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ABSTRACT: Multiple studies have shown that data quality is a critical confound in the construction of brain 
networks derived from functional MRI. This problem is particularly relevant for studies of human brain 
development where important variables (such as participant age) are correlated with data quality. 
Nevertheless, the impact of head motion on estimates of structural connectivity derived from diffusion 
tractography methods remains poorly characterized. Here, we evaluated the impact of in-scanner head motion 
on structural connectivity using a sample of 949 participants (ages 8-23 years old) who passed a rigorous 
quality assessment protocol for diffusion tensor imaging (DTI) acquired as part of the Philadelphia 
Neurodevelopmental Cohort. Structural brain networks were constructed for each participant using both 
deterministic and probabilistic tractography. We hypothesized that subtle variation in head motion would 
systematically bias estimates of structural connectivity and confound developmental inference, as observed in 
previous studies of functional connectivity. Even following quality assurance and retrospective correction for 
head motion, eddy currents, and field distortions, in-scanner head motion significantly impacted the strength of 
structural connectivity in a consistency- and length-dependent manner. Specifically, increased head motion 
was associated with reduced estimates of structural connectivity for high-consistency network edges, which 
included both short- and long-range connections. In contrast, motion inflated estimates of structural 
connectivity for low-consistency network edges that were primarily shorter-range. Finally, we demonstrate that 
age-related differences in head motion can both inflate and obscure developmental inferences on structural 
connectivity. Taken together, these data delineate the systematic impact of head motion on structural 
connectivity, and provide a critical context for identifying motion-related confounds in studies of structural brain 
network development. 
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INTRODUCTION 

Diffusion tensor imaging (DTI) remains the most commonly-used technique for characterizing human 

white matter (WM) microstructure in vivo (Assaf and Pasternak, 2008; Basser et al., 1994; Basser and 

Pierpaoli, 1996). Graph theoretical analysis of diffusion tractography data has provided a fruitful quantitative 

framework for delineating how structural brain architecture shapes intrinsic functional activity and cognition 

(Bullmore and Sporns, 2009; Rubinov and Sporns, 2010), particularly in the context of human brain 

development (Baum et al., 2017; Grayson et al., 2014; Hagmann et al., 2010) and neuropsychiatric disorders 

(Bassett et al., 2008; Bohlken et al., 2016; Collin et al., 2017; Di Martino et al., 2014; Kessler et al., 2016; 

Satterthwaite et al., 2015; Sun et al., 2017). Nonetheless, prior work has shown that artifacts caused by eddy 

currents, head motion, and magnetic susceptibility can negatively impact diffusion model fitting and 

subsequent microstructural measures (Jones and Basser, 2004; Le Bihan et al., 2006). 

Despite recent focus on the influence of head motion on data quality in other imaging modalities 

including resting state functional connectivity (Fair et al., 2012; Power et al., 2012; Satterthwaite et al., 2012; 

Van Dijk et al., 2012; C.-G. Yan et al., 2013) and structural imaging (Alexander-Bloch et al., 2016; Pardoe et 

al., 2016; Reuter et al., 2015; Savalia et al., 2017; Tisdall et al., 2012, 2016), the impact of motion on structural 

connectivity derived from diffusion tractography remains sparsely investigated. Prior work using DTI has 

demonstrated that head motion increases the uncertainty of diffusion model fitting (Bastin et al., 1998; 

Landman et al., 2007; Ling et al., 2012; Tijssen et al., 2009), impacting the estimation of diffusion scalar 

measures such as fractional anisotropy (FA) and mean diffusivity (MD). These measures are highly sensitive 

(but not specific) to underlying WM microstructural properties such as axonal packing density and myelination 

(Chang et al., 2017; Gulani et al., 2001; Takahashi et al., 2002). Notably, motion artifact can produce artificially 

higher FA in low anisotropy gray matter regions (Bastin et al., 1998; Farrell et al., 2007; Landman et al., 2008), 

while simultaneously leading to diminished FA in high anisotropy WM regions (Aksoy et al., 2008; Jones and 

Basser, 2004; Le Bihan et al., 2006). These spurious effects may impact streamline tractography algorithms 

during the step-wise reconstruction of WM pathways, particularly when streamline termination criteria are 

defined by local FA and angular thresholds (Girard et al., 2014).  

While image processing tools have been developed to retrospectively estimate and mitigate the 

influence of motion artifact on diffusion-weighted images (Andersson et al., 2016; Andersson and Sotiropoulos, 

2016; Rohde et al., 2004), important work by Yendiki et al. (2014) and others (Liu et al., 2015; Oguz et al., 

2014) demonstrated that residual motion effects can lead to systematic errors in estimation of WM FA. 

Furthermore, age-related differences in participant motion have been shown to obscure observed 

developmental changes in WM microstructure (Roalf et al., 2016). Participants from clinical populations may 

also be more likely than healthy controls to exhibit head motion during DWI acquisition, resulting in spurious 

group differences in diffusion scalar measures that can be attenuated by including head motion as a nuisance 

regressor (Yendiki et al., 2014). Although the impact of head motion on diffusion scalar metrics has been well-

characterized in previous work, the downstream effects of motion on network-based measures of structural 

connectivity have not been systematically examined.  
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Here, we leveraged DTI data collected as part of the Philadelphia Neurodevelopmental Cohort (PNC), a 

large population-based study of human brain development (Satterthwaite et al., 2014, 2016), to evaluate the 

impact of participant motion on structural connectivity. We hypothesized that subtle variation in head motion 

would systematically bias estimates of structural connectivity and confound inferences regarding brain 

development. Since head motion can result in both the overestimation and underestimation of diffusion 

anisotropy depending on regional FA and SNR (Farrell et al., 2007; Jones and Basser, 2004; Landman et al., 

2008; Tijssen et al., 2009), participant motion could promote spurious streamline propagation in low-FA regions 

and premature streamline termination in high-FA regions. Moreover, we expected that motion would have a 

differential impact on structural connectivity depending on specific attributes of each network edge.  

Specifically, we predicted that motion would inflate estimates of structural connectivity for potentially spurious, 

low-FA connections that were primarily short-range, while simultaneously diminishing estimates of structural 

connectivity for long-range, high-FA connections that were consistently reconstructed across participants. To 

test these hypotheses, structural connectivity was measured in 949 youth (ages 8-23 years old) after 

constructing brain networks using both deterministic and probabilistic tractography.  

 
 
MATERIALS AND METHODS 
 
Participants and data acquisition 

The DTI datasets used in this study (N=949) were collected as part of the Philadelphia 

Neurodevelopmental Cohort (PNC; Satterthwaite et al., 2014, 2016) and selected on the basis of health and 

data quality criteria. All participants included in this study were ages 8-23 years old at the time of scan, lacked 

gross structural brain abnormalities (Gur et al., 2013), were free from medical conditions that could impact 

brain function (Merikangas et al., 2010), were not taking psychotropic medication at the time of the scan, and 

passed a rigorous manual quality insurance protocol involving visual inspection of all 71 volumes (Roalf et al., 

2016). The exclusion of participants with gross artifact due to head motion, eddy currents, susceptibility 

artifacts, and/or other scanner artifacts allowed us to more rigorously evaluate the impact of subtle in-scanner 

motion on estimates of structural connectivity (for further details regarding manual quality assurance, see 

below). 

 

Image acquisition 

Structural and diffusion MRI scans were acquired using the same 3T Siemens Tim Trio whole-body 

scanner and 32-channel head coil at the Hospital of the University of Pennsylvania. DTI scans were acquired 

using a twice-refocused spin-echo (TRSE) single-shot echo-planar imaging (EPI) sequence (TR = 8100ms, TE 

= 82ms, FOV = 240mm / 240mm; Matrix = RL: 128, AP:128, Slices:70, in-plane resolution (x and y) 1.875 mm; 

slice thickness = 2mm, gap = 0; flip angle = 90°/180°/180°, volumes = 71, GRAPPA factor = 3, bandwidth = 

2170 Hz/pixel, PE direction = AP). This sequence used a four-lobed diffusion encoding gradient scheme 

combined with a 90-180-180 spin-echo sequence designed to minimize eddy-current artifacts. For DTI 
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acquisition, a 64-direction set was divided into two independent 32-direction imaging runs in order to increase 

the likelihood of scan completion for young subjects. Each 32-direction sub-set was chosen to be maximally 

independent such that they separately sampled the surface of a sphere (Jones et al., 2002). The complete 

sequence was approximately 11 minutes long, and consisted of 64 diffusion-weighted directions with 

b=1000s/mm2 and 7 interspersed scans where b=0 s/mm2. The imaging volume was prescribed in axial 

orientation covering the entire cerebrum with the topmost slice just superior to the apex of the brain 

(Satterthwaite et al., 2014). In addition to the DTI scan, a map of the main magnetic field (i.e., B0) was derived 

from a double-echo, gradient-recalled echo (GRE) sequence, allowing us to estimate field distortions in each 

dataset.  

 

Structural image processing and quality assurance 

 High-resolution structural images were processed using FreeSurfer (version 5.3) (Fischl, 2012), and 

cortical and subcortical gray matter was parcellated according to the Lausanne atlas (Cammoun et al., 2012), 

which includes a 233-region subdivision of the Desikan-Killany anatomical atlas (Desikan et al., 2006). 

Parcellations were defined in native structural space and co-registered to the first b=0 volume of each 

participant’s diffusion image using boundary-based registration (Greve and Fischl, 2009). All participants 

included in this study passed quality assurance procedures for the raw T1 input image and following 

FreeSurfer reconstruction (Rosen et al., 2017).  

 

DTI preprocessing 

The two consecutive 32-direction acquisitions were merged into a single 64-direction time-series. Skull-

stripping was performed by registering a binary mask of a standard fractional anisotropy (FA) map (FMRIB58 

FA) to each subject's DTI image using FLIRT (Jenkinson et al., 2002). Eddy currents and subject motion were 

estimated and corrected using the FSL eddy tool (Andersson and Sotiropoulos, 2016). This procedure uses a 

Gaussian Process to simultaneously model the effects of eddy currents and head motion on diffusion-weighted 

volumes, resampling the data only once. Diffusion gradient vectors were then rotated to adjust for subject 

motion estimated by eddy (Leemans and Jones, 2009). After the field map was estimated, distortion correction 

was applied to DTI images using FSL’s FUGUE (Jenkinson et al., 2012). 

 

Manual DTI quality assurance 

Manual quality assurance for the DTI images was performed prior to diffusion model fitting, 

tractography, and structural brain network construction. Specifically, each volume of the acquisition (n=71) was 

evaluated for the presence of artifact, and the total number of impacted volumes over the whole series was 

recorded (Roalf et al., 2016). This scoring was based on previous work characterizing the detrimental impact of 

removing diffusion-weighted volumes when estimating the diffusion tensor (Chen et al., 2015; Jones and 

Basser, 2004). Data was defined as “Poor” if more than 14 (20%) volumes contained artifact, “Good” if it 

contained 1-14 volumes with artifact, and “Excellent” if no visible artifacts were detected in any volumes. All 

949 participants included in the present study had DTI datasets identified as “Good” or “Excellent”.  While 
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including participants with poor data quality would undoubtedly lead to larger observed motion effects, in this 

study we sought to characterize the impact of subtle in-scanner motion in a sample that would typically be 

included in studies of brain development. 

 

Diffusion model fitting, tractography, and brain network construction 

Probabilistic Pipeline. A ball-and-sticks diffusion model was fitted to each subject’s DTI data using FSL 

bedpostx, which uses Markov chain Monte Carlo sampling to build distributions on principal fiber orientation 

and diffusion parameters at each voxel (Behrens et al., 2007). In contrast to tensor-based approaches, this 

allowed us to model up to two crossing fibers per voxel, enhancing sensitivity to more complex white matter 

architecture. Probabilistic tractography was run using FSL probtrackx, which repetitively samples voxel-wise 

fiber orientation distributions to model the spatial trajectory and strength of anatomical connectivity between 

specified seed and target regions (Behrens et al., 2007). Here, we defined seeds in native T1 space by dilating 

the original 233-region gray matter parcellation by 2mm and then masking dilated regions by the boundary of 

each subject’s white matter (WM) segmentation. Once defined for each subject, the seed mask was co-

registered to the first b = 0 volume of each subject’s diffusion image using boundary-based registration (Greve 

and Fischl, 2009). 

 Each cortical and subcortical region defined along the gray-white boundary was selected as a seed 

region, and its connectivity strength to each of the other 232 regions was calculated using probabilistic 

tractography. At each seed voxel, 1000 samples were initiated (Baum et al., 2017; Li et al., 2012). We used 

default tracking parameters (a step-length of 0.5mm, 2000 steps maximum, curvature threshold of 0.02). To 

increase the biological plausibility of white matter pathways reconstructed with probabilistic tractography, 

streamlines were terminated if they traveled through the pial surface, and discarded if they traversed cerebro-

spinal fluid (CSF) in ventricles or re-entered the seed region (Donahue et al., 2016). This fiber tracking 

procedure allowed us to construct an undirectional connectivity matrix for each participant, where connection 

weights were defined as the number of probabilistic streamlines connecting two regions (Donahue et al., 2016; 

Duarte-Carvajalino et al., 2012; Li et al., 2012). We also calculated alternate connection weights including the 

mean length of probabilistic streamlines connecting a pair of regions (Donahue et al., 2016), and the 

connectivity probability – the proportion of streamlines initiated from the seed region that successfully reached 

the target region (Cao et al., 2013; Johansen-Berg et al., 2005). The procedure for constructing participant 

connectomes is illustrated in Figure 1. 

Deterministic Pipeline. DTI data was imported into DSI Studio software and the diffusion tensor was 

estimated at each voxel (Yeh et al., 2013). Whole-brain fiber tracking was run for each subject in DSI Studio 

using a modified fiber assessment by continuous tracking (FACT) algorithm with Euler interpolation. Network 

nodes were defined by dilating the 233-region gray matter parcellation by 4mm to extend labels beyond the 

gray-white boundary to include deep white matter (Baum et al., 2017; Gu et al., 2015). Following standard 

procedures, we used whole-brain tractography to initiate 1,000,000 streamlines while removing all streamlines 

with length less than 10mm or greater than 400mm. Fiber tracking was performed with an angular threshold of 

45°, a step size of 0.9375mm, and a fractional anisotropy (FA) threshold determined empirically by Otzu's 
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method, which optimizes the contrast between foreground and background (Yeh et al., 2013). As in previous 

studies of human structural brain networks, connection weights were defined by calculating the average FA 

along each streamline connecting a node pair (Baum et al., 2017; Bohlken et al., 2016; Mišić et al., 2016; van 

den Heuvel and Sporns, 2011). This measure of connection strength is thought to reflect underlying 

microstructural properties of WM such as myelination or axonal density (Chang et al., 2017; Gulani et al., 2001; 

Paus, 2010; Takahashi et al., 2002). To evaluate motion effects on the distance of reconstructed fiber 

pathways, we also defined connection weights as the mean length of streamlines connecting a node pair. 

Supplementary analyses evaluated motion effects on structural connectivity when edge weights were defined 

by the average inverse MD along streamlines connecting a node pair (Friedrichs-Maeder et al., 2017; 

Hagmann et al., 2010; Wierenga et al., 2016), and by the deterministic streamline count (Bassett et al., 2011; 

van den Heuvel et al., 2015). 

 

Quantifying in-scanner head motion during DTI acquisition 

In-scanner head motion was primarily measured by the mean relative volume-to-volume displacement 

between the higher SNR b=0 images (n=7), which summarizes the total translation and rotation in 3-

dimensional Euclidean space (Roalf et al., 2016; Satterthwaite et al., 2012; Van Dijk et al., 2012). To determine 

the specificity of our results, we also conducted supplementary analyses to evaluate whether alternative 

measures of head motion and data quality impacted structural connectivity. These measures included the 

following: (1) average volume-to-volume translation, (2) average volume-to-volume rotation calculated across 

all 71 volumes (Yendiki et al., 2014), (3) mean voxel outlier count, and (4) average temporal signal-to-noise 

ratio (TSNR) defined using the 64 diffusion-weighted volumes, as described in detail in Roalf et al. (2016). 

 

Edge consistency 

 Deterministic and probabilistic tractography algorithms for reconstructing WM connectivity face a well-

characterized tradeoff between connectome specificity and sensitivity (Knösche et al., 2015; Thomas et al., 

2014; Zalesky et al., 2016). Thus, identifying and controlling for the influence of false positives and false 

negatives remains a critical issue in connectome construction, as both the failure to reconstruct “real” 

connections and the inclusion of spurious connections can substantially bias group-level inferences on network 

organization (Drakesmith et al., 2015; Zalesky et al., 2016). Prior work has demonstrated how partial volume 

effects and complex WM geometry can result in premature streamline termination during tractography when 

termination criteria are based on WM curvature and anisotropy thresholds (Smith 2012, 2013; Girard 2014; 

Vos 2011). Notably, head motion can artificially inflate FA estimates in low anisotropy regions and reduce FA in 

highly coherent WM regions (Farrell et al., 2007; Jones and Basser, 2004; Landman et al., 2008; Ling et al., 

2012; Tijssen et al., 2009), potentially compounding these tractography biases by promoting spurious 

streamline propagation in low-FA regions and premature streamline termination in high-FA regions. Moreover, 

we sought to delineate whether head motion differentially impacted structural connectivity depending on the 

inter-subject consistency of edge reconstruction.  
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For dense brain networks derived from probabilistic tractography (mean density= 70.62%, SD= 7.36%), 

edge consistency was defined by the coefficient of variation for each edge weight across subjects (Roberts et 

al., 2017). As in prior work, for relatively sparse brain networks derived from deterministic tractography (mean 

density=13.95%, SD=0.9%), edge consistency was defined by the percentage of subjects with a non-zero 

weight for a given edge (de Reus and van den Heuvel, 2013).  

 

Statistical analysis: group-level motion effects 

The effect of in-scanner head motion on structural connectivity was estimated using a partial correlation 

for each network edge while controlling for potentially confounding demographic variables (age, age2, and 

sex). To assess the significance of the third level correlation between edge-level motion effects (partial r 

coefficients) and edge consistency, we performed an edge-based permutation test. Specifically, we re-

calculated the correlation between edge-level motion effects and edge consistency after permuting edge 

consistency 10,000 times. Then, we determined where the observed correlation between motion effects and 

edge consistency fell relative to this null distribution. In light of prior work characterizing distance-dependent 

motion effects on functional connectivity (Ciric et al., 2017; Power et al., 2012; Satterthwaite et al., 2012), this 

permutation procedure was repeated to assess the third-level correlation between motion effects and mean 

streamline length. 

 

Consistency-based thresholding 

After evaluation of the relationship between in-scanner motion and structural connectivity, we next 

evaluated the impact of thresholding procedures on such effects. Thresholding approaches are commonly 

applied to human brain networks in order to reduce the prevalence of spurious false positive connections that 

may bias group-level inferences on brain network topology (Drakesmith et al., 2015; Roberts et al., 2017; 

Rubinov and Sporns, 2010; Zalesky et al., 2016). While one common thresholding approach involves removing 

a subset of the weakest edges in a group-average connection matrix (Rubinov and Sporns, 2010), this 

approach often results in the elimination of relatively weak, long-range connections that may be particularly 

important for global network topology (Roberts et al., 2017; van den Heuvel et al., 2012). In contrast, 

consistency-based thresholds retain both short- and long-range connections that are consistently 

reconstructed across subjects (Roberts et al., 2017). In the present study, we sought to delineate motion 

effects on structural connectivity after eliminating potentially spurious network edges. To this end, we applied 

consistency-based thresholds to brain networks derived from both probabilistic (Roberts et al., 2017) and 

deterministic tractography (de Reus and van den Heuvel, 2013).  

For networks derived from probabilistic tractography, we evaluated motion effects on edge strength, 

node strength, and total network strength across ten consistency-based thresholds (0-90th percentile 

probabilistic edge consistency).  In agreement with previous studies using deterministic tractography, which 

have applied group-level thresholds based on the percentage of subjects with a given edge rather than 

percentiles of edge consistency (de Reus and van den Heuvel, 2013; van den Heuvel and Sporns, 2011; 

Wierenga et al., 2016), we evaluated motion effects on structural connectivity across ten consistency-based 
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thresholds (0-90% deterministic edge consistency). To characterize the severity of motion effects across 

consistency-based thresholds, we calculated the percentage of network edges and nodes significantly 

impacted by motion after adjusting for the false discovery rate (FDR; Benjamini and Hochberg, 1995). To 

assess the stability of motion effects across consistency-based thresholds, we generated 100 bootstrap 

samples defined using 80% of the dataset (N=760). The percentage of edges significantly impacted by motion 

and the effect of motion on total network strength were calculated across consistency-based thresholds for 

each bootstrap sample.  

 

Statistical analysis: group-level age effects and mediation analysis 

As a final step, we examined whether observed age effects on structural connectivity were mediated by 

age-related differences in head motion. Sobel tests were performed for each network edge exhibiting 

significant age effects following FDR correction (Sobel, 1982). Specifically, for the subset of edges where age-

related differences in head motion significantly mediated observed age effects on structural connectivity, we 

performed 10,000 permutations of an edge-level index defining mediation effects as “positive” or “negative” 

depending on the value of the Sobel Z statistic. For each permutation, we calculated the difference in mean 

edge consistency between the randomly labeled “positive” and “negative” mediation effects, and ultimately 

compared the observed difference in mean edge consistency to this null distribution. 

  

 

RESULTS 
 
In-scanner head motion systemically impacts estimates of structural connectivity in a consistency-

dependent manner 

 When edge weights were defined by the number of probabilistic streamlines connecting a node pair, 

12.12% of all network edges were significantly impacted by motion (Figure 2A). Notably, both positive and 

negative motion effects were observed: motion diminished the strength of 56.73% of these edges and 

increased the strength of the remaining 43.27%. We found that the direction and strength of motion effects on 

streamline count were correlated with edge consistency (r=-0.35, permuted p < 0.0001; Figure 2B) as well as 

with mean streamline length (r=-0.21, permuted p < 0.0001). When edge weights were defined by the mean 

length of probabilistic streamlines connecting a node pair, 62.38% of all network edges were significantly 

impacted by motion (Figure 2C). Specifically, motion diminished streamline length in nearly all (98.32%) of the 

impacted edges, supporting the view that motion artifact might increase the likelihood of premature streamline 

termination. As for streamline count, the direction and strength of motion effects on streamline length were 

correlated with edge consistency (r=-0.59, permuted p < 0.0001; Figure 2D) and with mean streamline length 

(r=-0.73, permuted p < 0.0001).  

We also evaluated the impact of head motion on structural connectivity using brain networks derived 

from deterministic tractography. When edge weights were defined by the mean FA along deterministic 

streamlines connecting a node pair, 13.72% of all network edges were significantly impacted by motion 
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(Figure 3A). Specifically, motion diminished the strength of 45.94% of these edges and increased the strength 

of the remaining 54.06%. As for probabilistic tractography, the impact of motion was dependent on both 

consistency and streamline length: the direction and strength of motion effects were correlated with edge 

consistency (r=-0.50, permuted p < 0.0001; Figure 3B) and with mean streamline length (r=-0.48, permuted p 

< 0.0001). When edge weights were defined by the length of deterministic streamlines connecting a node pair, 

10.17% of all network edges were significantly impacted by motion (Figure 3C). Motion diminished the 

strength of 35.5% of these edges and enhanced the strength of the remaining 64.65%. The direction and 

strength of motion effects were correlated with edge consistency (r=-0.34, permuted p < 0.0001; Figure 3D) 

and with mean FA (r=-0.39, permuted p < 0.0001). 

 To further disentangle the associations between edge-level motion effects, edge consistency, and 

streamline length, we plotted these relationships for the subset of edges significantly impacted by motion (FDR 

Q<0.05). For brain networks derived from probabilistic tractography, we observed a quadratic relationship 

between streamline length and edge consistency. Head motion significantly enhanced the strength of relatively 

short-range, low-consistency network edges, and diminished the strength of high-consistency network edges, 

which included both short- and long-range connections (Figure 4A). Similarly, for brain networks derived from 

deterministic tractography, head motion significantly enhanced FA along relatively short-range, low-

consistency network edges, and diminished FA along relatively long-range, high-consistency network edges 

(Figure 4B). 	 

Notably, we observed highly consistent motion effects on structural connectivity when using a variety of 

other edge weight definitions for networks derived from both deterministic and probabilistic tractography 

(Supplemental Figure 1), including connectivity probability, inverse MD, and deterministic streamline count. 

We also demonstrated that alternative measures of data quality, such as the mean framewise translation and 

rotation, the number of of mean voxel intensity outliers across diffusion-weighted volumes, and TSNR, all 

exhibited similar effects on structural connectivity (Supplemental Figure 2).  

 

Motion effects are exacerbated across consistency-based thresholds 

 We applied ten consistency-based thresholds to networks derived from both probabilistic and 

deterministic tractography in order to evaluate the impact of head motion on edge strength, node strength, and 

total network strength after eliminating potentially spurious network edges. For networks derived from 

probabilistic tractography, the percentage of edges significantly impacted by head motion increased 

monotonically across consistency-based thresholds ranging from (12.12 - 32.3%; Figure 5A). Motion had a 

profound impact on network properties at the nodal level, significantly diminishing the strength of 82.4-89.7% 

nodes across consistency-based thresholds. After retaining only the top 50th percentile of edges based on 

intersubject consistency, head motion had a significant negative effect on the strength of 83.69% nodes, with 

particularly strong effects observed in middle frontal gyrus, precuneus, and cingulate cortex (Figure 5B). Total 

network strength was also significantly diminished by head motion across all consistency-based thresholds 

(partial r ranged between -0.298 and -0.314; Figure 5C).  
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 For networks derived from deterministic tractography, the percentage of network edges significantly 

impacted by head motion also increased monotonically across consistency-based thresholds (13.72 – 62.19%; 

Figure 5D). Motion also reduced the strength of a large percentage of network nodes (43.35 – 98.71%). After 

retaining only edges that were reconstructed in more than 50% of participant connection matrices, head motion 

significantly reduced the strength of 89.27% nodes, with particularly strong effects observed in the precuneus 

and medial brain regions including the anterior and posterior cingulate cortex (Figure 5E). Head motion 

significantly reduced total network strength across all consistency-based thresholds, with stronger effects 

observed at more stringent thresholds (partial r varied between -0.20 and -0.51; Figure 5F). These results 

demonstrate the impact of motion artifact on structural connectivity across topological scales, thresholding 

procedures, and network construction methods. 

 

Age effects on structural connectivity are inflated and obscured by head motion 

  As a final step, we evaluated whether motion could systematically bias estimates of structural network 

development during youth.  Even in our sample of 949 youths with high-quality, low-motion DTI data (mean 

participant motion=0.46mm, SD=0.41mm), head motion was negatively correlated with age such that younger 

participants tended to move significantly more than older participants (r=-0.17, p=3.01 × 10-7; Figure 6A). 

While controlling for participant sex, significant age effects were observed in 25.63% of probabilistic network 

edges and 6.87% of deterministic network edges for unthresholded networks. We tested whether these 

significant age effects were mediated by participant motion using the Sobel test. Figure 6B illustrates that 

positive Sobel Z values can reflect either inflated positive age effects or obscured negative age effects, where 

in both cases motion decreases the strength of network edges that undergo significant age-related change. 

Similarly, negative Sobel Z values can reflect either inflated negative age effects or obscured positive age 

effects, where in both cases motion increases the strength of network edges that undergo significant age-

related change. For brain networks derived from probabilistic tractography, 7.42% of edges with observed age 

effects were significantly mediated by age-related differences in head motion (39.34% positive mediation, 

60.66% negative mediation; Figure 6C). Notably, network edges with significant positive mediation effects had 

higher edge consistency compared to connections with significant negative mediation effects (permutation-

based p < 0.0001). This result reflects the fact that the strength of edges with positive mediation effects are 

weakened by motion, and negative motion effects are most prominent in high-consistency edges. 

For brain networks derived from deterministic tractography, 51.33% of edges with observed age effects 

were significantly mediated by age-related differences in head motion (87.57% positive mediation, 12.43 % 

negative mediation; Figure 6E). Consistent with results from probabilistic tractography, network edges with 

significant positive mediation effects had higher edge consistency compared to connections with significant 

negative mediation effects (permutation-based p < 0.0001; Figure 6F), although this effect was even more 

pronounced for brain networks derived from deterministic tractography. 
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DISCUSSION 
Our results demonstrate that subtle variation in participant motion systematically impacts DTI-derived 

measures of structural connectivity, even following rigorous manual quality assurance. Leveraging DTI data 

from 949 youths collected as part of the PNC, we found that increased in-scanner head motion was associated 

with inflated connectivity for low-consistency network edges that were primarily short-range and diminished 

connectivity for high-consistency edges, which included both long- and short-range connections. Applying 

group-level thresholds to eliminate potentially spurious connections actually increased the proportion of motion 

effects on structural connectivity. Furthermore, we demonstrated that age-related differences in head motion 

could both inflate and obscure developmental inferences on structural connectivity. Our results emphasize that 

simply applying retrospective motion correction with FSL eddy and excluding participants with gross motion 

artifact are not sufficient for attenuating systematic motion effects on structural connectivity. These findings are 

particularly important for studies of brain development and neuropsychiatric disorders, where in-scanner 

motion may be correlated with outcome measures of interest (e.g., participant age, diagnostic group, symptom 

burden). Together, our results demonstrate that in-scanner micro-movements can have a marked impact on 

structural connectivity derived from DTI tractography, and they provide a framework for quantifying and 

controlling for motion-related confounds in studies of structural brain network development. 

 

Motion effects on structural connectivity are modulated by edge consistency and streamline length 

 We found that the strength and direction of motion effects on structural connectivity were modulated by 

inter-subject edge consistency and streamline length. These results are in agreement with studies 

characterizing the confounding effect of head motion on resting-state functional connectivity (Ciric et al., 2017; 

Power et al., 2012; Satterthwaite et al., 2012, 2013; Van Dijk et al., 2012; Yan et al., 2013). In diffusion 

imaging, head motion has been shown to both increase and decrease FA depending on regional tissue 

anisotropy and signal-to-noise ratio (Aksoy et al., 2008; Farrell et al., 2007; Landman et al., 2008; Ling et al., 

2012; Tijssen et al., 2009). Moreover, head motion may bias streamline tractography algorithms that define 

termination criteria based on voxel-wise FA and step-wise turning angles. Specifically, participant motion may 

potentially induce a positive FA bias in brain regions with relatively isotropic diffusion, resulting in the spurious 

propagation of streamlines, while the motion-induced negative FA bias in regions of high anisotropy may result 

in the premature termination of streamlines. Our results from analyses using streamline length and FA-

weighted structural networks further support this premise: head motion increased the length of low-FA, low-

consistency connections, and decreased the length of high-FA, high-consistency connections. 

 When consistency-based thresholds were applied to eliminate potentially spurious network connections 

as in prior studies (de Reus and van den Heuvel, 2013; Roberts et al., 2017), we found that negative motion 

effects on edge and node strength became increasingly prevalent. These results are intuitive given that head 

motion exhibited a particularly strong negative influence on high-consistency network edges. The substantial 

negative impact of motion on total network strength was stable across all thresholds for networks derived from 

probabilistic tractography (partial r ~ -0.3), and was even more prominent for deterministic networks at more 

stringent thresholds (partial r ~ -0.5). These striking effects on total network strength are particularly notable 
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since many studies assessing intrinsic network topology apply global normalization procedures where each 

unique edge weight in the individual or group-averaged connectivity matrix is divided by the total network 

strength (Cao et al., 2013; Dennis et al., 2013; Gong et al., 2009; Li et al., 2012; Yan et al., 2013).  

 

Age-related differences in head motion both inflate and obscure observed age effects on structural 

connectivity 

The edge consistency- and length-related motion effects on structural connectivity observed in this 

study have important implications for studies of structural brain network development. While prior work has 

suggested that short-range WM connections tend to weaken with age while longer-range WM connections 

become stronger (Collin and van den Heuvel, 2013; Hagmann et al., 2010), our findings suggest that age-

related differences in head motion may inflate these age effects in a manner similar to that seen in 

neurodevelopmental studies of functional connectivity (Fair et al., 2012; Power et al., 2012; Satterthwaite et al., 

2012, 2013). Critically, we found that head motion significantly mediated age effects in a consistency-

dependent manner, particularly when brain networks were derived from deterministic tractography, where over 

half of the observed age effects were mediated by motion. Overall, we observed a higher proportion of network 

edges exhibiting significant age effects using probabilistic tractography, and a smaller proportion of these 

effects were mediated by age-related differences in motion. Regardless of specific methodological choices 

during brain network construction, our results demonstrate how subtle differences in participant motion may 

systematically bias inference regarding the development of structural connectivity in youth. 

 

Limitations 

Several methodological challenges and limitations of the present study should be noted. First, while 

diffusion tractography methods have been validated using post-mortem tract-tracing procedures (Donahue et 

al., 2016; Knösche et al., 2015; Miranda-Dominguez et al., 2014; van den Heuvel et al., 2015), they remain 

inherently limited in their ability to fully resolve complex WM trajectories in the human brain, such as fanning 

and bending fibers (Reveley et al., 2015; Thomas et al., 2014; Zhang et al., 2012). In particular, the relatively 

low spatial and angular resolution of DTI limits the complexity of diffusion models that can be fitted to the data. 

State-of-the-art approaches such as neurite orientation dispersion and density imaging (NODDI) leverage 

multi-shell protocols in combination with high angular resolution diffusion-weighted imaging (HARDI) to enable 

more nuanced tissue compartment models for assessing WM microstructure and connectivity across the 

human lifespan (Batalle et al., 2017; Merluzzi et al., 2016; Tuch et al., 2002; Zhang et al., 2012). Critically, 

tensor-based indices of WM integrity are not sensitive to diffusion within specific intra-voxel tissue 

compartments, while NODDI can disentangle specific microstructural features such as intra-neurite diffusion 

(within axons and dendrites), extra-neurite diffusion, and isotropic volume fraction (Zhang et al., 2012). Future 

studies using NODDI data may help determine whether head motion differentially impacts the diffusion signal 

in specific tissue compartments. 

Second, while a network neuroscience approach provides an attractive way to model pairwise 

interactions among neural units or brain regions (Bassett and Sporns, 2017), the most optimal method for 
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defining network nodes and edge weights in a biologically meaningful manner remains uncertain (Donahue et 

al., 2016; Glasser et al., 2016; Gordon et al., 2017; Taylor et al., 2017; Zalesky et al., 2010). Here, we sought 

to overcome these limitations in part by defining network nodes based on subject-specific neuroanatomical 

landmarks (Cammoun et al., 2012; Desikan et al., 2006) following rigorous manual and data-driven quality 

assessments of T1-weighted images (Rosen et al., 2017). Further, our main results were remarkably 

consistent across a variety of edge weight definitions for networks derived from both deterministic and 

probabilistic tractography.   

Third and finally, we evaluated motion effects on DTI-derived structural connectivity after retrospective 

correction for field distortions, eddy currents, and participant motion. It should be noted that these pre-

processing steps, while commonly applied, can impact diffusion model fitting and tractography results in a non-

trivial manner (Alhamud et al., 2015). Future work may benefit from evaluating motion effects on structural 

connectivity after applying additional procedures for reducing tractography-related biases, such as particle 

filtering (Girard et al., 2014), anatomically-constrained tractography (ACT) (Smith et al., 2012), or linear fascicle 

evaluation (LiFE) (Pestilli et al., 2014).  Advances in prospective motion correction procedures for diffusion-

weighted imaging (Aksoy et al., 2011; Alhamud et al., 2015, 2016) may also help mitigate the impact of motion 

on structural connectivity. 

 

Conclusions 

 In agreement with previous work characterizing motion artifact in structural, functional, and diffusion 

imaging, we found that in-scanner head motion systematically biases estimates of structural connectivity 

derived from diffusion tractography and potentially confounds inference on the development of structural brain 

networks. Based on this data, we recommend that studies of structural brain network topology should quantify 

data quality, report the relationship between data quality and both subject variables and imaging measures, 

and control for its influence in analyses through group matching or inclusion of motion as a model covariate. 

While observed motion effects on structural connectivity were strongest when head motion was measured by 

the mean relative framewise displacement between interspersed b=0 volumes, results suggest that using 

alternative data quality measures such as nuisance covariates (e.g., outlier count, TSNR) might help to reduce 

confounding effects in a similar manner when interspersed b=0 volumes are not acquired. Taken together, our 

results delineate the systematic consistency-dependent impact of in-scanner micro-movements on DTI-derived 

measures of structural connectivity, and emphasize the need for future studies to report and account for the 

effects of motion artifact. 
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FIGURES 
 

 
 
Figure 1. Connectome construction. For each subject (n=949, ages 8-23 years), the T1 image was 
processed using FreeSurfer and parcellated into 233 cortical and subcortical network nodes on a subject-
specific basis. A ball-and-stick diffusion model was fit to each subject’s DTI data and probabilistic tractography 
was run with FSL probtrackx, initiating 1,000 streamlines in each seed voxel identified at the gray-white 
boundary for each node. Edge weights in 233×233 symmetric connectivity matrices derived from probabilistic 
tractography were defined by the number of streamlines connecting a node pair, and by the mean length of 
streamlines connecting a node pair. Alternatively, the diffusion tensor was fit to the DTI data and deterministic 
streamline tractography was used to create a symmetric connectivity matrix (233×233), where the primary 
edge weight was defined by calculating the mean fractional anisotropy (FA) along streamlines connecting a 
node pair.  
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Figure 2. Motion effects on structural connectivity are driven by edge consistency and streamline 
length. The effect of in-scanner head motion on structural connectivity was estimated using a partial 
correlation for each network edge while controlling for age, age2, and sex. (A) When edge weights were 
defined by the number of probabilistic streamlines connecting a node pair, 12.12% of all network edges were 
significantly impacted by motion (56.73% negative effects). (B) The direction and strength of motion effects 
were significantly correlated with edge consistency (r=-0.35) and with mean streamline length (r=-0.21). (C) 
When edge weights were defined by the mean length of probabilistic streamlines connecting a node pair, 
62.38% of all network edges were significantly impacted by motion (98.32% negative effects). (D) The strength 
and direction of motion effects were significantly correlated with edge consistency (r=-0.59) and mean 
streamline length (r=-0.73). All statistical inferences were adjusted for multiple comparisons using FDR (Q < 
0.05). The significance of all third-level correlations was evaluated using 10,000 permutations (permutation-
based p < 0.0001).  
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Figure 3. Consistency- and length-driven motion effects are similar using deterministic tractography.  
(A) When edge weights were defined by the average FA along deterministic streamlines connecting a node 
pair, 13.72% of all network edges were significantly impacted by motion (54.06% positive effects). (B) The 
direction and strength of motion effects were significantly associated with edge consistency (r=-0.50) and with 
mean streamline length (r=-0.50). (C) When edge weights were defined by the mean length of streamlines 
connecting a node pair, 10.17% of all network edges were significantly impacted by motion (64.65% positive 
effects). (D) The direction and strength of motion effects were significantly associated with edge consistency 
(r=-0.34) and with mean FA (r=-0.39). All statistical inferences were adjusted for multiple comparisons using 
FDR (Q < 0.05). The significance of all third-level correlations was evaluated using 10,000 permutations 
(permutation-based p < 0.0001).  
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Figure 4. Head motion enhances connectivity in short-range, low-consistency edges, and diminishes 
connectivity in high-consistency edges. (A) In networks defined using probabilistic tractography, edge 
consistency exhibited a quadratic relationship with mean streamline length. Notably, head motion significantly 
enhanced the strength of relatively short-range, low-consistency network edges. Further, head motion 
diminished the strength of relatively high-consistency network edges, which included both short- and long-
range connections. (B) For deterministic tractography, edge consistency exhibited a parabolic relationship with 
mean streamline length. In agreement with results from probabilistic tractography, head motion significantly 
enhanced the strength of relatively short-range, low-consistency network edges. Further, head motion 
diminished the strength of relatively long-range, high-consistency network edges. Black line represents the 
best fit from a general additive model with a penalized spline. Data shown for edges with significant motion 
effects (FDR Q < 0.05). 
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Figure 5. Head motion systematically impacts structural connectivity across consistency-based 
thresholds at the level of network edges, nodes, and total network strength. Motion effects on 
probabilistic edge strength, node strength, and total network strength were assessed across a range of 
consistency-based thresholds (ten thresholds, 0-90th percentile consistency). (A) The percentage of edges 
significantly impacted by head motion increased monotonically across consistency-based thresholds (12.12 - 
32.3%). (B) After eliminating all edges with consistency below the 50th percentile, head motion significantly 
diminished the strength of 83.69% nodes, with particularly strong effects observed in middle frontal gyrus, 
precuneus, and cingulate cortex. (C) While the effect was stable across consistency-based thresholds, head 
motion significantly diminished total network strength at each threshold. Motion effects on deterministic edge 
strength, node strength, and total network strength were assessed across ten consistency-based thresholds 
(0-90% deterministic edge consistency). (D) The percentage of deterministic network edges significantly 
impacted by head motion increased monotonically across consistency-based thresholds (13.72 - 62.19%). (E) 
After eliminating edges that existed in less than 50% of participant connection matrices, head motion 
significantly diminished the strength of 89.27% nodes, with particularly strong effects observed in the 
precuneus and medial brain regions including the anterior and posterior cingulate. (F) Head motion also 
significantly diminished total network strength across all consistency-based thresholds, particularly at more 
stringent thresholds. These results suggest that global strength normalization approaches may be confounded 
by individual differences in head motion during acquisition. All statistical inferences were adjusted for multiple 
comparisons using FDR (Q < 0.05). Black bars correspond to the standard deviation of 100 bootstrapped 
samples encompassing 80% of the dataset (N=760). 
 
 
 
 
 
 
 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 7, 2017. ; https://doi.org/10.1101/185397doi: bioRxiv preprint 

https://doi.org/10.1101/185397
http://creativecommons.org/licenses/by/4.0/


 
 
Figure 6. Observed age effects on structural connectivity are both inflated and obscured when age-
related differences in head motion are not accounted for. All subjects included in this study passed 
rigorous manual quality assurance, retaining a sample of relatively high-quality, low-motion DTI datasets. (A) 
Despite this, age-related differences in head motion were still observed: younger participants tended to move 
significantly more than older participants. (B) Mediation analyses across all network edges showing significant 
age effects demonstrated that observed age effects on structural connectivity were often inflated or obscured 
when head motion was not accounted for. This schematic illustrates how positive mediation effects can reflect 
inflated positive age effects or obscured negative age effects, where in both cases motion decreases the 
strength of network edges that undergo significant age-related change. Similarly, negative mediation effects 
can reflect inflated negative age effects or obscured positive age effects, where in both cases motion increases 
the strength of network edges that undergo significant age-related change. (C) For brain networks derived from 
probabilistic tractography, significant age effects were observed in 6,927 network edges (25.63%). This 
visualization highlights 933 (7.42%) of these edges where developmental effects were significantly mediated 
by age-related differences in head motion. Positive mediation effects were observed for edges where motion 
significantly reduced connectivity (39.34%), while negative mediation effects were observed for edges where 
motion significantly increased connectivity (60.66%) (D) Network connections exhibiting positive mediation 
effects had significantly higher edge consistency compared to connections with significant negative mediation 
effects (permutation-based p < 0.0001).  (E) For brain networks derived from deterministic tractography, 
significant age effects were observed in 1,578 network edges (6.87%). This visualization highlights 810 
(51.33%) of these edges where developmental effects were significantly mediated by age-related differences in 
head motion. Again, both positive (81.36%) and negative (18.64%) mediation effects were observed. (F) As 
seen in the probabilistic data, network connections with significant positive mediation effects had significantly 
higher edge consistency compared to connections with significant negative mediation effects (permutation-
based p < 0.0001). Red connections represent significant positive mediation results; blue connections 
represent significant negative mediation results.  
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Supplemental Figure 1. Consistency- and length-driven motion effects using alternative edge weights.  
(A) When edge weights were defined by the connectivity probability between two nodes, 12.66% of all network 
edges were significantly impacted by motion (57.09% negative effects). The direction and strength of motion 
effects were significantly associated with probabilistic edge consistency (r=-0.36) and mean streamline length 
(r=-0.50). (B) When edge weights were defined by the average inverse mean diffusivity (MD) along streamlines 
connecting a node pair for brain networks derived from deterministic tractography, 13.18% of all network edges 
were significantly impacted by motion (37.90% negative effects). The direction and strength of motion effects 
were significantly associated with edge consistency (r=-0.43) and with mean streamline length (r=-0.43). (C) 
When edge weights were defined by the number of deterministic streamlines connecting a pair of nodes, 
12.47% of all network edges were significantly impacted by motion (4.65% negative effects). While the 
absolute number of edges impacted by motion was highly consistent with that of other edge weights, motion 
effects on streamline count-weighted networks were only weakly correlated with edge consistency (r=-0.08) 
and with mean streamline length (r=-0.17). All statistical inferences were adjusted for multiple comparisons 
using FDR (Q < 0.05). The significance of all third-level correlations was evaluated using 10,000 permutations 
(permutation-based p < 0.0001).  
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Supplemental Figure 2. Effects remain highly similar using alternative measures of head motion or DTI 
data quality.  For networks derived from probabilistic tractography, edge weights were defined by the 
probabilistic streamline count between each pair of nodes. (A) Using the translation component of the affine 
registration from each volume to the first b=0 volume, we calculated the average magnitude of translation over 
all 71 volumes in the scan. This measure of framewise translation significantly impacted the strength of 5.43% 
of network edges (63.60% positive effects). The direction and strength of these effects were significantly 
associated with probabilistic edge consistency (r=-0.29) and with mean streamline length (r=-0.20). (B) Using 
the rotation component of the affine registration from each volume to the first b=0 volume, we calculated the 
average magnitude of rotation over all 71 volumes in the scan. This measure of framewise rotation significantly 
impacted the strength of 28.41% of network edges (61.36% positive effects). The direction and strength of 
these effects were significantly associated with probabilistic edge consistency (r=-0.23) and mean streamline 
length (r=-0.20). (C) The mean voxel outlier count across all 64 diffusion-weighted volumes significantly 
impacted 13.34% of network edges (61.76% positive effects). The direction and strength of these effects were 
significantly associated with probabilistic edge consistency (r=-0.22) and mean streamline length (r=-0.19). (D) 
The mean temporal signal-to-noise ratio (TSNR) across all 64 diffusion-weighted volumes significantly 
impacted 25.30% of network edges (80.87% positive effects). The direction and strength of these effects were 
significantly associated with probabilistic edge consistency (r=0.30) and mean streamline length (r=0.20). For 
networks derived from deterministic tractography, edge weights were defined by the mean fractional anisotropy 
(FA) along streamlines connecting each pair of nodes. (E) Mean framewise translation significantly impacted 
the strength of 6.67% of network edges (50.33% positive effects). The direction and strength of these effects 
were significantly associated with deterministic edge consistency (r=-0.49) and mean streamline length (r=-
0.46). (F) Mean framewise rotation significantly impacted the strength of 14.44% of network edges (50.82% 
positive effects). The direction and strength of these effects were significantly associated with deterministic 
edge consistency (r=-0.40) and mean streamline length (r=-0.42). (G) The mean voxel outlier count 
significantly impacted the strength of 7.16% of network edges (46.72% positive effects). The direction and 
strength of these effects were significantly associated with deterministic edge consistency (r=-0.42) and mean 
streamline length (r=-0.42). (H) TSNR significantly impacted the strength of 8.92% of network edges (54.81% 
positive effects). The direction and strength of these effects were significantly associated with deterministic 
edge consistency (r=0.49) and mean streamline length (r=0.48). All statistical inferences were adjusted for 
multiple comparisons using FDR (Q < 0.05). The significance of all third-level correlations was evaluated using 
10,000 permutations (permutation-based p < 0.0001).  
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