CCCGCTTCAGCAACCAAGTT |
| 4783 | qChIP his-3 \& csr-1 targeting P6Rev | AACTTTAGCCCGCGTTACGG |
| 3319 | qChIP his-3 \& csr-1 targeting P7Fwd and deletion analysis | TGGGTCGATGGAGTACCTTCCCC |
| 3563 | qChIP his-3 \& csr-1 targeting P7Rev and deletion analysis | TGCACTATCCTTTTCAGGGGCTTGT |
| 3902 | qChIP his-3 \& csr-1 targeting P8Fwd | GACCTACACGGCCCGGGGAA |
| 3903 | qChIP his-3 \& csr-1 targeting P8Rev | ACCGACGAGACTTGACTGCCCA |
| 3986 | qChIP his-3 \& csr-1 targeting P9Fwd | GTGGCGGCGTGAACGGTCAT |
| 3987 | qChIP his-3 \& csr-1 targeting P9Rev | AGTCAAGCCTCGCGATCGTGA |
| 3321 | qChIP his-3 \& csr-1 targeting P10Fwd | TGAACAGGTGACGGCGGGAGT |


| 3564 | qChIP his-3 \& csr-1 targeting P10Rev | CGGGTCCGGAGTCCATCACCA |
| :---: | :---: | :---: |
| 3976 | qChIP his-3 \& csr-1 targeting P11Fwd | AGTGGTCCAGAGTGGGATCGGT |
| 3977 | qChIP his-3 \& csr-1 targeting P11Rev | ACCGCCAATATGGCATCGCCC |
| 3974 | qChIP his-3 \& csr-1 targeting P12Fwd | TGACGGCGCGCAGATTGGAG |
| 3975 | qChIP his-3 \& csr-1 targeting P12Rev | TCGCTTCCCTTCTCCCACCATCC |
| 3978 | qChIP his-3 \& csr-1 targeting P13Fwd | TTGACGGCGCGCAGATTGGAG |
| 3979 | qChIP his-3 \& csr-1 targeting P13Rev | CCACCATCCTTCCCTCTGCCACA |
| 3992 | qChIP his-3 \& csr-1 targeting P14Fwd | CATCGCAGCTCAACCGCAGA |
| 3993 | qChIP his-3 \& csr-1 targeting P14Rev | GCCAGCCGGTGTCAAGACAGA |
| 3904 | qChIP his-3 \& csr-1 targeting P15Fwd | AACAAAGACGCTCTTCTGGTGGCC |
| 3905 | qChIP his-3 \& csr-1 targeting P15Rev | ACTACCAAACTGCCGACGGCT |
| 3943 | Construction of $\Delta 47.4$ kb::hph ${ }^{+}$(N4933) | GTAACGCCAGGGTTTTCCCAGTCACGACGT GTGGCTTGCAGGCACGCAA |
| 3944 | Construction of $\Delta 47.4$ kb::hph ${ }^{+}$(N4933) | ACCGGGATCCACTTAACGTTACTGAAATCA GTCCGAGTGGGCCTGCCTC |
| 3945 | Construction of $\Delta 47.4$ <br> kb::hph ${ }^{+}$(N4933) | GCTCCTTCAATATCATCTTCTGTCGACGGAC CACCACCCAGCGTGGAAAG |
| 3946 | Construction of $\Delta 47.4$ kb::hph ${ }^{+}$(N4933) | GCGGATAACAATTTCACACAGGAAACAGCT TGCCGCCGGCTGAGAAACC |
| 4960 | ALS159 (N5101) qPCR | TTGGGATGATTTGGGACGGG |
| 4961 | ALS159 (N5101) qPCR | TCCCAAGCTGACAGTTCCAC |


| 4961 | ALS159 (N5101) qPCR | TGCATGCTCTCCCCCTTTTG |
| :--- | :--- | :--- |
| 4963 | ALS159 (N5101) qPCR | TCTGAGGGATGTGCCAAACC |
| 4974 | NM149 (N5857) qPCR | CGCCATTTCTACCCCGATGA |
| 4975 | NM149 (N5857) qPCR | TGCCAAGCCATCTTTTTGCC |
| 4976 | NM149 (N5857) qPCR | CTACGGGTTGCTGCCAAGTA |
| 4977 | NM149 (N5857) qPCR | CCTCAGAGAATCGGGGCATC |
| 4978 | NM149 (N5857) qPCR | GGGCTCAGTCACTTGCTACA |
| 4979 | NM149 (N5857) qPCR | GATATACCCGCACCAGCACA |
| 4984 | OY337 (N5858) qPCR | CTTCGCCTCTCACTCCGATG |
| 4985 | OY337 (N5858) qPCR | GGCAGCTAGCAATCGGTTTT |
| 4986 | OY337 (N5858) qPCR | GGGGTTGCTGGTAATCCGTG |
| 4989 | OY350 (N5862) qPCR | GY337 (N5858) qPCR |


| 5003 | OY350 (N5862) qPCR | CAAGGCTTGGGGAAAGGGAA |
| :--- | :--- | :--- |
| 3317 | UK3-41 (N5866) qPCR | CCCCTTCCTGCCGTGGGAGA |
| 3562 | UK3-41 (N5866) qPCR | TCAGCAGGCATAGTCAAGACTGGT |
| 3954 | UK3-41 (N5866) qPCR | GTAGCTAGCGGGTGCTGCCG |
| 3955 | UK3-41 (N5866) qPCR | AGGCGCCAGGAAGAGTATAGCCC |
| 5012 | OY329 (N5102) qPCR | AAATCCACTCATCCTCGGCG |
| 5013 | OY329 (N5102) qPCR | CTCGGATCACCGTCAACAGG |
| 5020 | OY329 (N5102) qPCR | ATGGTAACGTGGACAGGTGC |
| 5021 | OY329 (N5102) qPCR | TTGAACGCCGTAGAGGGATG |
| 5028 | UK2-32 (N5859) qPCR | AGGAAGTACGCCTTGCAGTC |
| 5029 | UK2-32 (N5859) qPCR | AR16 (N5100) qPCR |


| 5046 | AR16 (N5100) qPCR | GGATCATCGGTAGGTTGGGT |
| :---: | :---: | :---: |
| 5047 | AR16 (N5100) qPCR | TCAGATCCAGCTAGTTTCGCC |
| 5316 | Telomere repeat FP | TTAGGGTTAGGGTTAGGG |
| 5317 | Telomere repeat RP | CCCTAACCCTAACCC |
| 5318 | Targeting tel repeats to csr-1 FP1 | GCAATGTCGTCAATGGCTGCAATTAACCCT CACTAAAGGGA |
| 5319 | Targeting tel repeats to csr-1 RP1 | GTGTGCAGCGCAGGAAATCCATAATACGA CTCACTATAGGG |
| 5320 | Targeting tel repeats to csr-1 FP2 | GTGTGCAGCGCAGGAAATCCAATTAACCCT CACTAAAGGGA |
| 5321 | Targeting tel repeats to csr-1 RP2 | GCAATGTCGTCAATGGCTGCATAATACGAC TCACTATAGGG |
| 5322 | Verify LG I circularization FP | AGAGGAGTCCGTAGGCGAAT |
| 5323 | Verify LG I circularization RP | TCGTTCGGTTGACAGCTTGA |
| 5324 | Verify LG II circularization FP | TGTTTCGGCGATGGGAAGAA |
| 5325 | Verify LG II circularization RP | ACTTCGAGTATGTAGCGGCG |
| 5326 | Verify LG III circularization FP | CGAGGCTCCATAATGCTCGT |


| 5327 | Verify LG III circularization RP | TATTATAGGGCGCGCGGAAG |
| :---: | :---: | :---: |
| 5328 | Verify LG IV circularization FP | GGCGCAAAAACCTTCCTACC |
| 5329 | Verify LG IV circularization RP | ACGACAGGGCCTAGGGTAAT |
| 5330 | Verify LG VI circularization FP | TAGGTTGAAGGCTATCGGCG |
| 5331 | Verify LG VI circularization RP | CCTTGGTTGCATTTGGTGGG |
| 5332 | Verify LG VII circularization FP | GCCTTCGGCTACCTTTCCTT |
| 5346 | Verify LG VII circularization RP | CTCCCTTTCAGCTCGTGTGT |
| 5353 | $3{ }^{\prime}$ csr-1 qPCR FP | CGCCGTTAATGCAGTTGTGAT |
| 5354 | 3 ' csr-1 qPCR RP | CCCCAGCAACTGCGTCTATT |
| 5133 | NM149 (N5857) breakpoint 1 FP | TTGCGGCAAGTTTGAAGTCG |
| 5134 | NM149 (N5857) breakpoint 1 RP | TGAAGCGTAAGCTCGTGTGT |
| 5130 | NM149 (N5857) breakpoint 2 FP | GCTCAAAGTGGGGACTGACA |
| 5154 | NM149 (N5857) breakpoint 2 RP | ATCCTTCTCCGCTGTTTCGG |


| 5123 | OY329 (N5102) breakpoint 1 FP | GTTGTTGTGGTTTCCTCGCC |
| :---: | :---: | :---: |
| 5124 | OY329 (N5102) breakpoint 1 RP | ATATAGGCGTAGCGTTGCCC |
| 5125 | OY329 (N5102) breakpoint 2 FP | TGTTGCCTGGACTGCTAGTG |
| 5126 | OY329 (N5102) breakpoint 2 RP | AGCCTAAACCTCGGCTAGGA |
| 5127 | OY329 (N5102) breakpoint 3 FP | CCGGTATCACGAGCTTCTCC |
| 5128 | OY329 (N5102) breakpoint 3 RP | GGGCGGAAGTTGAGCTGTAT |
| 5155 | UK3-41 (N5866) breakpoint 1 FP | GAACGGGACGTTCAAGGCTA |
| 5157 | UK3-41 (N5866) breakpoint 1 RP | TGCTTGTCTCGTTTTGCAGC |
| 5158 | UK3-41 (N5866) breakpoint 2 FP | CGGGAGAGGGGGATAGTTGA |
| 5473 | UK3-41 (N5866) breakpoint 2 RP | CGCACTCACATGCTGCATAC |
| 5156 | UK3-41 (N5866) breakpoint 3 FP | AAGGCGTAATGGACACGAGG |
| 5472 | UK3-41 (N5866) breakpoint 3 RP | GCATCGTATTTGCACCGTCC |
| 5476 | ALS159 (N5101) breakpoint 1 FP | TCCGCAGCCGAAGTTACAAT |


| 5477 | ALS159 (N5101) breakpoint 1 RP | ACGTCACTCTCTGCCCCTAT |
| :---: | :---: | :---: |
| 3902 | PtrpC-nat1 FP | CAACTGATATTGAAGGAGCA |
| 1369 | nat-1 RP | GGGCATGCTCATGTAGAGCG |
| 3406 | TERT KO FP1 | AGCGAACTACTACCAACTACG |
| 3407 | TERT KO RP2 | CCCAAAAAATGCTCCTTCAATATCAGTTGG CATGTGAGACACTATCACG |
| 3408 | TERT KO FP3 | CGCTCTACATGAGCATGCCCTGCCCCTGAA AGTCTGGTACTGGGATTGG |
| 3409 | TERT KO RP4 | CTTTCACGACTACCTTCCAAG |
| 6271 | 6271_NCU02840_qPCR_F | CCCTCTCAGACGAGGATATTCA |
| 6272 | 6272_NCU02840_qPCR_R | GCTCTGCTGCTTCTCCTTTAT |
| 6277 | 6277_NCU04720_qPCR_F | TCAGGTTGGAGGAGAGGTATAA |
| 6278 | 6278_NCU04720_qPCR_R | CTATGAGGCCGAAATCCTTGT |
| 6281 | 6281_NCU10030_qPCR_F | CTGCGATCGTAACACTGGATTA |
| 6282 | 6282_NCU10030_qPCR_R | CCGTCCGACATGTAATTACTCAG |
| 6283 | 6283_NCU10031_qPCR_F | CCGATGTCCAGAAGCAGTATATTA |
| 6284 | 6284_NCU10031_qPCR_R | CAGAGCAACTGAGTGGATAGTC |
| 3565 | Telomere 1L qPCR FP | AGCGTTCAAATGCCGTGACCTGT |
| 3566 | Telomere 1L qPCR RP | AGTCCAATGGTGCTAACGGCGA |


| Plasmid | Description |
| :--- | :--- |
| 1991 | pBM61 - his-3 targeting vector |
| 3110 | LG VIL H3K27me2/3 segment \#1 cloned into 1991 |
| 3111 | LG VIL H3K27me2/3 segment \#2 cloned into 1991 |
| 3112 | LG VIL H3K27me2/3 segment \#3 cloned into 1991 |
| 3113 | LG VIL H3K27me2/3 segment \#4 cloned into 1991 |
| 3114 | LG VIL H3K27me2/3 segment \#5 cloned into 1991 |
| 3115 | LG VIL H3K27me2/3 segment \#6 cloned into 1991 |
| 3116 | LG VIL H3K27me2/3 segment \#7 cloned into 1991 |
| 3117 | LG VIL H3K27me2/3 segment \#8 cloned into 1991 |
| 3172 | (TTAGGG) 26 cloned into pCR4-TOPO-TA |
| FGSC \#10598 |  |

Table S3: List of plasmids

A wT


UK3-41






Jamieson_Fig2
A
OY329 (Oak Ridge)



LG III


Segmental Duplication


B



OY329 (Oak Ridge)


B


C


H3K27me2/3 Domain

A
not certified by peer review) is the author/funder, who


A


B



B











## C















Jamieson_FigS4


Jamieson_FigS5


