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Abstract
Electrical stimulation is a widely used and effective tool in systems

neuroscience, neural prosthetics, and clinical neurostimulation. However,
electrical artifacts evoked by stimulation significantly complicate the detection of
spiking activity on nearby recording electrodes. Here, we present ERAASR: an
algorithm for Estimation and Removal of Artifacts on Arrays via Sequential
principal components Regression. This approach leverages the similar structure
of artifact transients, but not spiking activity, across simultaneously recorded
channels on the array, across pulses within a train, and across trials. The
effectiveness of the algorithm is demonstrated in macaque dorsal premotor cortex
using acute linear multielectrode array recordings and single electrode
stimulation. Large electrical artifacts appeared on all channels during
stimulation. After application of ERAASR, the cleaned signals were quiescent on
channels with no spontaneous spiking activity, whereas spontaneously active
channels exhibited evoked spikes which closely resembled spontaneously
occurring spiking waveforms. The ERAASR algorithm requires no special
hardware and comprises sequential application of straightforward linear methods
with intuitive parameters. Enabling simultaneous electrical stimulation and
multielectrode array recording can help elucidate the causal links between neural
activity and cognitive functions and enable the design and implementation of
novel sensory protheses.

1 Introduction 1

Electrical stimulation is a method of modulating neural activity that is widely used 2

within neuroscience and neuroengineering, as well as for treatment of chronic 3

neurological pathologies. Within neuroscience, microstimulation is used to probe the 4

functional organization of neural circuits. Whereas electrophysiological recordings 5

provide correlative insights that neural activity in a brain region appears related to a 6

specific behavior, electrical stimulation can demonstrate causal contributions of brain 7

regions to specific cognitive functions (Salzman et al., 1990). In particular, 8

intracortical microstimulation (ICMS) has been used to identify neural networks 9

underlying perception, attention, cognition, and movement (see Cohen and Newsome, 10

2004; Clark et al., 2011; Histed et al., 2013, for a review). ICMS can also drive reliable 11

percepts in humans and animal models, including somatosensory vibration (Romo 12

et al., 2000) and visual phosphenes (Tehovnik and Slocum, 2007), which underscores 13

its application for delivering artificial sensation in visual (Tehovnik et al., 2009) and 14
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motor prosthetic systems (Berg et al., 2013; O’Doherty et al., 2011). In clinical 15

contexts, stimulation, especially delivered to deeper brain structures, has 16

demonstrated efficacy for the treatment of neurological and neuropsychiatric 17

conditions (Wichmann and Delong, 2006; Holtzheimer and Mayberg, 2011) and 18

recently as an avenue for providing sensory information as will be needed for a range 19

of emerging brain-machine interface systems (Flesher et al., 2016). 20

However, as with all perturbations to the nervous system, accurate interpration of 21

the results relies on a solid understanding of the effects of the perturbation made (e.g., 22

Jazayeri and Afraz, 2017; Otchy et al., 2015). With lesion and pharmacology studies, 23

understanding the size of the affected region, completeness of the intended effect, the 24

timecourse of the effect and recovery, and the influence of compensatory or 25

homeostatic adaptation mechanisms are all critical to drawing correct conclusions 26

from the behavioral impairments observed. Analogously, with ICMS, it is essential to 27

understand the effect that electrical stimulation has on neural activity in order to 28

draw correct inferences from causal experiments. In the context of neural prosthetics, 29

researchers aim to improve the fidelity of artificial perception with sophisticated 30

spatiotemporal patterning (e.g., Dadarlat et al., 2015) and to optimize stimulation 31

paramaters to maximize therapeutic benefit. Obtaining a clear picture of the effects of 32

particular stimulation paradigms will likely prove essential to this goal, enabling 33

closed-loop tuning of stimulation parameters relative to a desired effect on the local 34

neural activity. 35

The effects on neural firing patterns evoked by ICMS have been difficult to 36

characterize because the electrical artifact induced by stimulation interferes with the 37

electrophysiological recording equipment used to record neuronal responses (Ranck, 38

1975; Merrill et al., 2005). A variety of approaches have been developed to work 39

around these artifacts, which can be organized into several categories. Online 40

approaches employ special hardware within the signal recording pathway to remove 41

the stimulation artifact online (e.g., Wichmann and Devergnas, 2011; Brown et al., 42

2008; Müller et al., 2012). While effective, hardware approaches can be expensive or 43

challenging to scale to high channel count recording arrays and typically require very 44

stable artifacts over time for proper removal. Offline approaches employ standard 45

electrophysiology collection hardware to record neural signals and then estimate and 46

subtract the artifact post hoc. The most common approach for artifact estimation is 47

to simply interpolate across the artifact (O’Keeffe et al., 2001; Montgomery et al., 48

2005) and/or to average over repeated stimulation epochs (Hashimoto et al., 2002; 49

Montgomery et al., 2005; Klink et al., 2017) and subtract, exploiting the larger 50

stereotypy of the stimulus artifact relative to variable neural responses. Others have 51

employed curve fitting approaches to estimate the artifact, exploiting the differences in 52

shape of artifact and action potentials, thereby allowing for small variations in the 53

observed artifact across trials (Wagenaar and Potter, 2002; Erez et al., 2010). 54

These previous approaches have two major shortcomings addressed in this work. 55

First, these approaches only recover neural signals occurring after the stimulation 56

pulse is completed, with a typical window of of several milliseconds during which 57

signal is discarded. However, ICMS is typically delivered in trains of stimulation 58

pulses occurring at frequencies approaching several hundred pulses per second (e.g., 59

Churchland and Shenoy, 2007; Klink et al., 2017). This failure to recover neural 60

activity concomitant with the stimulation pulses renders a large fraction of the 61

peri-stimulation signal unusable for spike detection and waveform discrimination. 62

Secondly, prior work has focused on artifacts detected at a single electrode, not 63

exploiting the similar structure of contaminating artifacts across multiple electrodes 64

using a multielectrode array. A notable exception to both of these shortcomings was 65

developed by Mena and colleagues (2016), where they addressed both of these 66
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limitations using a modern statistical framework to isolate electrical artifacts from 67

neural spiking signals in multielectrode array recordings of the retina in vitro. 68

However, this approach currently requires the availability of electrical images for each 69

neuron’s spike waveform on multiple surrounding electrodes. Unfortunately, for the 70

multielectrode array configurations commonly employed in in vivo cortical 71

electrophysiology, the electrical image of most neurons is confined to a single electrode. 72

Additionally, since the set of recorded neurons is biased towards a highly active subset 73

of neurons (Barth and Poulet, 2012), we anticipate that some neurons that are driven 74

to spike by electrical stimulation may be quiet outside of the stimulation period, and 75

thus ommitted in the dictionary of available electrical images. 76

In this paper, we present a fast method for removing electrical stimulation artifacts 77

from multielectrode array recordings. We term this approach ERAASR: Estimation 78

and Removal of Artifacts from multielectrode Arrays via Sequential principal 79

components Regression. ERAASR does not require any special hardware and can 80

recover the full timecourse of neural signals during and after stimulation, requiring 81

only that the electrical artifact does not saturate the amplifier on the recording 82

electrodes. Our algorithm exploits the similarity of artifacts across multiple electrodes, 83

multiple pulses within a pulse train, and multiple trials of repeated stimulation. The 84

ERAASR algorithm is structured as a sequence of cascaded, linear operations—PCA 85

and linear regression—across each axis of the data tensor. We validate our method on 86

neural signals collected during an arm-movement task with 24-channel linear 87

multielectrode arrays (“V probes”, Plexon Inc.) in macaque dorsal premotor cortex, 88

demonstrating that spiking waveforms extracted during the stimulation period closely 89

resemble spontaneous spiking waveforms on each electrode. 90

2 Methods 91

2.1 Subjects 92

Animal protocols were approved by the Stanford University Institutional Animal Care 93

and Use Committee. The subject was one adult male macaque monkey (Macaca 94

mulatta), monkey P. After initial training, we performed a sterile surgery during which 95

the macaque was implanted with a head restraint and a recording cylinder (NAN 96

Instruments) which was located over left, caudal, dorsal premotor cortex (PMd). The 97

cylinder was placed surface normal to the skull and secured with methyl methacrylate. 98

A thin layer of methyl was also deposited atop the intact, exposed skull within the 99

chamber. Before stimulation sessions began, a small craniotomy (3 mm diameter) was 100

made under ketamine/xylazine anesthesia, targeting an area in PMd which responded 101

during movements and palpation of the upper arm (17 mm anterior to interaural 102

stereotaxic zero). 103

2.2 Reaching task 104

For the purposes of this study, we engaged the monkey in a reaching task in order to 105

drive task related neural activity in premotor cortex where our electrodes were 106

located. We trained the monkey to use his right hand to grasp and translate a custom 107

3D printed handle (Shapeways, Inc.) attached to a haptic feedback device (Delta.3, 108

Force Dimension, Inc.). The other arm was comfortably restrained at the monkey’s 109

side. The monkey was trained to perform a delayed reaching task by moving the 110

haptic device cursor towards green rectangular targets displayed on the screen. 111

Successful completion of each movement triggered a juice reward. 112
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Figure 1. Our technique faciliates electrical recordings of local neural activity during
and after nearby electrical stimulation, provided that the electrical artifact does not
saturate the amplifier. (a) A schematic of the recording setup. A tungsten stimulating
microelectrode and linear multielectrode array are inserted in parallel into dorsal premo-
tor cortex. The linear array records the electrical activity of nearby neurons spanning
the layers of cortex, while electrical current is introduced by the tungsten microelec-
trode. (b) An example of real electrical recordings on the linear multielectrode array
(ch. 1-24) during delivery of a single 40 µApulse train (red, stim) through the stim-
ulating electrode. The recording channels span 2.3 mm and are labeled from 1 (most
superficial, typically above cortex) through 24 (deep, typically in white matter).

2.3 Electrophysiology and stimulation configuration 113

At the start of each experimental session, both a stimulation electrode and a recording 114

probe were secured to two independently controllable, motorized micromanipulators 115

(NAN instruments). Both probes were lowered simultaneously through blunt, 116

non-penetrating guide tubes into dorsal premotor cortex at 3 µm/s to an approximate 117

depth of 2 mm (Figure 1a). The stimulation electrode was a single tungsten 118

microelectrode with approximately 1MΩ impedance at 1 kHz (Part 119

#UEWLGC-SECN1E, Frederick Haer Company). The recording probe was a linear 120

electrode array consisting of 24 contact sites located at 100µm spacing along the 121

length of the shank (V-probe PLX-VP-24-15ED-100-SE-100-25(640)-CT-500, Plexon 122

Inc.). The recording probe penetration site was located at an approximate distance of 123

0.75mm to 1.5mm from the stimulation site. As best possible, the stimulating 124

electrode was inserted at the same location and to the same depth, whereas we 125

changed the location of the recording electrode for each recording session. 126

The stimulation was performed using a StimPulse electrical stimulation system 127

used as a combined function generator and isolated current source (Frederick Haer 128

Company). The electrical stimulation current flowed through the brain via the 129

electrode to a “ground screw” located at the posterior pole of the implant whose tip 130

was in contact with the dura below the skull. Microstimulation trains consisted of 20 131

biphasic pulses delivered at 333 Hz for 57 ms (150µs cathodic, 100µs pause, 150 µs 132

anodic). Stimulation amplitude was varied between 5µA to 40µA. Stimulation 133
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delivered at the start of most experimental sessions, while the arm was in a passive, 134

resting position, triggered brief movements of the contralateral upper arm and 135

shoulder at thresholds typically > 140 µA. Stimulation onset was triggered via TTL 136

pulse delivered by the task engine (Simulink Real-time Target, The Mathworks; 137

NIDAQ digital to analog card, National Instruments). Stimulation was delivered on 138

20-40% of trials and randomly interleaved. Stimulation amplitude was fixed within 139

each block of trials, where we collected at least 8-10 repetitions of each stimulation 140

trial type for each block. Within each session, we typically began with blocks of lower 141

amplitude stimulation before proceeding to higher amplitude stimulation. 142

The recording probe was connected to a 3-headed switching headstage, a 143

component of the Blackrock StimSwitch system (Blackrock Microsystems). The probe 144

connects to one bank of inputs, control lines from the StimSwitch control box connect 145

to the second bank of inputs, and outgoing voltage signals leave via the third bank of 146

outputs. During these experiments, this component was configured to act as a unity 147

gain buffer (head stage) which simply relays the voltage signals to a shielded ribbon 148

cable (Samtec Inc.) to the amplifier (Blackrock Microsystems). Each electrode is 149

differentially amplified relative to a common reference line in the V-probe itself, which 150

is also shorted to surrounding guide tube for better noise rejection. 151

Broadband voltages were recorded from all 24 electrode channels of the recording 152

probe. We also recorded from the stimulation electrode during initial penetration to 153

verify that we could see nearby neurons on the electrode. We then disconnected the 154

stimulation electrode from the recording system and connected it to the StimPulse 155

stimulator. Broadband signals were filtered at the amplifier (0.3 Hz 1 pole high-pass 156

filter, 7.5 kHz 3 pole low-pass filter), digitized to 16 bit resolution over ± 8.196mV 157

(resolution = 0.25 µV), and sampled at 30 kHz. 158

2.4 Artifact amplitude model 159

The amplitude of the electrical artifact was measured on each recording channel as the 160

peak to peak voltage concomitant with the first stimulus pulse, averaged across trials. 161

These amplitude measurements were used to fit a model relating artifact amplitude to 162

the distance of each site to the stimulation source. This model jointly optimizes a 163

single scaling parameter for the distance-dependent amplitude relationship as well as 164

parameters denoting the stimulation-relative coordinates of the recording probe in 165

each session. We define xs as the distance measured laterally from the probe to the 166

closest point on the stimulating electrode, both of which are assumed to run parallel 167

to the recording probe and normal to the cortical surface; we define ys as the vertical 168

distance along the penetration path from the most superficial electrode on the probe 169

to the tip of the stimulating electrode. We begin by describing the location of each 170

electrode e in each session s relative to the probe location (x, y)s. Here 171

(x, y)e,s = (xs, ys + e∆) (1)

where ∆ = 100 µm spacing between sites. This contact site is located at a distance 172

de,s =
√

x2
e,s + y2e,s (2)

from the stimulation source defined as the origin. We then assume that the amplitude 173

of the artifact on each electrode for a specific stimulation amplitude Ia, falls off as the 174

reciprocal of this distance. 175

Ve,s,a =
v0 ∗ Ia
de,s

(3)

where v0 has units V/(µAmm). The parameters of thie model are this single scaling 176

parameter v0 as well as a pair of location coordinates for the probe on each session. 177
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We then fit this model using constrained non-linear curve fitting (lsqcurvefit in 178

Matlab) to minimize the squared error between empirical and modeled artifact 179

amplitude across electrodes, sessions, and amplitudes. Confidence intervals of the 180

parameters were obtained using the Jacobian of the fitted model. 181

2.5 Precise temporal alignment and tensor construction 182

We begin with the raw, unfiltered voltage traces for each stimulation trial, collected 183

simultaneously on the 24 channels, sampled at 30 kilosamples/sec. We first correct the 184

small amount of jitter between triggering the stimulator to the beginning of the 185

stimulation train, typically on the order of a few milliseconds. We begin by precisely 186

aligning the stimulation trials to each other in time. This process is performed 187

separately for each group of trials sharing a common stimulation amplitude. We 188

extract the raw voltage data off of one electrode channel in a 60 ms window 189

surrounding the triggering event, high-pass filter the signal with a fourth-order, 250 190

Hz corner frequency Butterworth filter, to remove slow drift. We then detect the onset 191

of the artifact due to the first biphasic pulse on each trial using an appropriately low 192

negative threshold, set to avoid spiking activity but reliably detect artifacts at the 193

lowest stimulation amplitude. We then realigned the voltage data for each trial to this 194

threshold crossing event. We then performed an outlier detection procedure to detect 195

rare instances of stimulator failure, including trials where 19 or 21 pulses were 196

delivered instead of 20. Outlier detection was performed by projecting the realigned, 197

unfiltered voltage traces onto the first 10 principal components of that group, and 198

detecting trials where the absolute value of the z-scored scores in any of the first 10 199

PCs exceeded a value of 5. Outlier trials (typically < 2% of trials) were excluded from 200

subsequent analysis. The traces were then up-sampled 10x to 300 kHz using spline 201

interpolation and then a maximum cross-correlation procedure was performed to 202

determine the temporal offset between each trial and the first in the group. We 203

manually verified the results of this procedure to ensure successful artifact removal 204

and accurate alignment of the artifact pulse trains. The aligned traces are then 205

resampled at the original 30 kHz sampling rate. 206

The ERAASR algorithm is summarized in alg. 1. We construct a data tensor for 207

each group of trials sharing a common stimulation amplitude, as the artifact evoked 208

across trials for a single stimulation amplitude were highly similar. We extract a 60ms 209

window of the trial-aligned broadband voltage data across the trials, yielding a data 210

tensor Xraw with size C (number of channels) x T (number of timepoints per pulse) x 211

P (number of pulses) x R (number of trials). In our datasets C = 24 channels, T = 90 212

timepoints per pulse (3 ms at 30 kHz sampling), P = 20 pulses, and R was typically 213

on the order or 100-200 trials. 214

We lightly high pass filter the signals in time with a fourth-order, 10 Hz corner 215

frequency Butterworth filter, which removes slow drifts from the traces and makes 216

subsequent processing more robust. We first attempt to clean each channel by 217

exploiting the similarities of the artifact across simultaneous channels (Figure 2a). 218

2.6 Removal of common structure over channels 219

We then unfold the data tensor into an RTP x C matrix Mc (Figure 2b), and perform 220

principal components analysis. This allows us to re-express each channel’s response 221

vector (RTP x 1) as a linear combination of principal components, each RTP x 1. As 222

the artifact waveform is very large relative to the interesting spiking activity and 223

shared across all channels, one would expect the top few principal components to 224

capture preferentially shared variance due to the artifact. Empirically, we determined 225

that the top KC = 4 principal components (PCs) captured much of the artifact shape 226
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Algorithm 1: ERAASR cleaning procedure
Input : Raw data tensor Xraw(c, t, p, r)

with size C channels by T timepoints per pulse by P pulses by R
trials
Output : Cleaned data tensor Xcleaned(c, t, p, r) with same size
Parameters: KC ,KP ,KR - number of principal components to describe artifact

structure over channels, pulses, trials
λC , λP , λR - the number of adjacent channels, pulses, trials
excluded as regressors during artifact reconstruction
βP , βC ∈ {false, true} - Perform cleaning over pulses separately on
each channel? Below we assume βP is false and βC is true for
clarity.

X← Xraw

Clean across channels
Unfold X into MC with size RPT by C.
WC ← projection along leading KC principal components of MC

for c ∈ 1, . . . , C do
Ac ← MCWC

/c with weights zeroed for channel c and channels within λC

X(c, :, :, :) −= projection of X(c, :, :, :) onto Ac

end
Clean across pulses

Unfold X into MP with size TRC by P .
WP ← projection along leading KP principal components of MP

for p ∈ 1, . . . , P do
Ap ← MPWP

/p with weights zeroed for pulse p and pulses within λP

X(:, :, p, :) −= projection of X(:, :, p, :) onto Ap

end
Clean across trials, separately for each channel

for c ∈ 1, . . . , C do
Unfold X(c, :, :, :) into MR

c for with size TP by R.
WR

c ← projection along leading KR principal components of MR
c

for r ∈ 1, . . . , R do
Ac,r ← MRWR

c,/r with weights zeroed for trial r and trials within λR

X(c, :, :, r) −= projection of X(c, :, :, r) onto Ac,r

end
end

return Xcleaned ← X
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Figure 2. The first stage of artifact removal removes common structure recorded
simultaneously across linear electrode array channels. (a) The electrical artifact evoked
by a single pulse of a stimulus train is highly similar across the 24 channels of the array.
(b) To identify the common artifact structure present across channels, we rearrange
the artifact data into a matrix with dimensions time × pulses × trials (T × P × R)
by channels (C), shown transposed. (c) The principal components of this matrix are
linear combinations of the electrode channels. The projections of the recordings along
these components clearly display artifact structure shared across channels. (d) Voltage
recordings for the first pulse of the stimulus train, plotted separately for each channel
with the responses on each trial superimposed. Raw voltage recordings are shown in
black, with the artifact inferred via principal components regression shown in red. (e)
Same presentation as in (d) but with the residual voltage recordings shown in blue,
after the inferred artifact has been subtracted. (f) Cleaned voltage recordings for a
single trial with the responses to each individual pulse superimposed. The top panel
shows a superficial channel which had no detectable spontaneous neural activity, and
the bottom panel shows a lower channel where a well-isolated single unit was spiking
spontaneously.

(Figure 2c). We then want to reconstruct each channel’s response omitting the 227

contribution from the artifact. The simplest method to accomplish this would be to 228

reconstruct the channel’s response by using a linear combination of all PCs except the 229

first KC . However, in some cases, especially when lower currents were used and the 230

magnitude of the artifact relative to the spiking activity was smaller, we observed that 231

some of the top PCs would begin to incorporate a small amount of spiking activity 232

from individual channels. By reconstructing those channels from the remaining PCs, 233

the spiking activity itself would be partially distorted because a fractional portion of 234

those spikes would be subtracted along with the artifact. We addressed this issue by 235

again exploiting the locality of spiking activity, by assuming that spiking activity from 236

any one channel would not be present on other channels except the immediately 237

adjacent channels. However, the artifact is shared on a much larger spatial scale and 238

can be separated from the spiking activity. Therefore, for each channel c, we used the 239

following procedure: reconstruct the top Kc PCs using all channels except c and its 240
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immediately adjacent neighbors c− 1 and c+1, that is, using a modified version of the 241

loading weights wC
(k) for the kth principal component in which we set the weights for 242

c, c− 1, c+ 1 to 0. More generally, we define parameter λC that dictates the number of 243

adjacent channels excluded from the reconstruction. We refer to this vector of 244

modified loading weights as wC
(k,/c). 245

(
wC

(k,/c)

)
i
=

{
0 if i ∈ {c− λC , . . . , c, . . . , c+ λC}(
wC

(k)

)
i

else (4)

Using these loading weights, we reconstruct the matrix of the top KC 246

artifact-capturing PCs, where each column is given by 247

(Ac)(k) = MCwC
(k,/c) k = 1, . . . ,KC ; c = 1, . . . , C (5)

We then regress the channel’s response vector against these artifact components 248

and subtract this reconstructed artifact from the channel’s response: 249

M̂C
c = MC

c −
(
AT

c Ac

)−1 (
AT

c

)
MC

c (6)

This cleaning across channels captured (Figure 2d) and removed (Figure 2e) much 250

of the artifact from each pulse. However, when examining the responses on an 251

individual channel across each of the 20 pulses superimposed, we observed consistent 252

structure in the traces (Figure 2f). 253

2.7 Removal of common structure over pulses 254

This structure indicates that there remained artifact structure that is unique to 255

individual channels but shared among the pulses in each trial. To address this, we 256

rearrange M̂C into a new matrix MP with size TRC x P , a set of responses to each 257

individual pulse, concatenated over trials and channels (Figure 3a). Empirically, we 258

determined that the top KP = 2 principal components (PCs) captured much of the 259

artifact shape. Consequently, we used the same PC regression procedure to estimate 260

and subtract the artifact on each pulse, omitting the contribution of the pulse under 261

consideration and optionally adjacent pulses within λP . For our dataset, λP = 0 was 262

used. If wP
(k) is a vector of P loading weights describing the kth principal component, 263

and for each pulse p, wP
(k,/p)

is given by: 264

(
wP

(k,/p)

)
i
=

{
0 if i ∈ {p− λP , . . . , p, . . . , p+ λP }(
wC

(k)

)
i

else (7)

For each pulse, we reconstruct the matrix of the top KP artifact-capturing PCs, 265

whose columns are given by: 266

(Ap)(k) = MPwP
(k,/p)

k = 1, . . . ,KP ; p = 1, . . . , P (8)

We then regress the channel’s response vector against these artifact components 267

and subtract this reconstructed artifact from the channel’s response: 268

M̂P
p = MP

p −
(
AT

p Ap

)−1 (
AT

p

)
MP

p (9)

This cleaning procedure over pulses captured much of the common artifact structure 269

observed within each train (Figure 3b). It is also possible to perform this cleaning over 270

pulses separately for each channel, following an approach like that described below for 271

cleaning over trials. 272
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Time (T) x Trials (R) x Channels (C)
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Figure 3. The second stage of artifact removal removes common artifact structure
across the successive pulses of the stimulus train. (a) To isolate structure across pulses,
we rearrange the artifact data into individual matrices for each channel, each with
dimensions time (T ) × trials (R) × channels (C) by pulses (P ). (b) Voltage recordings
for a single trial, plotted separately for each channel with the responses to each pulse
superimposed. Raw voltage recordings are shown in black, with the artifact inferred via
principal components regression shown in red. (c) Cleaned voltage recordings for a single
pulse with the responses to all trials superimposed. The top panel shows a superficial
channel which had no detectable spontaneous neural activity, and the bottom panel
shows a lower channel where a well-isolated single unit was spiking spontaneously.

We next examined the set of cleaned traces for individual channels and pulses in 273

the train, over the full set of trials. We observed that there remained common 274

artifactual structure in these traces, which suggests that there is artifact structure 275

unique to that channel and pulse number but shared among many trials (Figure 3c). 276

In most cases, this common structure was similar among nearby trials but exhibited a 277

slow drift in the shape of the artifacts over the experimental session. 278

2.8 Removal of common structure across trials 279

To remove these residual artifacts, we again employed a principal components 280

regression approach, exploiting the shared structure of the artifact over multiple trials. 281

We performed this operation separately for each channel. We rearranged the cleaned 282

M̂P into a set of C data matrices MR
c for c ∈ {1, . . . , C}, each with size TP x R 283

(Figure 4a). Empirically, we determined that the top KR = 4 PCs captured much of 284

the artifact shape over trials. If wR
(c,k) is a vector of R loading weights describing the 285

kth principal component for channel c, we defined: 286

(
wR

(c,k,/r)

)
i
=

{
0 if i ∈ {r − λR, . . . , r, . . . , r + λR}(
wR

(c,k)

)
i

else (10)

where λR adjacent trials were excluded from the reconstruction. For our dataset, 287

λR = 0 was used. 288

For each trial, we reconstruct the matrix of the top KR artifact-capturing PCs, 289

whose columns are given by: 290(
A(c,r)

)
(k)

=
(
MR

c

) (
wR

(c,k,/r)

)
k = 1, . . . ,KR; r = 1, . . . , R; c = 1, . . . , C (11)

We then regress the trial’s response vector against these artifact components and 291
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Figure 4. The third stage of artifact removal removes common artifact structure across
trials in which identical electrical stimulus trains were delivered. (a) To isolate structure
across trials, we rearrange the artifact data into individual matrices for each channel,
each with dimensions trials (R) by time × pulses (T × P ). (b) Voltage recordings
for a single pulse, plotted separately for each channel with the responses to each trial
superimposed. Raw voltage recordings are shown in black, with the artifact inferred via
principal components regression shown in red. (c) Cleaned voltage recordings for a single
trial with the responses to all pulses superimposed. The top panel shows a superficial
channel which had no detectable spontaneous neural activity, and the bottom panel
shows a lower channel where a well-isolated single unit was spiking spontaneously.

subtract this reconstructed artifact from the trial’s response: 292

M̂R
(c,r) = MR

(c,r) −
(
AT

(c,r)A(c,r)

)−1 (
AT

(c,r)

)
MR

(c,r) (12)

We then rearranged the set of cleaned M̂R
c back into a C x T x P x R tensor 293

Xcleaned. This cleaning procedure captured much of the residual artifact (Figure 4c). 294

The cleaned signals in Xcleaned did not display features obviously indicative of residual 295

stimulation artifact, but did on some channels contain readily detectable spiking 296

activity (Figure 4c, bottom panel). We then reinserted Xcleaned into the raw voltage 297

traces for each stimulation trial, using appropriate offsets to preserve continuity at the 298

first and last timepoints of the inserted segment. 299

2.9 Post-stimulation transient cleaning 300

Following stimulation offset, a slower transient was observed in all channels. These 301

transients are highly similar among trials. Consequently, we employed a similar 302

principal components regression procedure to remove these slow transients. We 303

performed the following procedure for each stimulation amplitude separately. We 304

began by aligning the trials to stimulation offset and extracting voltage data in a 30 305

ms time window beginning after stimulation end, yielding a tensor Xpost with size R 306

by T by C. We then rearrange this tensor into a set of C data matrices Mpost
c for 307

c ∈ {1, . . . , C}, each with size T x R. Empirically, we determined that much of the 308

transients temporal structure was present in each trial for a given channel and that 309

the top Kpost = 2 principal components (PCs) of these Mpost
c matrices captured much 310

of the transient shape over trials. Consequently, we repeated the same principal 311

components regression approach described in eqs. (10) to (12) to clean the 312

post-stimulation transients over trials. We then rearranged the set of cleaned M̂post
c 313

back into a R by T by C tensor Xpost−cleaned. The signals in Xpost−cleaned were then 314

reinserted into the full voltage traces for each stimulation trial. 315
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2.10 Spike thresholding and sorting 316

The cleaned voltage traces, along with the original voltage traces on non-stimulated 317

trials were then high-pass filtered using a fourth-order 250 Hz corner frequency 318

Butterworth filter, as is typically done online before spike detection. We then 319

thresholded each signal at -4.5x RMS voltage, using a greedy procedure in which the 320

spike threshold crossings were detected in order of size (largest to smallest), and no 321

further threshold crossings were considered within a lockout period extending 0.3 ms 322

prior to and 1.0 ms after the current threshold crossing. We then hand-sorted the 323

spiking waveforms using MKsort (Matthew Kaufman and Ripple, Inc., 324

https://github.com/ripple-neuro/mksort). 325

2.11 Unit selection 326

During experiments, we recorded any units or multi-units that could be isolated on 327

the multielectrode array, without regard for their responsiveness or modulation by the 328

task. Before analysis, we applied a screening procedure which looked only at 329

non-stimulated trials in order to remove neurons that were very unreliable or very 330

weakly modulated by the task. Briefly, we filtered non-stimulated trials spike trains 331

with a 30 ms Gaussian window, then aligned trials separately from 100 ms pre-target 332

onset to 70 ms post go cue, and then from 300 ms pre-movement to 600 ms post, then 333

averaged within groups of trials with the same reach target. We defined each unit’s 334

“signal” to be the range of firing rates over all times and conditions, and “noise” to be 335

the maximum standard error of the mean firing rate. We included units where the 336

ratio of signal to noise exceeded at least 2, a total of 138 units in monkey P. Note that 337

this selection process looked only at non-stimulation trials. 338

3 Results 339

We delivered high-frequency (333 Hz) biphasic electrical stimulation in macaque 340

dorsal premotor cortex through a tungsten microelectrode, while simultaneously 341

recording neural spiking activity using a second 24-channel linear multielectrode array 342

(Figure 1a). When a stimulus train was delivered through the electrode, a highly 343

stereotyped stimulation artifact appeared on all channels of the recording array 344

(Figure 1b). These broadband recordings were corrupted by a very large electrical 345

stimulation artifact. Amplitudes could exceed ±7500 µV which is nearly two orders of 346

magnitude larger than spiking waveform amplitudes ( ∼100 µV). The artifact traces 347

resembled filtered versions of the original current stimulus. with similar transients 348

evoked for each of the 20 biphasic pulses. These artifacts increased in amplitude with 349

larger stimulation current and smoothly varied over the 24 channels of the recording 350

probes (Figure 5a,b), consistent with a distance-dependent attenuation of the 351

electrical stimulus. 352

We used these amplitude profiles over channels for each session to fit a model 353

relating artifact amplitude and the reciprocal of the distance of each electrode to the 354

stimulation source. The model fitting process jointly optimizes a scaling parameter of 355

the amplitude-distance relationship as well as parameters specifying the location of 356

the recording probe on each session (See methods). We fit this model to data collected 357

in 9 recording and stimulation sessions in macaque prefrontal cortex. Figure 5c shows 358

the empirical and predicted artifact amplitude (normalized by stimulation current) 359

under the model against distance from the stimulation site (squared correlation 360

R2 = 0.91), demonstrating that this model well-describes the distant-dependent falloff 361

of the electrical artifact. The fitted location of each probe relative to the stimulation 362
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a

b c d

Figure 5. Electrical artifacts recorded on the electrode array resemble scaled, filtered
versions of the original stimulus pulse train. The artifact amplitude varies smoothly with
stimulation current and electrode distance, enabling post hoc inference of the locations
of the recording probes in each session. (a) Electrical artifact amplitude (peak to peak)
across multielectrode array channels. Each plot corresponds to a recording session in
which the multielectrode array was inserted in a new location. (b) Electrical artifacts
recorded on several trials on superficial electrode with increasing electrical stimulation
current. (c) A simple model relating the electrical artifact amplitude was fit to each
channels on every session. The model assumes that the artifact scales linearly with
stimulation current and falls off with the reciprocal of Euclidean distance from the
stimulating electrode tip. These distances are themselves inferred from the data as
parameters describing the position of the electrode array in each session. The fitted
model predicted amplitudes (black curve flanked by gray 95% CI) align well with the
empirical amplitudes observed on each session (groups of connected dots, each color
corresponds to a session). (d) The fitted locations of the recording probe on each
session relative to the stimulating electrode tip. Marker size is scaled according to
artifact amplitude. Cross-hairs indicate 95 % CI for probe location parameters.

source are depicted in Figure 5d, which closely aligns with the noted approximate 363

probe insertion locations at 0.7mm to 2mm from the recording probe. This simple 364

relationship suggests that under certain circumstances, electrical artifacts could be 365

used to reconstruct recording locations in vivo. 366

Having characterized the artifacts, we applied ERAASR to remove the artifact 367

from these traces. The ERAASR algorithm leverages several features of these 368

recording datasets. First, it assumes that the true neural signal is corrupted by an 369

additive stimulation artifact, which depends critically on the assumption that no 370

information is lost due to amplifier saturation during the stimulation period. For the 371

5 µA to 40 µA range of stimulation amplitudes used, the stimulation artifact produced 372

did not saturate the amplifier’s range (±8196µV) on any of the recording channels in 373

any experimental session. Therefore, if the artifact shape can be properly estimated, it 374

can be removed via simple subtraction. Second, because we recorded simultaneously 375

on multiple, closely spaced channels, we have multiple simultaneous observations of 376

the electrical stimulation artifact at different points in space, whereas the individual 377

channels do not share the same spiking waveforms, especially if we exclude 378

immediately adjacent channels. Third, the stimulation train contains 20 repeats of 379

identical biphasic pulses, which produced highly similar artifact transients. Finally, we 380

deliver the stimulation train over many trials, yielding similar artifacts on each 381
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a b

Figure 6. The cleaned single trial voltage recordings exhibit very little residual stimu-
lation artifact. (a) Electrical recordings on the linear multielectrode array for the same
trial shown in 1(b). Spiking activity during the stimulus is readily apparent on multiple
channels, including several where spontaneous neural activity was observed. (b) The
same recording example as in (a), following high-pass filtering to isolate spiking activity.

repetition. Because spiking activity evoked during the stimultion period is unlikely to 382

occur at precisely the same time relative to each pulse and on each trial, we can use 383

these repeated artifact measurements to build an estimate of the artifact shape for 384

subsequent removal. 385

WeFigure 6a shows a set of traces for a single trial across the array on one of the 386

recording sessions, before high-pass filtering is performed; Figure 6b shows the same 387

data after high-pass filtering before spike detection. The raw, pre-cleaned voltage 388

traces for this same trial is shown in Figure 1b, demonstrating that the vast majority 389

of the artifact initially present has been removed. These high-pass filtered traces were 390

then thresholded to extract spikes and then manually sorted into different units. 391

To evaluate the artifact removal process, we use prior knowledge about the 392

multielectorde array channels. The most superficial (low numbered) and deepest (high 393

numbered) channels were located above cortex and in white matter respectively, which 394

we inferred from the signals observed on these channels, the density of neural signals 395

on intermediate channels presumed to lie within cortex, and the known thickness of 396

premotor cortex relative to the depth span of the probe. During non-stimulated trials, 397

no detectable spiking waveforms were observed on these superficial and deep channels, 398

therefore the presence of threshold crossings in the cleaned stimulation voltage traces 399

on these channels would be surprising, and suggest that the cleaning procedure had 400

failed to fully remove the stimulation artifact. However, as expected, the presence of 401

evoked spiking activity during the stimulation window is limited to the intermediate 402

channels, where spontaneous spiking activity was also observed (Figure 6). For closer 403

inspection, we superimposed the raw voltage traces with cleaned, artifact-removed, 404

high-pass filtered voltage traces for individual trials. Figure 7a-b shows such a 405

comparison for the most superficial channel, where neither spontaneous nor evoked 406

spiking activity was detectable. Figure 7c-d shows the same comparison for a channel 407

with spontaneous spiking as well as robust evoked spiking activity. 408

Secondly, it is essential to to ensure that threshold crossings detected during the 409

stimulation period are likely due to real neural spiking activity, as opposed to residual 410
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a b

c d

Figure 7. Comparison of raw and artifact cleaned signals. (a) Raw (red) and cleaned
(black) voltage traces for a single trial on the most superficially located recording channel
where no spontaneous activity was recorded, and no spiking activity is detected during
stimulation. (b) Zoomed view of (a). (c) Same as (a) but for a channel located within
cortex where spontaneous activity was present. (d) Zoomed view of (c) demonstrating
evoked spikes visible during the stimulation period.

transients due to stimulation artifact that persist through the cleaning procedure. We 411

reasoned that threshold crossings created by residual artifact on a specific channel 412

would not be expected to resemble the spontaneous spiking waveforms collected 413

during non-stimulated trials on a per-trial basis. For each session, we generated a 414

visual comparison of the spiking waveforms detected on non-stimulated trials with 415

those detected within the stimulation window (putatively “evoked” spikes). These 416

evoked spiking waveforms detected during the stimulation period were highly similar 417

to the spiking waveforms detected during non-stimulation trials. Figure 8 418

demonstrates this similarity for a representative pair of experimental sessions. We 419

note that these waveforms need not be identical, as evoked spiking activity from other 420

neurons located further from the electrode could superimpose to corrupt the 421

waveforms from nearby neurons, especially when this faraway spiking activity is highly 422

synchronized by stimulation. 423

Lastly, we can quantify the amount of residual artifact directly by again utilizing 424

channels that displayed no spontaneous spiking activity. Figure 9a compares the RMS 425

voltage of these individual channels sampled from the post-cleaning stimulation 426

window against a time window taken before stimulation. This metric captures the 427

amount of baseline noise (largely thermal noise) on each channel, thereby providing an 428

expectation for the variance of a given channel if the entirety of the corrupting artifact 429

were successfully removed. For low amplitudes, the RMS voltage is often slightly lower 430

than the pre-stimualtion RMS, which is possible due to the greedy nature of the 431

cleaning procedure. For larger amplitudes, the stimulation RMS remains acceptably 432

close to pre-stimulation RMS. Figure 9b summarizes the similarity of spiking 433

waveforms on each channel observed both spontaneously and during the stimulation 434
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Figure 8. Recovered spiking waveforms detected during the stimulation period closely
resemble spontaneously occurring waveforms recorded on the same channel. (a-b) Su-
perimposed waveforms from each channel with spiking activity of two representative
recording sessions. Each pair of columns compares spontaneously occurring (spont.)
vs. peri-stimulus period (stim.) spiking waveforms. Waveform colors denote hand-
sorted unit identity.

window. 435

4 Discussion 436

We discuss the main features of our method for estimating and removing electrical 437

stimulation artifacts in comparison with existing approaches, as well as limitations of 438

our approach and possible improvements. We also highlight a set of interesting 439

neuroscientific arenas where the ability to observe electrically perturbed neural 440

activity might be particularly illuminating, underscoring the utility of artifact removal 441

methods. 442

4.1 Comparison to other methods 443

ERAASR exploits similarites in the electrical artifact observed across multiple 444

channels, pulses within a stimulus train, and trials with repeated delivery of the same 445

stimulus. Of these the shared structure of simultaneously recorded artifact across 446

multiple channels was most useful. Most previously described attempts exploit only 447

the common structure across trials, typically using an averaging or moving average 448

approach (Hashimoto et al., 2002; Montgomery et al., 2005; Klink et al., 2017) to 449
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Figure 9. Summary of artifact removal quality across recording sessions. (a) RMS
voltage on electrode channels which displayed no spontaneous spiking activity, across
all recording sessions. Post-cleaning peri-stimulation RMS voltage is similar to sponta-
neous pre-stim RMS on each channel. (b) Summary of correlation coefficients between
spontaneous spiking waveforms and recovered waveforms during stimulation, across all
recovered units in all recording sessions.

estimate artifacts on an individual channel. However, these approaches are necessarily 450

quite sensitive to variability in artifact shape or amplitude across trials. While this 451

variability may be small in relative terms, the much larger amplitude of artifacts 452

relative to neural spiking waveforms can create meaningfully large errors in the 453

residual signal, requiring that several milliseconds of signal in the vicinity of the 454

stimulation pulse be discarded. Another common approach is to exploit differences in 455

the shape of stimulation artifacts relative to spiking waveforms, by using curve-fitting 456

algorithms to capture artifacts in the voltage signal but exclude spiking activity 457

(Wagenaar and Potter, 2002; Erez et al., 2010). Similarly, these fits reliably capture 458

artifact shape at a fixed delay from the stimulation pulse, but struggle to capture 459

earlier portions of the transient (Erez et al., 2010), requiring peri-stimulus signal to be 460

discarded. Motivated by the popularity of high-frequency pulse trains in ICMS 461

experiemnts, our method addresses problem of observing neural activity through the 462

entire stimulation pulse without discarding signal. 463

Our algorithm combines a series of simple, intuitive, linear operations along the 464

channels, pulses, and trials axes of the data tensor. The core operation is principal 465

components regression, in which PCA is used to identify a template describing 466

common structure across a given axis of the tensor, followed by a regression step in 467

which the artifact on a given channel (or pulse, or trial) is reconstructed by excluding 468

that channel (pulse, trial) and its neighbors. This approach mitigates the risk of 469

removing spiking signals during the cleaning process, exploiting the local nature of 470

spiking responses across channels and the inherent biological variability in spiking 471

responses on each pulse and each trial. Furthermore, each of these stages is intuitive 472

and the results easily understood. A small set of key parameters, including the 473

number of principal components and the set of neighbors excluded from the 474
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reconstruction at each stage, can be adjusted to trade-off between more aggressive 475

cleaning and more veridical preservation of spiking waveform shape. 476

Our method operationally separates the process of artifact estimation from spike 477

detection and extraction, which is performed as usual using typical high-pass filtering 478

and thresholding on all voltage data after the cleaning process is complete. In 479

contrast, a promising alternative method for multi-channel artifact removal is 480

presented by Mena and colleagues (2016) for multielectrode array recordings of the 481

retina. This approach employs a statistical model describing both the artifact and the 482

spike generation process, jointly estimating artifact and spikes present in the voltage 483

signals. This method exploits common structure of the artifact across a local group of 484

channels around the stimulation source, but also requires that the electrical image of 485

each neuron (the shape of spiking waveforms over several nearby electrodes) be known 486

as an input to the cleaning algorithm. While this approach is highly effective and 487

appropriate in the context of retinal recordings, where individual neurons are recorded 488

on many densely spaced electrodes, the electrical images of neurons in primate cortex 489

using typical multielectrode arrays are often limited to one or two electrodes. 490

4.2 Limitations 491

First, our approach relies critically on the assumption that stimulation artifact linearly 492

superimposes with neural spiking signals. Therefore, its utility is limited to stimulation 493

configurations and amplitudes which occupy the linear, non-saturated regime of the 494

amplifier. Practically, this sets a minimium distance between the electrode array and 495

the stimulation source for a given stimulation amplitude. This distance could be 496

designed such that the return path of the electrical current steers the electric field so 497

as to minimize the recorded artifact amplitude (Rattay and Resatz, 2004). This 498

problem can also be effectively managed in hardware, employing special circuitry to 499

estimate and partially cancel artifacts online (Wichmann and Devergnas, 2011; Brown 500

et al., 2008; Müller et al., 2012). A hybrid approach employing multi-channel artifact 501

removal circuitry to prevent saturation using a predictable transformation of the 502

recorded signal, supplemented with post hoc artifact cleaning procedure like the one 503

described here could be effective across a much larger range of stimulation amplitudes. 504

Second, our algorithm sequentially removes shared structure across channels, 505

pulses, and trials. We accomplish this by reshaping the voltage data tensor into a 506

matrix (or set of matrices) so that familiar methods like PCA can be employed. This 507

problem of finding shared structure naturally lends itself to tensor decomposition 508

(Kolda and Bader, 2009), which could identify shared structure jointly over each of 509

these axes and potentially improve the artifact estimation. Tensors naturally arise in 510

neuroscientific data collection contexts, and decomposition methods are becoming 511

increasingly useful for identifying population structure (Seely et al., 2016; Elsayed and 512

Cunningham, 2017; Williams et al., 2017). 513

Lastly, our algorithm operates by greedily removing any shared structure as 514

artifact, which can inadvertently remove or distort spiking waveform signals as well. In 515

our dataset, we did not observe this while removing shared structure across channels, 516

as we explicitly excluded adjacent channels from the reconstruction process. However, 517

removing shared structure across pulses and trials assumes that spiking responses 518

evoked by a stimulation pulse are variable in time. Moreover, with increasing 519

stimulation amplitude, the temporal precision of evoked spikes may increase (Ranck, 520

1975; Butovas and Schwarz, 2003), which would lead to waveform distorion due to 521

overjealous reconstruction and removal of spiking signals as artifact. We experimented 522

with using matched-filters for robust spike detection while relaxing the artifact 523

estimation technique (data not shown), though we did not explore whether this would 524

be applicable at higher currents and more synchronous evoked spiking. In these 525
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circumstances, we expect that a joint estimation of artifact and spiking as proposed by 526

Mena et al. (2016) could be adapted to more effectively recover highly regular evoked 527

spiking by exploiting other differences in the structure of spikes from artifact. 528

4.3 Motivation for direct observation of electrically perturbed 529

neural activity 530

ICMS is a well-established and popular technique for perturbing neural activity and 531

probing the causal contributions of a certain brain region to specific cognitive 532

functions (Cohen and Newsome, 2004; Histed et al., 2013; Clark et al., 2011; Tehovnik, 533

1996). Here we argue that recent results suggest that the effect of electrical 534

stimulation on neural activity may be significantly more complex than previously 535

realized, which implies that direct observations of the net effect on neural activity in 536

the perturbed region as well as upstream and downstream areas could reveal the 537

precise mode by which microstimulation modulates behavior. 538

The initial conception of ICMS is that stimulation activates most neurons within a 539

sphere surrounding the electrode tip (Stoney et al., 1968; Tehovnik, 1996; Tehovnik 540

et al., 2006). This idea derives originally from the findings of Stoney et al. (1968), who 541

cleverly side-stepped the issue of stimulation artifacts by using collisions of antidromic 542

and orthodromic spikes in a dual-stimulation paradigm as an indirect measure of local 543

neuronal activation. Using this technique, they estimated that 10µA and 100 µA 544

ICMS currents would activate most pyramidal cells in a local ball extending 100 µm 545

and 450 µm in radius, respectively. A wealth of additional research has also attempted 546

to carefully characterize the sensitivity of various elements of the CNS to stimulation, 547

as a function of current amplitude, pulse duration and shape, electrode configuration, 548

etc. (e.g. Ranck, 1975; Asanuma et al., 1976; Tehovnik, 1996; Rattay, 1999; Tehovnik 549

and Slocum, 2007; Marcus et al., 1979; Nowak and Bullier, 1996; Nowak and Bullier, 550

1998b; Nowak and Bullier, 1998a; Kimmel and Moore, 2007). The primary findings of 551

this body of work are that stimulation primarily evokes spikes at axons, in particular 552

the excitable axon initial segment, and that the likelihood of evoking a spike in a 553

neuron depends on distance, pulse duration, and current according to a relatively 554

simple power law. The spatial profile of ICMS has been bolstered by multiple 555

behavioral studies as well (e.g. Murasugi et al., 1993; Tehovnik et al., 2004; Tehovnik 556

et al., 2005; Bartlett et al., 2005; Tehovnik and Sommer, 1997). These studies derive 557

an estimate of the effective activation volume and dependency on stimulation 558

parameters by combining behavioral readouts with known features of cortical spatial 559

organization. For example, Murasugi et al. (1993) found that low current ICMS 560

delivered to monkey area MT could bias perceived dot motion direction, but that 561

ICMS currents above 20µA less effectively biased perception. The authors conclude 562

that below this threshold current, electrical activation is confined to a single 563

“directional” column in MT, about 0.2mm in diameter (Albright et al., 1984). 564

However, recent evidence challenges this traditional view of localized, dense 565

activation. Using two-photon calcium imaging, Histed et al. (2009) demonstrated that 566

low-intensity ICMS activated a sparse collection of neurons distributed in a relatively 567

large volume extending several hundred µm. In two experiments in cats, the authors 568

also found neurons as far as 4mm away activated by 10µA stimulation, perhaps 569

resulting from lateral axons extending multiple millimeters within layer 2/3 of visual 570

cortex in cats but not rodents. The widely distributed collection of neurons is likely 571

activated by antidromic stimulation of their axons. By advancing the electrode 30µm, 572

the authors found that an entirely non-overlapping sparse set of cells was activated, 573

suggesting that ICMS at low currents (10-25µA) activates axonal processes within 574

≈15 µm of the electrode tip. At higher currents, more cells within the distributed 575
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volume were activated, though all experiments were conducted with currents ≤30 µA. 576

Additionally, many mapping studies have focused on direct activation in response 577

to a single isolated current pulse. Nonetheless, it has long been known that ICMS 578

induces transsynaptic spiking in connected neurons (Stoney et al., 1968; Butovas and 579

Schwarz, 2003). As larger currents activate more neurons, the effect of transsynaptic 580

activation may be enhanced due to the summation of many from this larger directly 581

activated population. Cortically evoked spiking may also depend on subthreshold 582

activity in neurons, which is continuously modulated by ongoing task or 583

stimulus-evoked responses (Kara et al., 2002). When multiple pulses are delivered, as 584

is typical in experiments applying ICMS in behaving animals, short-term synaptic 585

depression commonly seen in cortex would also modulate the effectiveness of 586

transynaptically evoked spiking (Thomson and Deuchars, 1994; Stratford et al., 1996; 587

Deisz and Prince, 1989; Varela et al., 1997). When longer pulse trains are used, 588

particularly at high currents, electrical stimulation might readily engage a large 589

collection of neural circuits while driving temporally complex neural responses (Strick, 590

2002; Graziano et al., 2002). 591

It is also well-established that larger stimulation currents can recruit inhibitory 592

interneurons and result in inhibition of cortical responses lasting hundreds of 593

milliseconds after stimulation (Berman et al., 1991; Watanabe et al., 1966; Li et al., 594

1960; Chung and Ferster, 1998; Creutzfeldt et al., 1966; Kara et al., 2002; Masse and 595

Cook, 2010; Seidemann et al., 2002; Butovas et al., 2006; Butovas and Schwarz, 2003). 596

Additionally, in an experiment combining cortical stimulation with fMRI and 597

extracellular recording, Logothetis et al. (2010) demonstrated that high-frequency 598

ICMS of the thalamic lateral geniculate nucleus (LGN) initially excites (but later 599

suppresses) monosynaptically connected primary visual cortex (V1), but suppresses 600

responses in downstream extrastriate cortices. This suppression was abolished by 601

bicuculine infusion. The authors concluded that, high-frequency ICMS pulse trains 602

disrupt normal information flow along cortico-cortical pathways, by recruiting strong 603

inhibition that prevents the spread of activation beyond the regions whose direct 604

afferents were stimulated. 605

Taken together, the net effects of ICMS on the firing patterns of cortical neuronal 606

populations may be quite complicated. The directly activated population is likely 607

sparse, widely distributed, and stochastic due to a strong dependence on axonal 608

proximity to the stimulating electrode. Moreover, the transsynaptically activated 609

population of cells undergoes a complex, time-varying pattern of modulation that 610

reflects circuit micro-architecture, local circuit dynamics, short-term synaptic 611

plasticity, recruitment of inhibition, and an interaction with ongoing task-related 612

activity. With this evident complexity, we feel that arriving at an accurate 613

interpretation of the behavioral consequences of electrical microstimulation first 614

requires careful measurement of its effects on local neuronal population activity 615

(Jazayeri and Afraz, 2017; Otchy et al., 2015). Furthermore, an accurate picture of 616

electrically modulated neural activity could elucidate the circuit mechanisms 617

underlying intriguing aspects of the interaction between microstimulation and 618

behavior, such as how electrically evoked eye movements interact with visual guided 619

eye movements (Sparks and Mays, 1983), how precise timing of electrical pulses 620

modulates saccadic effects (Kimmel and Moore, 2007), how perceptural decisions are 621

biased by stimulation of LIP (Hanks et al., 2006), how motor preparation recovers 622

subsequent to electrical disruption (Churchland and Shenoy, 2007; Shenoy et al., 623

2011), and how motor cortical stimulation can evoke complex movements converging 624

on a specific endpoint (Graziano et al., 2011) and effectively nullify the contribution of 625

goal-directed behavior in the motor cortical output (Griffin et al., 2011). A detailed 626

comparison with the effect of optogenetic stimulation could clarify the differences 627

20/27

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 7, 2017. ; https://doi.org/10.1101/185850doi: bioRxiv preprint 

https://doi.org/10.1101/185850
http://creativecommons.org/licenses/by-nc-nd/4.0/


(Gerits and Vanduffel, 2013; Diester et al., 2011; Ohayon et al., 2013) and similarities 628

(Dai et al., 2013) observed between the two modalities’ effects on behavior. Lastly, a 629

detailed model of microstimulation’s interaction with cortical dynamics could facilitate 630

delivery of more reliable or realistic artificial sensory perception in visual, auditory, 631

and motor prostheses (Otto et al., 2005; Tehovnik et al., 2009; O’Doherty et al., 2011; 632

Bensmaia and Miller, 2014; Dadarlat et al., 2015). 633

5 Conclusion 634

We developed ERAASR, an algorithm for estimating and removing artifacts caused by 635

electrical stimulation on multielectrode array experiment. ERAASR assumes that 636

artifact is shared over many channels and that evoked transients are highly repeatable 637

across pulses and trials, whereas spiking activity is highly local and temporally 638

jittered. Shared structure in the voltage signals is identified and removed sequentially 639

across channels, across pulses in a stimulus train, and across trials, using 640

straightforward linear methods. We believe our technique will be useful to 641

neuroscientists in drawing precise causal links between perturbations and the effect of 642

stimulation on neural activity and behavior and aid in the design and implementation 643

of enhanced neural prosthetic systems capable of restoring lost sensation and 644

facilitating precise control. 645
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