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ABSTRACT 

Rhythmic visual stimulation (“flicker”) is primarily used to “tag” processing of low-level visual and high-

level cognitive phenomena. However, preliminary evidence suggests that flicker may also entrain 

endogenous brain oscillations, thereby modulating cognitive processes supported by those brain rhythms. 

Here we tested the interaction between 10 Hz flicker and endogenous alpha-band (~10 Hz) oscillations 

during a selective visuospatial attention task. We recorded EEG from human participants (both genders) 

while they performed a modified Eriksen flanker task in which distractors and targets flickered within (10 

Hz) or outside (7.5 or 15 Hz) the alpha band. By using a combination of EEG source separation, time-

frequency, and single-trial linear mixed effects modeling, we demonstrate that 10 Hz flicker interfered 

with stimulus processing more on incongruent than congruent trials (high vs. low selective attention 

demands). Crucially, the effect of 10 Hz flicker on task performance was predicted by the distance 

between 10 Hz and individual alpha peak frequency (estimated during the task). Finally, the flicker effect 

on task performance was more strongly predicted by EEG flicker responses during stimulus processing 

than during preparation for the upcoming stimulus, suggesting that 10 Hz flicker interfered more with 

reactive than proactive selective attention. These findings are consistent with our hypothesis that visual 

flicker entrained endogenous alpha-band networks, which in turn impaired task performance. Our 

findings also provide novel evidence for frequency-dependent exogenous modulation of cognition that is 

determined by the correspondence between the exogenous flicker frequency and the endogenous brain 

rhythms. 

Significance 

Here we provide novel evidence that the interaction between exogenous rhythmic visual stimulation and 

endogenous brain rhythms can have frequency-specific behavioral effects. We show that alpha-band (10 

Hz) flicker impairs stimulus processing in a selective attention task when the stimulus flicker rate matches 
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individual alpha peak frequency. The effect of sensory flicker on task performance was stronger when 

selective attention demands were high, and was stronger during stimulus processing and response 

selection compared to the pre-stimulus anticipatory period. These findings provide novel evidence that 

frequency-specific sensory flicker affects online attentional processing, and also demonstrate that the 

correspondence between exogenous and endogenous rhythms is an overlooked prerequisite when 

testing for frequency-specific cognitive effects of flicker. 

INTRODUCTION 

A popular technique to study selective attention (spatial, feature-based, object-based) relies on brain 

responses to rhythmic sensory stimulation (visual flicker, amplitude-modulated sound, or tactile 

vibrations). In M/EEG recordings, responses to rhythmic stimuli are periodic, with differentiable spectral 

signatures at frequencies identical or harmonically related to the stimulus (“steady-state visual evoked 

potentials”; SSVEPs). The frequency of SSVEPs is determined by the stimulus and is stable over time 

(Regan, 1966; Herrmann, 2001; Keitel et al., 2017), whereas the amplitude is time-varying and depends 

on cognitive variables, including attention (Morgan et al., 1996). SSVEP amplitude is higher for attended 

vs. ignored stimuli, making the SSVEP an important tool for measuring selective attention continuously 

over space and time (Regan and Heron, 1969; coined "frequency tagging" by Tononi et al., 1998). 

There is an implicit assumption underlying the frequency tagging approach: The stimulus rhythm 

does not interact with ongoing endogenous brain rhythms, and therefore the choice of tagging frequency, 

according to some, should not have behavioral consequences (Keitel et al., 2014). In other words, 

frequency tagging allows measuring cognitive processes without influencing those processes. However, 

this assumption is difficult to reconcile with empirical evidence of stronger SSVEPs when periodic light 

flashes are “in-sync” with individual alpha peak frequency (IAF; Adrian and Matthews, 1934; Notbohm et 

al., 2016). The tagging frequency neutrality assumption is also inconsistent with differences in SSVEP 
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amplitude across brain areas and stimulation frequencies. For example, visual areas show strong SSVEPs 

to alpha and gamma flicker (Regan, 1989), frontal areas respond strongly to theta (4-8 Hz; Srinivasan et 

al., 2007), and SSVEP to face stimuli are most pronounced at rates ~6 Hz (Alonso-Prieto et al., 2013).  

These observations suggest an alternative hypothesis: Exogenous rhythmic stimulation, at least 

at certain frequencies, can entrain endogenous brain rhythms, and modulate cognitive processes 

supported by those brain rhythms (Mathewson et al., 2012; de Graaf et al., 2013; Spaak et al., 2014). A 

critical test for the idea of frequency-specific behavioral effects of flicker, however, requires 

demonstrating that stimulation rates close to a “natural” frequency of the network engaged in the task 

have the strongest effect on behavior.  

Previous studies assessed the behavioral effect of alpha-band rhythmic visual stimuli, and 

provided exciting but limited evidence due to the following reasons. First, the relationship between flicker 

and IAF, and variability of IAF across brain regions (Haegens et al., 2014; Gulbinaite et al., 2017) were not 

taken into account. Second, most studies used one or two flicker frequencies (Mathewson et al., 2012; 

Spaak et al., 2014; Kizuk and Mathewson, 2017) (but see de Graaf et al., 2013), preventing conclusions 

about frequency-band specific behavioral effects. Third, because the effects of alpha-band flicker were 

assessed after stimulation train offset (Mathewson et al., 2012; de Graaf et al., 2013; Spaak et al., 2014), 

the effects could have been due to temporal expectations induced by rhythmic stimulation, as opposed 

to entrainment of endogenous oscillations (Breska and Deouell, 2014). 

Here we tested the effect of alpha flicker during stimulus processing in a visuospatial attention 

task. Modulation of alpha-band oscillations is observed both in preparation to the upcoming stimulus 

(Frey et al., 2015), and during stimulus processing (van Diepen et al., 2016). Thus, we hypothesized that 

alpha flicker could interfere with functioning of networks operating in alpha and, as a consequence, 

interfere with selective attention. We used the Eriksen flanker task (Gulbinaite et al., 2014), with target 

and flankers flickering within or outside the alpha band. Based on current theories of the inhibitory role 
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of alpha-band oscillations (Jensen and Mazaheri, 2010; Klimesch, 2012), and retinotopic mapping of 

SSVEPs (Di Russo et al., 2007; Cottereau et al., 2011), we reasoned that stimulus processing in parts of the 

visual field flickering in alpha will be impaired. We found, using mixed-effects regression modeling of 

single-trial time-frequency and SSVEP responses, that inhibitory effects of alpha flicker on task 

performance were most pronounced when alpha flicker frequency matched the IAF peak.  

METHODS 

Participants. Thirty-one participants were recruited using the online participant recruitment system of 

the Psychology Department at the University of Amsterdam, and took part in the experiment in exchange 

for a course credit or monetary compensation (€15). Participants with a first-degree family member with 

epilepsy or migraine were excluded from this study. Participants had normal or corrected-to-normal 

vision, no reported history of psychiatric disorders, and were self-reported right-handed. The experiment 

was approved by the local ethics committee of the University of Amsterdam and informed consent was 

obtained from all participants. Data from four participants were excluded from the analyses: One due to 

technical issues during EEG recording, and three due to poor behavioral performance (accuracy < 80%). 

Thus, the final sample was twenty-seven participants (15 female, mean age 22.4). 

Stimuli and procedure. A modified version of the Eriksen flanker task with a four-to-two mapping of 

stimuli to response buttons was used (Wendt et al., 2007; Gulbinaite et al., 2014). The experimental 

paradigm was similar to that described in the study by Gulbinaite et al. (2014), in which participants were 

instructed to respond to the central target letter and ignore the surrounding distracting flanker letters. 

Instead of the previously employed linear configuration of target and flankers, here flanker stimuli were 

equidistantly positioned relative to the centrally presented target stimulus (Fig. 1). This was done to 

maximize the SSVEP signal related to the processing of the flankers (Vanegas et al., 2013). For the very 

same reason, each letter stimulus size was increased to ~3.35° of visual angle, separated by ~0.65° visual 

angle. The total estimated cortical representation of the stimuli in V1 was 77.09 and 97.72 (arbitrary units) 
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for targets and flankers respectively (using cortical magnification factors provided by Schira et al., 2007). 

SSVEPs were elicited by modulating the luminance of stimuli by a 7.5 Hz, 10 Hz, or 15 Hz sine wave (Fig. 

1B). Sine-wave stimulus luminance modulation allows greater frequency precision (energy in the stimulus 

at the harmonic frequencies is negligible as compared to the fundamental stimulation frequency), and 

also ensures equal total luminance for different frequencies within a given time window of flicker. The 

stimuli were presented in Sloan font (Pelli et al., 1988), letters of which are equally discriminable and for 

which height equals width. Stimuli were displayed on a 23-in. LCD monitor with a resolution of 1920 × 

1080 pixels and a refresh rate of 120 Hz. The viewing distance was unconstrained and kept at 

approximately 90 cm. 

Stimuli consisted of a target letter and four identical flanker letters presented in white against a 

black background. Participants used a computer mouse to respond. Four letters (E, F, M, N) were used as 

stimuli and were mapped onto two response keys: When the central target letter was M or E participants 

pressed the left button with their left thumb, and when the central target was N or F participants pressed 

the right button with their right thumb. Only response congruent (e.g., M M M M M) and response 

incongruent (e.g., M M N M M) stimuli were used in the experiment. The order of different types of trials 

was pseudo-randomized, with the constraint that exact stimulus-response repetitions were not 

presented; this prevents repetition priming effects (Mayr et al., 2003). The overall probability of congruent 

and incongruent trials, as well as the proportion of left- and right-hand responses, was kept equal. 

Participants completed a practice session (40 trials over 4 blocks), which was followed by the experiment 

session (12 blocks, with 56 trials per block). In the practice session, feedback on performance was given 

after each trial; in the experiment session, average performance feedback was given after each block. 

Each trial started with a 2 s presentation of a pre-stimulus mask comprising hash marks. The hash 

marks in the four distractor positions flickered at a common frequency, while the hash mark in the central 

target position flickered at a different frequency. All trials included 10 Hz flicker, thus creating 4 tagging 
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conditions in total (Fig. 1C). The purpose of the 10 Hz flicker was to test our key hypothesis about 

entrainment effects of alpha flicker on endogenous alpha-band neural oscillations. 7.5 Hz and 15 Hz 

tagging frequencies were selected to be outside the typical alpha-band range while still being perceptually 

similar to the 10 Hz flicker. 

 

Figure 1. Stimuli and task. (A) Trials began with the presentation of a mask consisting of hash marks for 2000 ms 
followed by imperative stimulus, presentation of which lasted until a button press or until the deadline of 1200 ms 
was exceeded, and was followed by an inter-trial interval (ITI) of 1000 ms. (B) Each stimulus consisted of a target 
letter flickering within (10 Hz) or outside (7.5 or 15 Hz) the alpha-band range, while flanker letters flickered outside 
(7.5 or 15 Hz) or within alpha-band range respectively. (C) Frequency tagging was implemented by sine-wave 
modulation of stimulus luminance.   

Despite growing evidence for the entrainment of endogenous oscillations by rhythmic stimuli 

(Spaak et al., 2014; Notbohm et al., 2016), previously reported behavioral effects of 10 Hz rhythmic 

stimulation on perception and attention can alternatively be explained by temporal expectations because 

the imperative stimulus was presented after rhythmic stimulation offset (Mathewson et al., 2012; de 

Graaf et al., 2013; Spaak et al., 2014). The issue of entrainment vs. temporal expectation is a subtle but 

important distinction, particularly considering the involvement of alpha-band oscillations in temporal 

expectation (Rohenkohl and Nobre, 2011). Although arguments have been made against this potential 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 6, 2017. ; https://doi.org/10.1101/185132doi: bioRxiv preprint 

https://doi.org/10.1101/185132
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

8 
 

alternative (Spaak et al., 2014), our design avoids the issue by having the imperative stimulus flickering all 

the time.  

Tagging frequencies were changed on each block, and blocks were randomly presented to 

participants. After 2 s the mask was replaced by the imperative stimulus (e.g. N N M N N) flickering at the 

same frequencies as the hash marks they replaced. Stimulus presentation lasted until a response was 

made, or until the deadline of 1200 ms after the stimulus onset was exceeded. Participants were 

instructed to respond as quickly and as accurately as possible. In order to prevent eye movements, 

participants were instructed to focus on a small green dot presented continuously at the center of the 

screen.  

Data acquisition and preprocessing. EEG data were acquired at 1024 Hz using a 64-channel BioSemi 

system (http://www.biosemi.com). Two additional electrodes were placed on the outer eye canthi to 

record horizontal eye movements (re-referenced offline to a single bipolar channel). Data analyses were 

performed using EEGLAB and custom written Matlab scripts. Offline the data were high-pass filtered at 

0.5 Hz, and re-referenced to the average of all scalp electrodes. Thereafter, the data were epoched (-1.5 

to 3.5 s relative to the mask onset, which is sufficiently long to prevent potential edge artifacts from 

contaminating the analysis windows), and baseline-corrected with respect to the time window of −200-0 

ms (where 0 corresponds to mask onset). Bad electrodes, trials containing muscle artifacts (during mask 

and imperative stimulus presentation period), as well as trials containing horizontal eye movements away 

from fixation, and trials containing eye blinks during imperative stimulus presentation were manually 

rejected. Trials containing single-blinks (but not many successive blinks) during mask period – on average, 

4.12% (SD = 5.29%) – were not removed, as the spatiotemporal filtering method used to extract SSVEP 

responses suppresses blink-related artifacts.  Next, we performed independent component analysis (ICA) 

using the JADE algorithm (Delorme and Makeig, 2004). Independent components (ICs) easily detectable 

as being driven by eye movements, EMG, or noise were identified (following criteria provided by Chaumon 
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et al., 2015). These artifactual ICs (average of 1.85 ICs per participant) were removed only for analyses 

involving identification of IAF and electrode-level theta time-frequency power. Analyses involving 

spatiotemporal source-separation (described in the following section) did not require removing artifactual 

independent components and were done on the full-rank data.  

Trials with no or incorrect responses, as well as trials with reaction times faster than 150 ms or 3 

standard deviations above the mean in each condition were excluded from the analysis. The average 

number of trials per condition included in the statistical analysis for both EEG and behavioral data was 

278 (SD = 22.15) for congruent trials, and 269 (SD = 21) for incongruent trials. 

SSVEP analyses: spatiotemporal filtering. Frequency- and stimulus-specific (target vs. flankers) SSVEP 

responses were obtained using a spatiotemporal source separation method called rhythmic entrainment 

source separation (RESS), which combines both temporal (flicker frequency) and spatial (topographical 

distribution) characteristics of SSVEPs (Cohen and Gulbinaite, 2017). The RESS method determines an 

optimal spatial filter (electrode weights) that maximally separates frequency-specific SSVEPs (the signal, 

S) from non-SSVEP brain activity (the reference, R). We used brain activity at neighboring frequencies as 

reference data. Thus, instead of analyzing SSVEPs from channels with maximum power at the tagging 

frequency, we analyzed a linearly weighted combination of all electrodes. In addition to increasing the 

SSVEP signal-to-noise ratio, RESS also helps separate the SSVEP-related activity from temporally co-

occurring non-SSVEP-related activity such as blinks, stimulus evoked responses, and activity at other 

frequencies (Cohen and Gulbinaite, 2017). 

For each participant, six spatial filters were constructed (separately for each tagging frequency, 

and stimulus type) because: (1) SSVEP topographies differ for centrally presented target and peripheral 

flankers (Fig. 2); (2) different frequency SSVEPs have different sources and therefore different scalp 

projections (Heinrichs-Graham and Wilson, 2012; Lithari et al., 2016); (3) SSVEP topographies may differ 

across participants due to anatomical differences. Each spatial filter was designed as follows. First, 
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condition-specific single-trial data were concatenated and temporally filtered using three different 

narrow-band Gaussian filters: (1) filter centered at the flicker frequency f with full-width at half-maximum 

(FWHM) = 0.5 Hz; (2) filter centered at f-1 Hz with FWHM = 2 Hz; (3) filter centered at f+1 Hz with FWHM 

= 2 Hz. Data filtered at the flicker frequency are called “signal” (S), and data filtered at the neighboring 

frequencies are called “reference” (R). Second, temporally-filtered data from 500 to 2600 ms (relative to 

the mask onset) were used to compute channel covariance matrices (two R matrices and one S matrix). 

The first 500 ms contains visual evoked response to the onset of the flicker, which affects the quality of 

the spatial filter and thus were excluded from the analyses (Cohen and Gulbinaite, 2017). However, we 

did not exclude the data following imperative stimulus onset because congruent and incongruent trials 

do not differ in early sensory evoked potentials over occipital and parietal areas (Appelbaum et al., 2011). 

Third, generalized eigenvalue decomposition (Matlab function eig) on the covariance matrices R and S 

was used to construct spatial filters, where R is average of two reference (flicker-frequency neighboring) 

covariance matrices, and S is the covariance matrix from data that was temporally filtered at the stimulus 

frequency. The eigenvectors (column vectors with values representing electrode weights) were used to 

obtain RESS component time series (eigenvector multiplied by the original unfiltered single-trial time 

series). Although the first RESS component typically has highest SNR at the frequency of interest (i.e. EEG 

responses at the frequency that the spatial filter is designed to maximize), power spectra of RESS 

components were expressed in SNR units, and the RESS component with the highest SNR at the tagging 

frequency was automatically selected for subsequent analyses. Out of 162 RESS components (27 

participants, 6 components per participant), the 1st RESS component was selected for subsequent analyses 

in 156 cases, and the 2nd RESS component in 6 cases. Thus, for each trial we analyzed two separate 

frequency-specific RESS component time series (one for target, and one for flankers). Topographical maps 

presented in Figure 2A were obtained from the filters by left-multiplying the eigenvector by the signal 

covariance matrix. Maps were normalized to allow averaging across participants. 
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Although the electrode-level frequency domain representation of SSVEPs revealed peaks at the 

stimulus frequency (e.g. 10 Hz) and its harmonics (e.g. 20 Hz and 30 Hz), indicating well-documented non-

linearities in the response of the visual system (for a review, see Norcia et al., 2015), we focused our 

analyses on the fundamental frequencies (7.5. Hz, 10 Hz, and 15 Hz). As detailed in the Introduction 

section, we had specific a-priori hypotheses regarding alpha-band (10 Hz) vs. non-alpha (7.5. Hz and 15 

Hz) flicker in terms of interactions with endogenous alpha oscillations implicated in the Eriksen flanker 

task (Fan et al., 2007; McDermott et al., 2017), and attentional processes in general (Jensen and Mazaheri, 

2010; Klimesch, 2012). Although responses at higher harmonics and inter-modulatory frequencies reflect 

nonlinearities of the visual system, and have been used to study low-level visual processes (e.g. 

adaptation, symmetry, binocular rivalry; for a review see, Norcia et al., 2015), yet the physiological origin 

(retinal, subcortical, or cortical) has not been systematically investigated (Kim et al., 2011; Labecki et al., 

2016). 
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Figure 2. Topographical maps of frequency- and stimulus-specific SSVEP spatial filters and frequency spectra of 
RESS component time series. (A) RESS topographical maps for different tagging frequencies at target and flanker 
positions. Note that topographical distribution of SSVEPs elicited by the target is more centrally focused than that of 
the flankers. (B) Frequency spectra of RESS component time series, expressed in SNR (signal-to-noise ratio) units, 
highlights frequency-specificity of RESS SSVEPs. Note that 10 Hz target and 10 Hz flanker spectra are based on 
averaging 10T/xF and xT/10F conditions (where x is 7.5 or 15 Hz). 

Theta-band (3-7 Hz) power. Frontal midline theta power, a well-established marker of response conflict 

task performance (Cavanagh and Frank, 2014; Cohen, 2014), was estimated using spatiotemporal filtering 

(procedure similar to that utilized for SSVEP source separation). This was done to optimize a theta 

component, which increases the accuracy of estimating the true neural theta activity (Cohen, 2017a). This 

is particularly important for the single-trial analyses. The data for the reference matrix was the broadband 

EEG data, and the data for the signal was the data temporally filtered around subject-specific condition-

average theta-band peak frequency (FWHM = 3 Hz) which was defined in the following steps. First, we 

convolved Laplacian-transformed single-trial data from all electrodes with the complex Morlet wavelets, 

defined as: 𝑒𝑖2𝜋𝑓𝑖𝑡𝑒−𝑡
2 (2𝜎2⁄ )  (where t is time, fi is frequency which ranged from 2 to 30 Hz in 40 

logarithmically spaced steps, and σ is the width of each frequency band defined as n/(2πfi), where n is a 

number of wavelet cycles that varied from 4 to 6 in logarithmically spaced steps). Second, we computed 

instantaneous power by taking the square of the complex convolution result, and normalizing power 

values by converting to decibel scale relative to the pre-stimulus time window (-500 – -200 ms, where 0 

is the onset of the flickering mask). Third, given that theta-band (3-7 Hz) activity around response time 

(2300 – 2600 ms) was maximal at FCz and Cz electrodes (Fig. 3B left topoplot), the average TF map of 

these two electrodes was used to automatically find condition-average subject-specific theta peak 

frequency in post-stimulus window. The data temporally filtered around this peak frequency was used for 

constructing the spatiotemporal filter that maximized midfrontal theta signal. 

Data from 2000 to 2800 ms (relative to the mask onset) were used to compute two time-averaged 

covariance matrices (S and R) across all electrodes, which were used for generalized eigenvalue 

decomposition. The eigenvector with the largest eigenvalue was used as a spatial filter that, when 
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multiplied by the raw EEG data (de Cheveigne and Arzounian, 2015), provided a component that 

maximizes theta-band activity. Forward model projections of the spatial filters were then visually 

inspected for characteristic midfrontal topography. For 26 out of 27 participants the 1st eigenvector 

satisfied this criterion; and for 1 participant the 2nd eigenvector was selected. Time-frequency 

representation of component time series was obtained using Morlet wavelets following the procedure 

identical to electrode-level data as described above.  

Occipital alpha-band source separation. In order to test our hypothesis that behavioral effects of 10 Hz 

flicker depend on the distance between 10 Hz and IAF, it was important to estimate occipital IAF as 

accurately as possible (Gulbinaite et al., 2017). For this, we determined occipital IAF using independent 

component analysis (ICA). We focused on occipital alpha, because for low-level visual stimuli (e.g. full-

field flicker, pattern reversal of checkerboard and gratings) – similar to the stimuli used here – the effects 

of rhythmic stimulation are maximal in primary sensory cortices (Muller et al., 1997; Di Russo et al., 2007; 

Cottereau et al., 2011). Moreover, we determined IAF from the inter-trial interval, because IAF not only 

differs across brain regions, but also is state-dependent (task-related vs. resting-state IAF Haegens et al., 

2014). Furthermore, there was no flicker during the inter-trial interval, so our estimation of occipital IAF 

was not biased by SSVEPs. 

First, eye-movement artifact-free data were band-pass filtered at 5-15 Hz. Second, the ICA was 

performed on temporally-filtered data using only the pre-stimulus time window (-1000 to 0 ms, where 0 

is the onset of the mask), obtaining 20 independent components (ICs). For each independent component, 

a single equivalent current dipole model was fitted using three-layer BEM template model based on the 

standard Montreal Neurological Institute's (MNI) brain template from the DIPFIT plug-in (DIPFIT toolbox; 

Oostenveld and Oostendorp, 2002). The occipital IC was selected based on proximity to occipital ROIs 

centered on Brodmann areas 17 and 18 (right-side MNI coordinates: -20 -70 50; left-side MNI coordinates: 

20 -70 50; Haegens et al., 2014), with constraints that the selected equivalent dipole had less than 15% 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 6, 2017. ; https://doi.org/10.1101/185132doi: bioRxiv preprint 

https://doi.org/10.1101/185132
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

14 
 

residual variance from the spherical forward-model scalp projection, and was located inside the model 

brain volume. The average residual variance of the dipole fit for the selected occipital ICs was 5.8% (SD = 

4.37%). Finally, occipital IAF was estimated by taking the FFT of the IC time series in the -1000 – 0 ms 

window. The data was zero-padded to obtain 0.1 Hz frequency resolution. The absolute value of FFT 

coefficients was squared and averaged across trials. The individual alpha-peak frequency was determined 

as the peak in the range of 6-14 Hz. This frequency search window was selected based on reports that IAF 

ranges from 6-14 Hz (Bazanova and Vernon, 2014). For five participants, IAFs could not be determined 

due to small alpha peaks in the power spectrum that were indistinguishable from noise. Thus 22 

participants were included in the single-trial analyses using linear mixed-effects models described further. 

All IAFs were above 8 Hz and below 13 Hz, thus there was no interaction with control flicker frequencies 

of 7.5 Hz and 15 Hz (Fig. 3B). 

Statistical analyses. Trial-average behavior. We tested the effect of flicker on average behavioral 

performance using repeated-measures ANOVAs. First, we kept the 4 tagging conditions separate, and 

entered mean RT and percentage error data in two separate repeated measures ANOVAs with factors trial 

congruency (congruent, incongruent) and tagging condition (7.5T/10F, 10T/7.5F, 10T/15F, and 15T/10F; 

the first number denotes target flicker frequency) as within-subject factors. Second, we evaluated a 

general effect of 10 Hz flicker in flanker vs. target positions by collapsing conditions, and submitting mean 

RTs and percentage error to another set of repeated-measures ANOVAs with factors trial congruency 

(congruent, incongruent) and tagging condition (10 Hz target, 10 Hz flankers).  
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Figure 3. Occipital alpha sources. (A) Locations of equivalent dipoles for occipital alpha independent components 
(ICs). Each blue dot represents a participant. The red dot represents the centroid of the cluster based on all participant 
dipoles, the scalp projection of which is depicted in the top right. (B) Power spectra of alpha IC time series, normalized 
to the power of each participant’s alpha peak (for comparability across participants). Each row represents a 
participant, color corresponds to normalized spectral power, and the white dot denotes alpha peak frequency. 

Trial-average SSVEP analysis. SSVEP amplitude was calculated by performing single-trial FFTs of RESS 

component time series in a 500-2600 ms time window (relative to the mask onset). The first 500 ms were 

excluded to remove stimulus-evoked activity at the trial onset (Andersen et al., 2011). To obtain equally 

good resolution for all flicker frequencies (0.25 Hz), the exact time window for FFT was adjusted by zero-

padding the data. Absolute value of FFT coefficients was averaged across trials and squared, and 

converted into SNR units to facilitate comparison across different flicker frequencies (Norcia et al., 2015). 

SNR was computed as the power at the flicker frequency of interest divided by the average power at the 

neighboring frequencies (+/− 1 Hz, excluding +/− .5 Hz around the frequency of interest; e.g. 8.5-9.5 Hz 

and 10.5-11.5 Hz for 10 Hz flicker frequency).  

To evaluate the amount of attentional modulation across different flicker frequencies, SNR values 

at the flicker frequency of interest were submitted to a two-way repeated measures ANOVA, with stimulus 

type (target, flankers), and frequency (7.5, 10 Hz paired with 7.5 Hz, 10 Hz paired with 15 Hz, and 15 Hz) 

as within-subject factors.  
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Trial-average theta-band power. Based on visual inspection of the subject-average theta component time-

frequency plot, a window with the largest theta-band power (3-8 Hz, 2200-2800 ms; marked with a white 

rectangle in Fig. 5A bottom) was used to find participant- and condition-specific time-frequency peaks. An 

automatic peak finding procedure was adopted to capture individual differences in task-related brain 

activity. Average peak values (+-1 Hz, +-150 ms around the time-frequency peak) were entered in 2 

(congruency) x 4 (tagging condition) repeated measures ANOVA.     

Single-trial analyses. Single-trial analyses were performed using linear mixed-effects models (LMEs). LME 

models are extensions of standard regression models, and allow to simultaneously assess the influence of 

several predictors (i.e. fixed effects), while taking into account within-subject variability (i.e. random 

effects). The random effects are included in the model as so-called random intercepts and random slopes, 

which ensures that the observed effects are not driven by the data of one subject. Thus LMEs provide a 

more accurate and sensitive understanding of the patterns in the data.  

Model fitting was implemented using the lmer package in R software (Bates et al., 2015). Single-

trial RT was used as a dependent variable and was log-transformed to correct for the positive skew of RT 

distribution. In the reported models, fixed effects represent the general relationship between single-trial 

RTs and experimental factors, whereas random effects reflect subject-specific deviations from this general 

pattern. Specifically, random intercepts model the variability in RT of individual subject (some subjects 

may be fast, while others may be slow), whereas the random slopes model the variability in the influence 

of experimental factors on RTs (i.e. the effect of congruency on RTs may be stronger for some subjects 

than for the others). 

The best-fitting model was selected using an iterative procedure. First, we fitted the base model 

which included only trial congruency as a fixed factor, and a random intercept term to account for subject-

specific variability in the offset. Thereafter we gradually increased model complexity by adding additional 

fixed factors and their interactions, while ensuring the model’s goodness of fit by comparing Akaike 
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information criterion (AIC), and selecting a more complex model if decrease in AIC was more than 2. The 

decrease in the Akaike Information Criterion (AIC) may be interpreted as evidence ratio. For example, a 

(more complex) model with a lower AIC is e(AIC difference/2) times more likely to represent the data than the 

model with a higher AIC. We used an AIC threshold of 2, which means that a more complex model must 

be at least 2.7 times more likely to represent the data than the simpler model (Akaike, 1974). Thus, 

additional factors were included only if they explained a significant amount of variance (Baayen et al., 

2008). We also validated the model by plotting residuals against the fitted values, and performed model 

criticism by removing 1.5% of the data (potential outliers). Plotting and estimation of p-values for each 

factor in the best-fitted model were performed using sjPlot package (Lüdecke, 2017). 

The following factors were used as RT predictors: Trial congruency (2 levels), tagging condition (4 

levels), single-trial theta power, single-trial SSVEP power at target and flanker tagging frequencies 

(expressed in SNR units using identical procedure to that of trial-average), distance between occipital IAF 

and 10 Hz (i.e. absolute difference). Single-trial theta power was defined from the time-frequency 

representation of the theta component (no baseline correction applied), by taking the average around 

theta power peak (+- 1 Hz; +-150 ms) defined separately for each participant from condition-average theta 

component time-frequency plot (see Fig. 3A bottom). Single-trial SSVEP power at target and flanker 

tagging frequencies was defined by taking the FFT of respective RESS components in two time windows: 

Pre-stimulus (1400-2000 ms relative to the mask onset), and post-stimulus (2000-2600 ms). This choice 

was motivated by previous reports on alpha power modulations over brain regions representing ignored 

locations prior to and after stimulus onset (Handel et al., 2011; van Diepen et al., 2016). We reasoned that 

the effects of 10 Hz flicker might have a different effect on proactive vs. reactive attention control.  

All numerical predictors (theta power, SSVEP amplitude for target and flanker stimuli) were 

normalized to a Gaussian distribution by ranking the data, scaling between -1 and 1, and taking the inverse 

hyperbolic tangent (also known as Fisher transform; Cohen, 2017b). Categorical factors were dummy-
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coded: “congruency” was coded as 0 or 1 (1 for congruent and 0 for incongruent trials), and “tagging 

condition” was coded 1 to 4 (10T/7.5F as 1, 10T/15F as 2, 7.5T/10F as 3, 15T/10F as 4).  

RESULTS 

Behavioral results: Trial-average analyses  

Based on the findings that alpha power is increased over task irrelevant regions and has been 

interpreted to reflect inhibition of task-irrelevant information (Handel et al., 2011; Frey et al., 2015), and 

on a recent report on hemifield-specific entrainment of alpha-band oscillations using 10 Hz flicker (Spaak 

et al., 2014), we predicted 10 Hz flicker to have the following behavioral effects. We expected responses 

to be faster and more accurate when flankers flickered at 10 Hz, because inhibition of the distractors 

would facilitate processing of the target stimulus. On trials where the target stimulus flickered at 10 Hz, 

we expected responses to be slower and less accurate, because increase in alpha-band oscillatory power 

would be detrimental for processing in the task-relevant regions. A null result may indicate that (1) 

individual differences in IAF have to be taken into account or (2) alpha-band dynamics may reflect more 

global processing (e.g., hemifield-specific as found by Spaak et al., 2014) than spatially local processing as 

in our experiment (Fig. 1A). 

A summary of the behavioral results is illustrated in Figure 4. Despite our novel experiment design 

with flickering stimuli and the circular arrangement of the flankers, we observed a typical behavioral 

pattern previously reported in the Eriksen flanker task (Wendt et al., 2007; Nigbur et al., 2012; Gulbinaite 

et al., 2014): Responses were  faster (F(1,78)  = 11.73, p = .002, η2 = .311) and more accurate (F(1,78) = 

31.14, p < .001, η2 = .545) on congruent as compared to incongruent trials. This congruency effect was 

observed across all four tagging conditions, as indicated by the non-significant congruency by tagging 

condition interaction, both for RTs (F(3,78) = 0.01, p = .999, η2 = .001), and error rates (F(3,78) = 0.43, p = 

.734, η2 = .016). The main effect of tagging condition was not significant for error rates (F(3,78) = 0.71, p 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 6, 2017. ; https://doi.org/10.1101/185132doi: bioRxiv preprint 

https://doi.org/10.1101/185132
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

19 
 

= .546, η2 = .027), but was significant for RTs (F(3,78) = 7.84, p < .001, η2 = .232). Follow-up Bonferroni-

corrected comparisons revealed that participants on average responded the slowest when flankers 

flickered at 15 Hz (10T15F condition), and response speed in the latter condition significantly differed 

from 10T/7.5F (p = .036) and 15T/10F condition (p < .001), but not from 7.5T/10F condition (p = .095).  

 

Figure 4. Behavioral performance. (A) Mean reaction time and (B) error rates on congruent vs. incongruent trials 
plotted as a function of condition. Gray barplots in each graph represent congruency effect (RT and error-rate 
difference between incongruent and congruent trials). Error bars denote standard error of the mean. 

We next tested whether 10 Hz in the target vs. flanker positions differentially affected behavioral 

performance. As predicted based on the inhibitory role of alpha oscillations (Jensen and Mazaheri, 2010), 

participants responded significantly faster when flankers flickered at alpha (10 Hz) compared to non-alpha 

flanker flicker frequencies (F(1,26) = 8.27, p = .008, η2 = .241). However, follow-up analyses based on 

separate two-way ANOVAs revealed that this result was driven by significant differences in RTs between 

15T/10F and 10T/15F conditions (F(1,26) = 40.40, p < .001, η2 = .608), whereas 7.5T/10F and 10T/7.5F 

conditions did not significantly differ (F(1,26) = 1.39, p = .249, η2 = .051).  

In conclusion, average RT and accuracy analyses revealed that the combination of tagging 

frequencies rather than 10 Hz flicker at the target or flanker position had an effect on behavioral 

performance.  Therefore, for the single-trial analyses we kept all four tagging conditions separate.  
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Conflict-related theta-band power 

Despite the presence of flicker, we observed a typical increase in theta-band power compared to the 

baseline period over the midfrontal electrodes (Fig. 5). In line with previous reports (Cohen and Cavanagh, 

2011; Nigbur et al., 2012), the topographical distribution of stimulus-locked theta power peaked around 

FCz and Cz electrodes (Fig. 5B left). The forward model of the theta component obtained using source 

separation showed a spatial peak at FCz (Fig. 5B right) and an overall similar pattern of trial-averaged time-

frequency dynamics (Fig. 5B). Theta power relative to the baseline period was increased more for 

incongruent than congruent trials (F(1,78) = 7.98, p = .009, η2 = .235), and this effect did not differ across 

tagging conditions (F(3,78) = 0.913, p = .439, η2 = .034). Theta power was most increased for 10T/15F, 

which was also the slowest RT condition. Post hoc Bonferroni-corrected comparisons revealed significant 

differences between 10T/7.5F and 10T/15F conditions (p = .004), as well as 10T/7.5F and 15T/10F 

conditions (p = .041). 
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Figure 5. Conflict-related theta-band power. (A) Condition-average changes in power relative to the baseline period 
(-500 – -200 ms) at electrodes FCz and Cz (top panel), and theta component derived using source separation (bottom 
panel; see Methods section for details). (B) Theta-band (3–7 Hz) power distribution over the scalp in the time-
frequency window indicated by the white square in panel A, and forward model of theta component.  (C) Condition-
specific changes in theta-band power (data taken from the theta component).  

10 Hz flicker effects on SSVEP amplitude: Trial-average analysis 

 Although RESS spatial filters were designed to maximize brain responses to stimuli at specific 

spatial location (target vs. flankers) and specific tagging frequency (7.5 Hz, 10 Hz, or 15 Hz), frequency 

spectra of RESS component time series reveal responses at multiple harmonics of the stimulus frequency 

(2f, 3f; see Figure 2B). This result is consistent with previous reports showing partially spatially-overlapping 

cortical foci of the fundamental and higher harmonic responses (Pastor et al., 2007; Ales et al., 2012; 

Heinrichs-Graham and Wilson, 2012). Due to our a-priori theoretical motivation to focus on alpha-band 

flicker (see Introduction section), and conflict-related modulation of alpha-band power in the Eriksen 

flanker task  (Fan et al., 2007; McDermott et al., 2017), we focused our analyses on the part of the SSVEP 

signal corresponding to the stimulus frequency (i.e. first harmonic, f) as opposed to higher harmonics (e.g. 

2f, 3f). Here we report SSVEPs for different tagging frequencies (7.5 Hz, 10 Hz, and 15 Hz) at target and 

flanker positions during 500 to 2600 ms (relative to the mask onset) period. Note that 7.5 Hz target and 

7.5 Hz flanker SSVEP results come from different blocks in the experiment.  

Based on numerous studies using flicker for tagging dynamics of attention over space and time, 

we expected to observe higher SSVEP amplitude for target vs. flanker stimuli. Moreover, overall 

differences in SSVEP amplitude across tagging frequencies were predicted based on previously reported 

non-linearities in SSVEP response to wide-range flicker frequencies, with enhanced amplitudes, or 

resonance, at ~10 Hz (Regan, 1989; Herrmann, 2001) and 15 Hz (Pastor et al., 2003).  

Consistent with the results of our previous study (Gulbinaite et al., 2014), SSVEP amplitude for 

attended stimulus (target) was on average higher than for ignored stimuli (flankers), as indicated by the 

main effect of stimulus type (F(1,26) = 6.20, p = .019, η2 = .193; Fig. 6). Significant stimulus type and flicker 
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frequency interactions revealed that this attentional modulation was present not for all flicker frequencies 

(F(3,78) = 15.23, p < .001, η2 = .369). A pair-wise t-test revealed that attentional modulation was significant 

for 10 Hz tagging frequency when it was paired with 7.5 Hz (p = .024) and 15 Hz tagging frequency (p < 

.001), and no significant attentional modulation for 7.5 Hz tagging frequency and 10 Hz tagging frequency 

paired with 15 Hz. There was also a main effect of flicker frequency (F(3,78) = 14.71 , p = .001, η2 = .361), 

such that SSVEP amplitude for 7.5 Hz flicker was significantly lower than for 10 and 15 Hz (p < .01).  

                                                  

Figure 6. Attentional modulation of SSVEPs.  Grand-average SSVEP amplitudes (determined from 500 to 2600 ms 
time window and expressed in SNR units) for each stimulus type (target and flankers) and each flicker frequency. The 
data plotted here is taken from the frequency spectra depicted in Figure 2, except that 10 Hz target flicker conditions 
are separated. Error bars denote standard error of the mean. * indicates p < .05, n.s. indicates p > .05.  

10 Hz flicker effects: Single-trial analysis  

To evaluate the effects of 10 Hz flicker on behavioral performance (reaction time) at the level of 

individual trials, we combined single-trial EEG measures (target and flanker SSVEPs, theta-band power) 

and experimental factors (IAF distance to 10 Hz, congruency, and condition) using linear mixed-effects 

models (LMEs). As noted in the Methods section, we used log-transformed single-trial RT as a dependent 

variable. Single-trial analyses were implemented into two steps. First, we derived a best-fitting mixed-
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effects regression model using an iterative model selection procedure. Second, we tested significance of 

fixed effects included in the best-fitting model. 

We started with the baseline model, which included trial congruency as a fixed-effect factor, and 

a random intercept term to account for subject-specific variability in the RT offset. Our second model 

additionally included a fixed effect of condition (coded as “1” for 10T/7.5F, “2” for 10T/15F, “3” for 

7.5T/10F, and “4” for 15T/10F), which significantly improved the model fit (decrease in AIC of 54.2; 2(3) 

= 60.23, p < .001). We then tested whether the effect of condition and/or congruency varied across 

participants by including random factors of congruency and condition. Inclusion of condition as an 

additional random effect further improved the model fit (decrease in AIC of 20.5; 2(9) = 38.43, p < .001). 

Further on, fixed and random effects of additional predictors were included only if they significantly 

improved model’s goodness of fit to the single-trial RT data. Table 1 summarizes fixed-effect factors that 

were gradually added to the model, and indicates each model’s goodness of fit in comparison to a simpler 

model (with respect to the fixed-effects structure). While results in Table 1 are based on a baseline 

random-effects structure (only a random intercept term), random slopes for each additional predictor 

were included whenever model comparison showed these to be necessary (full model selection procedure 

can be found in https://figshare.com/s/e6ad00be61a10bfe6a98).  

 

Table 1. Illustration of stepwise best-fitting statistical model selection procedure. The first row represents the 
baseline model which includes the fixed effect of congruency and a random intercept per subject. In each subsequent 
row, additional fixed-effects factors and their interactions (denoted with colon sign) are gradually included. Increase 
in log-likelihood and decrease in AIC indicates an increase in goodness of fit obtained by adding an additional 
predictor in comparison to the simpler model in the row above. Note that all models presented in this table had only 
a random effect of intercept. alphaABS = distance between 10 Hz and individual alpha peak frequency (IAF); Target-
SSVEP and Flankers-SSVEP = single-trial SSVEP amplitude in the post-stimulus time window (2000-2600 ms) for target 
and flanker stimuli respectively. 
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Specifications of the best-fitting model and statistics of the fixed-factors are reported in Figure 

7A. The model explained 30.31% of variance in single-trial RTs ((calculated using piecewiseSEM package; 

Lefcheck, 2016) (as recommended by Nakagawa and Schielzeth, 2013)). Residuals of our best-fitting model 

followed a normal distribution. In the model criticism procedure, removing 1.5% of the data (potential 

outliers) did not compromise the model fit. Regression weights, their associated p-values, and confidence 

intervals are visually represented in Figure 7A. In the text below, we highlight the effects that are most 

relevant for understanding the role of alpha-band flicker on task performance, and its dependence on IAF. 

The effect of condition corroborated the trial-average results. The regression weight for the 

10T/15F condition was significantly positive, meaning that RTs were slower in 10T/15F relative to 10T/7.5F 

condition (  = 0.02, (SE) = 0.008, t = 2.39, p = 0.026). The regression weight for 15T/10F condition was 

significantly negative, indicating faster RTs in 15T/10F vs. 10T/7.5F condition (  = -0.025, (SE) = 0.008, t = 

-3.19, p = .004). Note that 10T/7.5F condition served as a reference condition.  

The strongest predictor for log-RT was the absolute difference between 10 Hz flicker and 

individual alpha peak frequency: The closer a participant’s IAF to the stimulation frequency of 10 Hz, the 

slower the participant responded. This effect was stronger for incongruent than for congruent trials, as 

indicated by the interaction with congruency (regression weight for incongruent trials alphaABS + 

alphaABS:congruency  = -0.08 + 0*0.01, for congruent trials alphaABS + alphaABS:congruency  = -0.08 + 1*0.01). Figure 

7B illustrates the relationship between RT (expressed in milliseconds rather than log-transformed units 

for interpretation clarity) and IAF distance to 10 Hz, and illustrates that the congruency effect was larger 

for participants that had their IAF close to 10 Hz. To ensure that this effect was due to IAF distance to 10 

Hz, rather than to IAF per se, we compared the best-fitting model to the model with IAF as a fixed factor. 

Goodness of fit significantly decreased (i.e. an increase in AIC of 8.2), indicating that behavioral effects of 

alpha flicker depended on the match between individual’s occipital alpha and flicker frequency. 
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Figure 7. Single-trial analysis results. (A) Graphical representation of the best-fitting statistical model (fixed effects 
only), where: congruencyCONGRUENT indicates comparison between congruent and incongruent trials; 
congruencyCONGRUENT : alphaABS indicates differences in the effect of alphaABS on incongruent vs. congruent trials; 
condition10T/15F indicates comparison between conditions 10T/7.5F and 10T/15F; condition7.5T/10F indicates 
comparison between conditions 10T/7.5F and 7.5T/10F; condition15T/10F indicates comparison between conditions 
10T/7.5F and 15T/10F. Error bars indicated 95% confidence intervals. Numbers denote fixed effects coefficients. 
Statistical significance of fixed effects coefficients is marked with asterisk symbols, where * is p < .05, ** is p < .01, 
*** is p < .001, and non-significant coefficients are marked with empty circles. (B) Graphical summary of fixed effects 
marked with a green rectangle in panel A, which illustrates that closer match between IAF and 10 Hz flicker resulted 
in overall slower RTs, and that this effect was stronger for incongruent trials (steeper regression line slope). Shaded 
areas represent 95% confidence intervals around the slope of regression line. Note that for LME modeling log-
transformed RTs were used, however here mean RTs are left in original units for interpretation clarity. 

We next inspected whether the response to flicker (i.e., SSVEP amplitudes) was associated with 

task performance. We found that larger single-trial SSVEP amplitudes were generally predictive of slower 

RTs. However, the effects of alpha flicker were not specific to 10 Hz flanker or 10 Hz target conditions. 

Flicker rate for target vs. flankers, on the other hand, showed a pattern: In conditions with faster target 

vs. flanker stimulus tagging frequency (i.e. 10T/7.5F Hz and 15T/10F Hz), reaction time was significantly 

slower when both target and flanker SSVEP amplitude was higher (significantly positive fixed effects 

coefficients for Target-SSVEP:cond10T/7.5F, Target-SSVEP:cond15T/10F, Flankers-SSVEP:cond10T/7.5F, Flankers-

SSVEP:cond15T/10F). Trials with more frontal theta power were also associated with slower RTs (  = 0.02, 
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(SE) = 0.006, t = 3.25, p = .004), replicating previous results (e.g., Gulbinaite et al., 2014; Cohen & 

Cavanagh, 2011). 

Modulations of alpha-band power have been suggested to support both proactive (anticipatory) 

and reactive (stimulus-related) attentional processes (Foxe and Snyder, 2011; van Diepen et al., 2016). 

Our experimental design allowed us to test the effect of alpha-band flicker on proactive and reactive 

attention by predicting RTs based on SSVEP amplitudes only during the mask period (anticipatory 

attention allocation to the central hash mark), or on SSVEP amplitudes only during the stimulus 

presentation. We therefore constructed a model that included SSVEP amplitude prior to the imperative 

stimulus (i.e. 1400-2000 ms window, where 2000 ms is the onset of the stimulus). The time window for 

pre-stimulus and post-stimulus SSVEP amplitude calculation was matched in length to make sure that any 

observed effects are not driven by SNR differences due to the FFT window size. Model comparison 

revealed that the model including post-stimulus (2000-2600 ms time window) SSVEP amplitudes was 

superior to the model including pre-stimulus (1400-2000) SSVEP amplitudes (decrease in AIC of 117.8). 

This result indicates that 10 Hz flicker interfered more with reactive than proactive selective attention.  

Our finding of alpha-band-specific effects of flicker on behavior, which were maximal close to the 

natural frequency of endogenous alpha, is consistent with the idea that SSVEPs reflect entrainment of 

endogenous oscillations rather than a linear summation of transient event-related potentials (ERPs) 

generated to each stimulus flash (Capilla et al., 2011; Notbohm et al., 2016). Although the relationship 

between SSVEPs and ERPs is an active area of research (for a comprehensive discussion, see Norcia et al., 

2015) beyond the scope of present paper, we note that our findings satisfy the main “Criteria for direct 

entrainment of brain oscillations through a periodic external drive” listed in the review paper by Thut et 

al. (2011).  
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DISCUSSION 

Behavioral effects of rhythmic visual stimulation are frequency-specific 

Although rhythmic visual stimulation (“flicker”) is primarily used to “tag” processing of low-level visual 

and high-level cognitive phenomena (for a review, see Norcia et al., 2015), there is some evidence that 

flicker may also entrain endogenous rhythms (Spaak et al., 2014), and thus can modulate cognitive 

processes supported by these rhythms (Williams, 2001; de Graaf et al., 2013). The goal of the present 

study was to provide empirical evidence for this idea by testing the effects of alpha-band flicker on 

processing of relevant and irrelevant information in a selective attention task. In contrast to the previous 

studies that assessed perceptual and cognitive effects of flicker following alpha flicker offset (“offline” 

effects), we tested alpha flicker effects during stimulus processing (“online” effects). 

Based on in vivo and in vitro studies, the prerequisite for influencing the brain’s rhythmic activity 

through rhythmic stimulation is a frequency match between the two (Reato et al., 2013). Frequencies that 

do not match the endogenous rhythm can still entrain endogenous oscillations provided the intensity of 

stimulation is sufficiently high (Reato et al., 2013; Notbohm et al., 2016). So far, studies attempting to 

modulate alpha oscillations via rhythmic visual stimulation did not incorporate IAF, nor did they consider 

that the task-related IAF may differ from the resting-state IAF (Haegens et al., 2014). We hypothesized 

that 10 Hz flicker effects on performance in the selective attention task will be maximal when the 

frequency of the applied rhythm matches that of the task-related alpha-band oscillations.  

We used the Eriksen flanker task (Gulbinaite et al., 2014), with target and flankers flickering within 

(10 Hz) or outside the alpha band (7.5 Hz and 15 Hz). The flicker frequencies outside the classical alpha-

band range (8-12 Hz) are necessary to demonstrate that flicker effects are specific to the alpha band, 

which was rarely done previously (but see de Graaf et al., 2013). We found that the closer the match 

between occipital IAF (estimated from the inter-trial interval data) and 10 Hz flicker, the slower a given 

participant reacted and the larger was the flanker interference effect (RT difference between incongruent 
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and congruent trials). In the context of previous reports on stronger decrease of alpha-band power on 

incongruent relative to congruent trials (Fan et al., 2007; McDermott et al., 2017), the present finding of 

differential effects of 10 Hz flicker on incongruent vs. congruent trials points to an interesting possibility: 

10 Hz flicker effects on endogenous alpha-band networks supporting selective attention are stronger 

when the network is itself more active. However, further research, elucidating on the precise mechanism 

of this interaction, is needed. 

Behavioral effects of rhythmic stimulation on perception and attention that are specific to the 

alpha band have rarely been investigated (de Graaf et al., 2013; Shapiro et al., 2017). However, close 

inspection of several studies that employed a range of flicker frequencies suggests that alpha flicker is a 

special case. In a lateralized spatial attention task using tagging frequencies that ranged from 8 to 23 Hz, 

Toffanin and colleagues found that performance accuracy was significantly decreased when the stimulus 

background flickered at 9.5 Hz as compared to the other flicker frequencies (Toffanin et al., 2009). In 

another selective attention task, target detection accuracy was numerically smaller for flicker frequencies 

~10 Hz (Ding et al., 2006). The attentional blink phenomenon is most pronounced when the stimulus 

stream is in the alpha and low beta frequency range (Shapiro et al., 2017). Together, these findings suggest 

that even on a group-level, alpha flicker effects on performance can be observed. However, this effect, as 

we have shown here, may be difficult to uncover if the relationship between exogenous rhythm (flicker) 

and endogenous rhythms (neural oscillations) is not taken into consideration.  

Global vs. local effects of 10-Hz flicker  

Based on the well-established inhibitory role of alpha oscillations (Rihs et al., 2007; Jensen and Mazaheri, 

2010; Klimesch, 2012; Samaha et al., 2016), and evidence for hemifield-specific entrainment of alpha-

band oscillations using 10 Hz flicker (Spaak et al., 2014), we hypothesized that stimulus processing in the 

Eriksen flanker task will be impaired in parts of the visual field flickering in alpha (i.e. 10 Hz). However, the 

single-trial analyses combining behavioral and EEG data revealed that flicker entrainment effects were 
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not specific to target or flanker positions. Although participants responded significantly faster when 

flankers flickered at alpha vs. non-alpha frequencies, this RT advantage was present only for 15T/10F as 

compared to 10T/15F condition (replicating the results of our previous study where we used 10 Hz and 

12.5 Hz tagging frequencies; Gulbinaite et al., 2014), but not for 10T/7.5F Hz vs. 7.5T/10F.  

There are two non-mutually exclusive potential explanations for the finding of global rather than 

local alpha-flicker effects. First, a neural explanation that takes into account the effects of flicker at the 

network level (Ding et al., 2006; Srinivasan et al., 2006; Srinivasan et al., 2007; Lithari et al., 2016); second, 

a cognitive explanation that takes into account the structure of the task. 

Although low-level flickering visual stimuli (e.g. checkerboards and gratings) primarily entrain 

activity in visual cortex (Muller et al., 1997; Di Russo et al., 2007; Cottereau et al., 2011), it has been shown 

that flicker can also modulate activity in larger networks that extend beyond early visual cortex (Ding et 

al., 2006; Srinivasan et al., 2006; Srinivasan et al., 2007). For example, SSVEP amplitude in frontal areas is 

increased for theta-band (4-8 Hz; Mentis et al., 1997; Srinivasan et al., 2007) and beta-band flicker (~25 

Hz; Pastor et al., 2003; Pastor et al., 2007). Source-estimation studies of SSVEPs also revealed distributed 

sources over occipital, parietal, and frontal areas associated with different flicker frequencies (Muller et 

al., 1997; Pastor et al., 2003; Srinivasan et al., 2006; Di Russo et al., 2007; Pastor et al., 2007; Kim et al., 

2011; Heinrichs-Graham and Wilson, 2012). Thus, one explanation for the global alpha-flicker effects 

observed in our task is that alpha-band flicker may have interfered not only with selective attention, but 

with the functioning of multiple networks operating in alpha band (Sadaghiani and Kleinschmidt, 2016). 

Indeed, it is possible that the reason why the 10 Hz flicker effects were not spatially-specific is that the 

flicker, though retinotopically restricted, entrained large-scale alpha brain networks that spread to other 

retinotopic positions. Having the alpha flicker only in one hemifield may minimize this large-scale 

entrainment, which could explain why Spaak et al. (2014) observed flicker effects that were spatially-

specific (at the level of visual hemifields). 
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In the Eriksen flanker task, spatial attention is proactively directed to the centrally presented 

target stimulus, whereas flankers draw attention due to target-flanker feature similarity. This instantiates 

reactive attentional control – engagement of both spatial and feature-based attention to minimize the 

influence of incongruent flankers. Importantly, although both spatial and feature-based attention are 

supported by alpha oscillations (van Diepen et al., 2016; Vissers et al., 2016), feature-based attention 

operates in a spatially non-specific manner (Serences and Boynton, 2007; Andersen et al., 2008). Thus, it 

is conceivable that the global effects of alpha flicker we observed here reflect interference with feature-

based attention. This line of reasoning is further supported by our finding that trial-by-trial RTs were more 

strongly predicted by EEG flicker responses during stimulus processing (feature-based and spatial 

attention) than during stimulus anticipation. Hash marks served as placeholders which allow to filter out 

flanker locations and to prepare for the upcoming stimulus using spatial attention, but feature-based 

attention could not be efficiently engaged before the onset of the target and flanker letters. 

Multilevel analyses for uncovering brain-behavior relationship within and across individuals 

Here we used a combination of two analysis approaches that allowed us to uncover theoretically relevant 

patterns of results that might otherwise be inaccessible when using only subject- and trial-average 

approaches. The first was multivariate source separation, which we used to define an optimal spatial filter 

to maximize the EEG response to flicker (Cohen and Gulbinaite, 2017), and to define a spatial filter that 

maximized theta-band activity (Cohen, 2017a). Such spatial filters provide components that, relative to 

selecting a single electrode, increase single-trial signal-to-noise ratio and more accurately reconstruct 

source time courses. 

The second analysis approach was linear mixed effect models (Baayen et al., 2008), which allowed 

us to apply a formal model comparison approach to a dataset with multiple levels of variance, including 

cross-subject factors such as IAF, and within-subject factors such as single-trial SSVEP amplitude and theta 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 6, 2017. ; https://doi.org/10.1101/185132doi: bioRxiv preprint 

https://doi.org/10.1101/185132
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

31 
 

power. We believe that the combination of EEG source separation and mixed-effects modeling provides 

a promising approach to uncover nuanced relationships between brain activity and behavior. 

Conclusions 

Despite the long history of rhythmic visual stimulation in human electrophysiology research (Berger, 1929; 

Adrian and Matthews, 1934), the question of whether flicker can directly modulate perceptual and 

cognitive processes via entrainment of endogenous brain rhythms remains unresolved. By using a 

selective attention task, we show that whether and how external rhythmic stimulation affects brain 

function depends on the interaction between endogenous brain rhythms and externally-driven 

oscillations. The results of this study also demonstrate the importance of choosing the appropriate tagging 

frequency based on the inherent speed of the cognitive process of interest.  

REFERENCES 

Adrian ED, Matthews BHC (1934) The Berger rhythm: Potential changes from occipital lobes in man. Brain 
57:355-385. 

Akaike H (1974) A new look at the statistical model identification. IEEE transactions on automatic control 
19. 

Ales JM, Farzin F, Rossion B, Norcia AM (2012) An objective method for measuring face detection 
thresholds using the sweep steady-state visual evoked response. J Vis 12. 

Alonso-Prieto E, Belle GV, Liu-Shuang J, Norcia AM, Rossion B (2013) The 6 Hz fundamental stimulation 
frequency rate for individual face discrimination in the right occipito-temporal cortex. 
Neuropsychologia 51:2863-2875. 

Andersen SK, Hillyard SA, Muller MM (2008) Attention facilitates multiple stimulus features in parallel in 
human visual cortex. Curr Biol 18:1006-1009. 

Andersen SK, Fuchs S, Muller MM (2011) Effects of feature-selective and spatial attention at different 
stages of visual processing. J Cogn Neurosci 23:238-246. 

Appelbaum LG, Smith DV, Boehler CN, Chen WD, Woldorff MG (2011) Rapid modulation of sensory 
processing induced by stimulus conflict. J Cogn Neurosci 23:2620-2628. 

Baayen RH, Davidson DJ, Bates DM (2008) Mixed-effects modeling with crossed random effects for 
subjects and items. Journal of Memory and Language 59:390-412. 

Bates D, Mächler M, Bolker B, Walker S (2015) Fitting Linear Mixed-Effects Models Using lme4. 2015 67:48. 
Bazanova OM, Vernon D (2014) Interpreting EEG alpha activity. Neurosci Biobehav Rev 44:94-110. 
Breska A, Deouell LY (2014) Automatic bias of temporal expectations following temporally regular input 

independently of high-level temporal expectation. J Cogn Neurosci 26:1555-1571. 
Capilla A, Pazo-Alvarez P, Darriba A, Campo P, Gross J (2011) Steady-state visual evoked potentials can be 

explained by temporal superposition of transient event-related responses. PLoS One 6:e14543. 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 6, 2017. ; https://doi.org/10.1101/185132doi: bioRxiv preprint 

https://doi.org/10.1101/185132
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

32 
 

Cavanagh JF, Frank MJ (2014) Frontal theta as a mechanism for cognitive control. Trends Cogn Sci 18:414-
421. 

Chaumon M, Bishop DV, Busch NA (2015) A practical guide to the selection of independent components 
of the electroencephalogram for artifact correction. J Neurosci Methods 250:47-63. 

Cohen MX (2014) A neural microcircuit for cognitive conflict detection and signaling. Trends Neurosci 
37:480-490. 

Cohen MX (2017a) Comparison of linear spatial filters for identifying oscillatory activity in multichannel 
data. J Neurosci Methods 278:1-12. 

Cohen MX (2017b) MATLAB for Brain and Cognitive Scientists Cambridge, Massachusetts: MIT Press. 
Cohen MX, Cavanagh JF (2011) Single-trial regression elucidates the role of prefrontal theta oscillations in 

response conflict. Front Psychol 2:30. 
Cohen MX, Gulbinaite R (2017) Rhythmic entrainment source separation: Optimizing analyses of neural 

responses to rhythmic sensory stimulation. Neuroimage 147:43-56. 
Cottereau B, Lorenceau J, Gramfort A, Clerc M, Thirion B, Baillet S (2011) Phase delays within visual cortex 

shape the response to steady-state visual stimulation. Neuroimage 54:1919-1929. 
de Cheveigne A, Arzounian D (2015) Scanning for oscillations. J Neural Eng 12:066020. 
de Graaf TA, Gross J, Paterson G, Rusch T, Sack AT, Thut G (2013) Alpha-band rhythms in visual task 

performance: phase-locking by rhythmic sensory stimulation. PloS one 8:e60035. 
Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics 

including independent component analysis. J Neurosci Methods 134:9-21. 
Di Russo F, Pitzalis S, Aprile T, Spitoni G, Patria F, Stella A, Spinelli D, Hillyard SA (2007) Spatiotemporal 

analysis of the cortical sources of the steady-state visual evoked potential. Hum Brain Mapp 
28:323-334. 

Ding J, Sperling G, Srinivasan R (2006) Attentional modulation of SSVEP power depends on the network 
tagged by the flicker frequency. Cereb cortex 16:1016-1029. 

Fan J, Byrne J, Worden MS, Guise KG, McCandliss BD, Fossella J, Posner MI (2007) The relation of brain 
oscillations to attentional networks. J Neurosci 27:6197-6206. 

Foxe JJ, Snyder AC (2011) The Role of Alpha-Band Brain Oscillations as a Sensory Suppression Mechanism 
during Selective Attention. Front Psychol 2:154. 

Frey JN, Ruhnau P, Weisz N (2015) Not so different after all: The same oscillatory processes support 
different types of attention. Brain Res 1626:183-197. 

Gulbinaite R, Ilhan B, VanRullen R (2017) The triple-flash illusion reveals a driving role of alpha-band 
reverberations in visual perception. J Neurosci. 

Gulbinaite R, Johnson A, de Jong R, Morey CC, van Rijn H (2014) Dissociable mechanisms underlying 
individual differences in visual working memory capacity. NeuroImage 99:197-206. 

Haegens S, Cousijn H, Wallis G, Harrison PJ, Nobre AC (2014) Inter- and intra-individual variability in alpha 
peak frequency. NeuroImage 92:46-55. 

Handel BF, Haarmeier T, Jensen O (2011) Alpha oscillations correlate with the successful inhibition of 
unattended stimuli. J Cogn Neurosci 23:2494-2502. 

Heinrichs-Graham E, Wilson TW (2012) Presence of strong harmonics during visual entrainment: a 
magnetoencephalography study. Biol Psychol 91:59-64. 

Herrmann CS (2001) Human EEG responses to 1-100 Hz flicker: resonance phenomena in visual cortex and 
their potential correlation to cognitive phenomena. Exp Brain Res 137:346-353. 

Jensen O, Mazaheri A (2010) Shaping functional architecture by oscillatory alpha activity: gating by 
inhibition. Front Hum Neurosci 4:186. 

Keitel C, Quigley C, Ruhnau P (2014) Stimulus-driven brain oscillations in the alpha range: entrainment of 
intrinsic rhythms or frequency-following response? The Journal of neuroscience : the official 
journal of the Society for Neuroscience 34:10137-10140. 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 6, 2017. ; https://doi.org/10.1101/185132doi: bioRxiv preprint 

https://doi.org/10.1101/185132
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

33 
 

Keitel C, Thut G, Gross J (2017) Visual cortex responses reflect temporal structure of continuous quasi-
rhythmic sensory stimulation. Neuroimage 146:58-70. 

Kim YJ, Grabowecky M, Paller KA, Suzuki S (2011) Differential roles of frequency-following and frequency-
doubling visual responses revealed by evoked neural harmonics. J Cogn Neurosci 23:1875-1886. 

Kizuk SA, Mathewson KE (2017) Power and Phase of Alpha Oscillations Reveal an Interaction between 
Spatial and Temporal Visual Attention. J Cogn Neurosci 29:480-494. 

Klimesch W (2012) alpha-band oscillations, attention, and controlled access to stored information. Trends 
Cogn Sci 16:606-617. 

Labecki M, Kus R, Brzozowska A, Stacewicz T, Bhattacharya BS, Suffczynski P (2016) Nonlinear Origin of 
SSVEP Spectra-A Combined Experimental and Modeling Study. Front Comput Neurosci 10:129. 

Lefcheck JS (2016) piecewiseSEM: Piecewise structural equation modelling in r for ecology, evolution, and 
systematics. Methods in Ecology and Evolution 7:573-579. 

Lithari C, Sanchez-Garcia C, Ruhnau P, Weisz N (2016) Large-scale network-level processes during 
entrainment. Brain Res 1635:143-152. 

Lüdecke D (2017) Data Visualization for Statistics in Social Science. https://CRAN.R-
project.org/package=sjPlot. In. 

Mathewson KE, Prudhomme C, Fabiani M, Beck DM, Lleras A, Gratton G (2012) Making waves in the 
stream of consciousness: entraining oscillations in EEG alpha and fluctuations in visual awareness 
with rhythmic visual stimulation. J Cogn Neurosci 24:2321-2333. 

Mayr U, Awh E, Laurey P (2003) Conflict adaptation effects in the absence of executive control. Nat 
Neurosci 6:450-452. 

McDermott TJ, Wiesman AI, Proskovec AL, Heinrichs-Graham E, Wilson TW (2017) Spatiotemporal 
oscillatory dynamics of visual selective attention during a flanker task. Neuroimage 156:277-285. 

Mentis MJ, Alexander GE, Grady CL, Horwitz B, Krasuski J, Pietrini P, Strassburger T, Hampel H, Schapiro 
MB, Rapoport SI (1997) Frequency variation of a pattern-flash visual stimulus during PET 
differentially activates brain from striate through frontal cortex. NeuroImage 5:116-128. 

Morgan ST, Hansen JC, Hillyard SA (1996) Selective attention to stimulus location modulates the steady-
state visual evoked potential. Proc Natl Acad Sci USA 93:4770-4774. 

Muller MM, Teder W, Hillyard SA (1997) Magnetoencephalographic recording of steady-state visual 
evoked cortical activity. Brain Topogr 9:163-168. 

Nakagawa S, Schielzeth H (2013) A general and simple method for obtaining R2 from generalized linear 
mixed-effects models. Methods in Ecology and Evolution 4:133-142. 

Nigbur R, Cohen MX, Ridderinkhof KR, Sturmer B (2012) Theta dynamics reveal domain-specific control 
over stimulus and response conflict. J Cogn Neurosci 24:1264-1274. 

Norcia AM, Appelbaum LG, Ales JM, Cottereau BR, Rossion B (2015) The steady-state visual evoked 
potential in vision research: A review. J Vis 15:1-46. 

Notbohm A, Kurths J, Herrmann CS (2016) Modification of Brain Oscillations via Rhythmic Light Stimulation 
Provides Evidence for Entrainment but Not for Superposition of Event-Related Responses. Front 
Hum Neurosci 10:10. 

Oostenveld R, Oostendorp TF (2002) Validating the boundary element method for forward and inverse 
EEG computations in the presence of a hole in the skull. Hum Brain Mapp 17:179-192. 

Pastor MA, Artieda J, Arbizu J, Valencia M, Masdeu JC (2003) Human cerebral activation during steady-
state visual-evoked responses. J Neurosci 23:11621-11627. 

Pastor MA, Valencia M, Artieda J, Alegre M, Masdeu JC (2007) Topography of cortical activation differs for 
fundamental and harmonic frequencies of the steady-state visual-evoked responses. An EEG and 
PET H215O study. Cereb cortex 17:1899-1905. 

Pelli DG, Robson JG, Wilkins AJ (1988) The design of a new letter chart for measuring contrast sensitivity. 
Clinical Vision Science 2:187–199. 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 6, 2017. ; https://doi.org/10.1101/185132doi: bioRxiv preprint 

https://cran.r-project.org/package=sjPlot
https://cran.r-project.org/package=sjPlot
https://doi.org/10.1101/185132
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

34 
 

Reato D, Rahman A, Bikson M, Parra LC (2013) Effects of weak transcranial alternating current stimulation 
on brain activity-a review of known mechanisms from animal studies. Front Hum Neurosci 7:687. 

Regan D (1966) Some characteristics of average steady-state and transient responses evoked by 
modulated light. Electroencephalogr Clin Neurophysiol 20:238-248. 

Regan D (1989) Human Brain Electrophysiology: Evoked Potentials and Evoked Magnetic Fields in Science 
and Medicine. New York: Elsevier. 

Regan D, Heron JR (1969) Clinical investigation of lesions of the visual pathway: a new objective technique. 
J Neurol Neurosurg Psychiatry 32:479-483. 

Rihs TA, Michel CM, Thut G (2007) Mechanisms of selective inhibition in visual spatial attention are 
indexed by alpha-band EEG synchronization. Eur J Neurosci 25:603-610. 

Rohenkohl G, Nobre AC (2011) alpha oscillations related to anticipatory attention follow temporal 
expectations. J Neurosci 31:14076-14084. 

Sadaghiani S, Kleinschmidt A (2016) Brain Networks and alpha-Oscillations: Structural and Functional 
Foundations of Cognitive Control. Trends Cogn Sci 20:805-817. 

Samaha J, Sprague TC, Postle BR (2016) Decoding and Reconstructing the Focus of Spatial Attention from 
the Topography of Alpha-band Oscillations. J Cogn Neurosci 28:1090-1097. 

Schira MM, Wade AR, Tyler CW (2007) Two-dimensional mapping of the central and parafoveal visual field 
to human visual cortex. J Neurophysiol 97:4284-4295. 

Serences JT, Boynton GM (2007) Feature-based attentional modulations in the absence of direct visual 
stimulation. Neuron 55:301-312. 

Shapiro KL, Hanslmayr S, Enns JT, Lleras A (2017) Alpha, beta: The rhythm of the attentional blink. Psychon 
Bull Rev. 

Spaak E, de Lange FP, Jensen O (2014) Local entrainment of alpha oscillations by visual stimuli causes cyclic 
modulation of perception. J Neurosci 34:3536-3544. 

Srinivasan R, Bibi FA, Nunez PL (2006) Steady-state visual evoked potentials: distributed local sources and 
wave-like dynamics are sensitive to flicker frequency. Brain Topogr 18:167-187. 

Srinivasan R, Fornari E, Knyazeva MG, Meuli R, Maeder P (2007) fMRI responses in medial frontal cortex 
that depend on the temporal frequency of visual input. Exp Brain Res 180:677-691. 

Thut G, Schyns PG, Gross J (2011) Entrainment of perceptually relevant brain oscillations by non-invasive 
rhythmic stimulation of the human brain. Front Psychol 2:170. 

Toffanin P, de Jong R, Johnson A, Martens S (2009) Using frequency tagging to quantify attentional 
deployment in a visual divided attention task. Int J Psychophysiol 72:289-298. 

Tononi G, Srinivasan R, Russell DP, Edelman GM (1998) Investigating neural correlates of conscious 
perception by frequency-tagged neuromagnetic responses. Proc Natl Acad Sci U S A 95:3198-
3203. 

van Diepen RM, Miller LM, Mazaheri A, Geng JJ (2016) The Role of Alpha Activity in Spatial and Feature-
Based Attention. eNeuro 3. 

Vanegas MI, Blangero A, Kelly SP (2013) Exploiting individual primary visual cortex geometry to boost 
steady state visual evoked potentials. J Neural Eng 10:036003. 

Vissers ME, van Driel J, Slagter HA (2016) Proactive, but Not Reactive, Distractor Filtering Relies on Local 
Modulation of Alpha Oscillatory Activity. J Cogn Neurosci 28:1964-1979. 

Wendt M, Heldmann M, Munte TF, Kluwe RH (2007) Disentangling sequential effects of stimulus- and 
response-related conflict and stimulus-response repetition using brain potentials. J Cogn Neurosci 
19:1104-1112. 

Williams JH (2001) Frequency-specific effects of flicker on recognition memory. Neuroscience 104:283-
286. 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 6, 2017. ; https://doi.org/10.1101/185132doi: bioRxiv preprint 

https://doi.org/10.1101/185132
http://creativecommons.org/licenses/by-nc-nd/4.0/

