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Abstract 

Pleiotropic effects occur when a single genetic variant independently influences multiple 

phenotypes. In genetic epidemiological studies, multiple endo-phenotypes or correlated 

traits are commonly tested separately in a univariate statistical framework to identify 

associations with genetic determinants. Subsequently, a simple look-up of overlapping 

univariate results is applied to identify pleiotropic genetic effects. However, this strategy 

offers limited power to detect pleiotropy. In contrast, combining correlated traits into a 

composite test provides a powerful approach for detecting pleiotropic genes. Here, we 

propose a two-stage approach to identify potential pleiotropic effects by utilizing 

aggregated results from large-scale genome-wide association (GWAS) meta-analyses. 

In the first stage, we developed two novel approaches (direct linear combining, dLC; 

and empirical combining, eLC) combining correlated univariate test statistics to screen 

potential pleiotropic variants on a genome-wide scale, using either individual-level or 

aggregated data. Our simulations indicated that dLC and eLC outperform other popular 

multivariate approaches (such as principal component analysis (PCA), multivariate 

analysis of variance (MANOVA), canonical correlation (CCA), generalized estimation 

equations (GEE), linear mixed effects models (LME) and O’Brien combining approach). 

In particular, eLC provides a notable increase in power when the genetic variant exhibits 

both protective and deleterious effects. In the second stage, we developed a unique 

approach, conditional pleiotropy testing (cPLT), to examine pleiotropic effects using 

individual-level data for candidate variants identified in Stage 1. Simulation 

demonstrated reduced type 1 error for cPLT in identifying pleiotropic genetic variants 

compared to the typical conditional strategy. We validated our two-stage approach by 

performing a bivariate GWA study on two correlated quantitative traits, high-density 

lipoprotein (HDL) and triglycerides (TG), in the Genetic Analysis Workshop 16 (GAW16) 

simulation dataset. In summary, the proposed two-stage approach allows us to leverage 

aggregated summary statistics from univariate GWAS and improves the power to 

identify potential pleiotropy while maintaining valid false-positive rates. 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 5, 2017. ; https://doi.org/10.1101/184895doi: bioRxiv preprint 

https://doi.org/10.1101/184895
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Author Summary 

Pleiotropy, occurring when a single genetic variant contributes to multiple phenotypes, 

remains difficult to identify in genome-wide association studies (GWAS). To leverage 

data for multiple phenotypes and incorporate univariate GWAS summary results, we 

propose a novel two-stage approach for discovering potential pleiotropic variants. In the 

first stage, two novel combining approaches were developed to screen potential 

pleiotropic variants on a genome-wide scale. Simulations demonstrated the superior 

statistical power of these approaches over other multivariate methods. In the second 

stage, our approach was used to identify potential pleiotropy in the candidate marker 

sets generated from the first stage. The proposed two-stage approach was applied to 

the GAW16 simulation dataset to discover pleiotropic variants associated with high-

density lipoprotein and triglycerides. In summary, we demonstrate that the proposed 

two-stage approach can be applied as a viable and robust strategy to accommodate 

phenotypic and genetic heterogeneity for discovering potential pleiotropy on genome-

wide scale.  
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Introduction 

Genome-wide association studies (GWAS) have been successfully identified genetic 

determinants underlying complex human diseases [1]. Conventionally, univariate 

analytic approaches were used to study associations between numerous genetic 

variants and a single phenotype, one at a time, although multiple correlated phenotypes 

were often available for joint examination [2-5]. Pleiotropic effects, in which genetic 

variants influence more than one phenotype or disease, have been widely observed in 

recent GWAS findings [6]. For example, a genetic variant in the glucokinase regulator 

gene (GKCR) is associated with increased concentrations of plasma triglycerides but 

reduced fasting glucose levels [7]. Other notable findings include two single-nucleotide 

polymorphisms (SNPs) in intron 1 of SRY-box 6 (SOX6) that are associated with both 

body-mass index (BMI) and hip bone mineral density (BMD) in adult Caucasians [8], 

and a region on chromosome 8q24 associated with prostate, breast, and colorectal 

cancers and Crohn’s disease in different populations [9-12].   

Multivariate methods by analyzing correlated traits jointly provide statistical advantages 

in increasing power and accuracy of parameter estimation in linkage studies [13-16]. 

When individual-level data are available, a few multivariate methods have been 

developed to jointly analyze correlated traits on a genome-wide scale [14,17-21]. These 

classic multivariate methods include principle component analysis (PCA) [22], 

multivariate analysis of variance (MANOVA), generalized estimation equations (GEE) 

[23-26], and linear mixed effect models (LME) [24]. Additionally, extended GEE has 

been incorporated in family-based tests (FBAT) [20] for analyzing correlated subjects. 

With the increasing abundance of GWAS data, meta-analyses have become popular for 

pooling results from multiple cohorts to increase the sample size and power of 

identifying genetic determinants that underlie the etiology of complex disease [27]. 

However, most multivariate methods described above require access to individual-level 

data, limiting their use in large-scale GWAS meta-analyses with only available summary 

statistics [28-30] and suggesting alternative statistical approaches are needed to  

improve the detection of potential pleiotropic effects.  
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In contrast to the classical multivariate methods, approaches to directly combine test 

statistics by integrating summary statistics from multiple univariate meta-analyses into a 

global test, may overcome the limitations of classical multivariate methods. Fisher first 

proposed the combined probability test, which combines results from several 

independent tests of the same overall hypothesis (H0) [31]. However, Fisher’s exact test 

method likely introduces inflated type-1 error rates when tests are dependent [32]. 

O’Brien and Wei separately proposed better approaches [33-36] to combine test 

statistics from correlated traits. Although demonstrating greater power when individual 

test statistics are homogeneous, their methods usually do not achieve desired power 

when the effect directions are different [37]. Yang et al. [37] extended O’Brien’s 

approach by using sample splitting and cross-validation methods to gain power when 

heterogeneous genetic variants exist. However, individual-level data are required to 

estimate the optimal weight in this approach and only a subset of study samples is used 

in inferring the final test statistics, limiting the applications of Yang’s method. Another 

approach, named “TATES”, was recently proposed to combine p-values from univariate 

GWAS while correcting the observed phenotypic correlations [38]. This approach was 

not explicitly examined for traits that are negatively correlated. Province et al. [39] also 

provide a powerful tool to conduct multivariate analyses on correlated phenotypes with 

estimated weighting by tetrachoric correlations; however, it remains unclear whether 

their method achieves better power than others, especially when mixed genetic effect 

directions exists. 

Notably, significant findings from multivariate analyses do not always indicate pleiotropic 

effects. Such findings could be likely introduced by correlations between two correlated 

phenotypes, rather than by independent effects of a genetic variant [40]. Several 

methods have been proposed to differentiate between causal genetic effects and the 

secondary associations caused by correlations between phenotypes [40,41]. However, 

few methods have been studied and applied in the context of pleiotropy testing.  

To overcome these limitations, we propose a two-stage approach (Figure 1). In the 

first-stage (genome-wide screening), two methods, direct linear combining approach 

(dLC) and empirical linear combining approach (eLC), using aggregated results from 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 5, 2017. ; https://doi.org/10.1101/184895doi: bioRxiv preprint 

https://doi.org/10.1101/184895
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

meta-analysis were developed. In the second-stage, pleiotropy was identified in 

markers selected from the first stage using the conditional pleiotropy testing (cPLT) 

approach. We first described statistical power and type 1 error our proposed methods 

comparing to the power and type 1 error of our existing methods by simulation. We then 

further demonstrated the proposed two-stage approach to identify pleiotropy in the 

Genetic Analysis Workshop 16 (GAW16) Framingham heart Study data sets. 
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Results 

 

We conducted extensive simulations to evaluate the performance of our proposed two-

stage strategy, and compared the results with existing methods. Key simulation 

parameters are provided in Table 1. 

 

First-Stage (GWAS Screening): Performance of multivariate methods 

 

Using individual-level of genotype and phenotype data, valid type I error rates, as 

expected, were consistently observed across all simulation scenarios at different 

nominal levels for all examined multivariate methods (Table 2). In particular, our 

proposed methods, dLC and eLC, demonstrate robustness under the null hypothesis, 

regardless of the directions of phenotypic residual correlation and estimations of the 

covariance matrix Σ. The estimated power is presented in Table 3. Simulation Series I 

assessed the performance of various multivariate approaches under relevant 

hypotheses, in which relatively large genetic effects were simulated. The results are 

presented with respected to two alternative hypotheses, H1:β1=|β|2>0 and H1:β1>|β2|>0. 

In particular, we assigned a mixture of protective and deleterious genetic effects when 

negative phenotypic residual ρ was adopted in the simulation. All the methods 

performed well when test statistics were homogeneous, but their power varied 

considerably under the hypothesis of mixed genetic effects and effect directions. 

For instance, our proposed approaches showed comparable power to MANOVA under 

the β1=|β|2>0 alternative hypothesis; GEE, LME, and the O’Brien method (OB) had 

lower power. When traits were highly correlated, principle component analysis (PCA) 

outperformed all other methods; however, when traits were barely related (ρ=0.01), the 

PCA showed less power than our proposed dLC and eLC methods. The results under 

the β1>|β2|>0 alternative hypothesis produced similar conclusions across various 

simulation scenarios. In general, our proposed mthods, dLC and eLC, are substantially 

superior to univariate analyses (look-up the overlapping among multiple univariate 

GWAS signals) and other classical multivariate methods under all alternative 

hypotheses. Additionally, eLC outperformed dLC marginally in this simulation series.  
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For aggregated summary statistics, we examined to what extent power is changed 

by applying our proposed methods under the same alternative hypotheses. MANOVA, 

PCA, GEE, and LME are unable to applied when only aggregative summary results are 

available. Thus, we only compared power between OB, dLC, and eLC (Table 4). OB 

was inferior when the univariate summary test statistics were heterogeneous. dLC and 

eLC were not only superior to OB when directions of effects were opposite, but nearly 

as powerful as OB when genetic effects are homogenous. Moreover, similar power was 

consistently observed by applying two distinct methods to estimate covariance matrix Σ. 

Again, eLC and dLC also showed significant advantages over univariate methods in 

detecting pleiotropic effects. Similar conclusions were drawn on the results from 

Simulation Series II, where smaller genetic effects were simulated (see Supplementary 

Tables S1 and S2). These results demonstrate that our proposed methods have 

comparable power to other approaches when all effects are in the same direction and 

much greater power when genetic effects and directions are mixed. Our proposed 

methods can also applied in aggregated data (such as results from GWAS meta-

analyses), thus efficiently increasing the sample size and power. 

 

Multivariate analyses with more than 2 phenotypes: We extended our proposed 

approaches from bivariate analysis (2 phenotypes) to multivariate analysis combining 

three correlated traits/phenotypes together. We generated data in the same manner as 

for the bivariate analysis under the null hypothesis, Ho: β1=β2=β3=0, and two alternative 

hypotheses separately, H1: β1=-β2=-β3 >0 and H1: β1=β2=-β3 >0. We excluded PCA in 

this series; because two principal components are typically needed to explain at least 

80% of the total phenotypic variation, an increased number of subsequent regression 

tests and adjustments for multiple comparisons are necessary. For individual level-data, 

among classical methods, MANOVA had a better statistical power compared to others, 

including GEE, LME, and OB (Table 5). With individual-level genotype and phenotype 

data, our proposed methods (dLC and eLC) demonstrated comparable power to 

MANOVA under both alternative hypotheses. However, dLC had less power than eLC in 

this scenario, likely due to the increased degree of freedom of its underlying chi-square 
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distribution. Additionally, both of our methods outperform OB using aggregated 

summary test statistics when individual-level data are not available. 

 

Stage 2: Causal inference of the Pleiotropy 

  

We utilized the Simulation Series II dataset (low effect size described in Table 1) to act 

as positive and negative controls in evaluating the performance of our proposed stage 2 

method of testing pleiotropy under relevant hypotheses.  

 

A specific null hypothesis, “β1>0,β2=β1+ε”, was simulated and used as the negative 

control. Table 6 presents the estimated type I error rates and power of our proposed 

method (the conditional testing of pleiotropy, cPLT) in comparison with the performance 

of the two classical conditional models strategy. Under the null hypothesis, cPLT 

demonstrated reasonable type I error rates, regardless of phenotypic residual 

correlations and effect directions. 

 

Two alternative hypotheses, “β1= |β2|>0” and “β1> |β2|>0”, served as positive controls for 

detecting pleiotropy. cPLT demonstrated better performance than classical conditional 

strategies under these two alternative hypotheses (Table 6). However, the power was 

low for most methods when the degree of phenotypic correlations was high, suggesting 

the difficulty of using cross-sectional data to causally inference pleiotropy effects when 

phenotypes are highly correlated. Superior power was consistently found using cPLT 

under the β1= |β2|>0 alternative hypothesis, in which the genetic variant contributed to 

phenotypes equally and the phenotypic correlation was modest. In general, statistical 

power was highest when phenotypic residual correlation was very small, e.g., ρ =0.01. 

Further, power of cPLT decreased as the degree of phenotypic residual correlation 

increased. Interestingly, power did not seem to be as strongly influenced by the mixture 

of protective and deleterious genetic effects in this stage as it was in the GWAS 

screening stage (first stage).  

 

These findings show that our proposed cPLT method performs well under the intended 

hypothesized pleiotropic relationship between genetic variants and correlated 
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phenotypes, but its power can vary significantly as the correlation of phenotypes 

changes.  

 

Joint stage 1 and 2 reducing type 1 error of identifying pleiotropic effects: 

 

We further extensively examined the robustness of our proposed two-stage strategy 

under the null hypothesis, β1>0, β2=β1+ε (no pleiotropic effects). Specifically, we 

presented type 1 error rates for Stage 1 alone, Stage 2 alone and Stage 1 + Stage 2 

with respect to various alpha levels (Table 7). Type 1 error rates were inflated for dLC 

applied alone in Stage 1, as expected. However, applying the proposed cPLT approach 

in Stage 2 would efficiently reduce the false positive results introduced in Stage 1. 

Notably, the overall false-positive rate was better controlled at the level of 0.05 when the 

screening threshold at Stage 1 was chosen at 0.025. Thus, this two-stage strategy 

would allow us to use less-stringent cut-off p-values in the Stage 1 GWAS screening 

to increase our power while effectively maintaining the overall false-positive rates 

through Stage 2. 

 

Type 1 errors when filtering out SNPs with multivriate p-value lager than 

univariate p-values from each phenotype 

 

Theoretically, the multivariate p-value of a true pleiotropic marker is considered to be 

smaller than that of its univariate results. We investigated this hypothesis using our 

simulation data under different alternative hypotheses. The proportions of SNPs with 

smaller p-values (an order of magnitude) in eLC under various scenarios are provided in 

Supplementary Table S3. In general, most p-values from eLC were smaller when the 

marker equally contributed to multiple traits and the phenotypic correlation was modest. 

On the other hand, p-values from eLC did not tend to be smaller when the phenotypic 

correlation was high or unequal genetic effect sizes existed. Adopting the smaller 

multivariate p-value filtering criteria added little improvement in terms of type 1 error. 

We further investigated the impact on statistical power by using this filter under relevant 

alternative hypotheses (Table 9). Unexpectedly, applying the smaller multivariate p-
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value filtering criteria would introduce modest to significant power loss, largely 

depending on the magnitudes of phenotypic correlations and genetic effect sizes. 

 

An Application to GAW16 Framingham Heart Study data  

 

To validate our newly developed two-stage approach to identify potential pleiotropic 

genetic effect, we applied our method to the GAW16 Framingham Heart Study dataset. 

We sought to identify pleiotropic variants (SNPs) associated with both serum high-

density lipoprotein (HDL) and triglycerides (TG), known to influence cardiovascular 

disease. The phenotypic correlation for HDL and TG was -0.28, and the estimated 

correlation of univariate GWAS test statistics (~550K SNPs across genome) of HDL and 

TG was -0.32. A unified genome-wide significance level was defined by false discovery 

rate (FDR) at p-value=3*10-6, equivalent to q=0.05, for both bivariate and univariate 

analysis to screen potential pleiotropic SNPs. The genomic control inflation factor, lGC  

was 1.01 for this bivariate GWAS analysis. Q-Q plot of the bivariate GWAS results 

(Supplementary Figure S1) showed no inflation beyond that expected by chance alone. 

A further comparison of bivariate results from eLC between individual-level data and 

aggregated summary statistics (Supplementary Figure S2) revealed no substantial 

differences. 

 

We identified 25 genome-wide significant bivariate loci from the stage-1 GWAS 

screening using aggregative statistics. We then selected the most significant SNP in 

each locus to perform our stage 2 cPLT-analysis using individual level data for causal 

inference of pleiotropic effects. The cPLT method with 10,000 permutations were 

performed (Table 8). The significance level in stage 2 was defined as p < 0.002 after 

Bonferroni correction. Our two-stage analysis identified 2 SNPs, rs3200218 in the 

coding region of LPL gene and rs8192719 on the exon/intron boundary of CYP2B6 

gene. These two loci served as positive controls in the GAW16 simulation dataset, and 

were validated as pleiotropic genes using our strategy. The simulated heritability of 

rs3200218 for HDL and TG was 0.3% and 0.4%, respectively. For rs8192719, the 

heritability for HDL and TG was reported as 0.3% for both [42]. Additionally, as a 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 5, 2017. ; https://doi.org/10.1101/184895doi: bioRxiv preprint 

https://doi.org/10.1101/184895
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

negative control, SNP rs7031748 demonstrated a significant p-value from bivariate 

GWAS analysis in the Stage-1 screening and it failed to reject the null hypothesis in the 

Stage-2 cPLT analysis (causal inference), suggesting some of the significant bivariate 

associations of genetic variants in the stage-1 GWAS screening likely resulted from 

indirect correlations among phenotypes due to non-genetic effects, rather than a causal 

pleiotropic relationship; therefore, the stage 2 is essential to identify pleiotropic genetic 

effects.  
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Discussion 

 

In this study, we propose a novel two-stage approach to identify potential pleiotropic 

effects on a genome-wide scale. Using powerful linear-combination approaches as a 

screening tool, we demonstrated the plausibility of effectively utilizing summary statistics 

(without individual level of genotypes and phenotypes), e.g., univariate GWAS meta-

analysis results, to perform multivariate analysis and screen potential pleiotropic effects 

in the first stage. Comparing to classical multivariate methods and previously proposed 

methods by others, the proposed methods (eLC and dLC) consistently demonstrate 

better power, maintain expected type 1 error rates, and do not require complex 

modeling assumptions in most of the circumstances. More important, the proposed 

methods show considerable power over other approaches when mixed genetic effects 

and opposite effect directions are existing in the tested phenotypes. Based on 

simulations, our proposed causal inference approach for the pleiotropic effects (cPLT 

method) in the stage-2 provided reasonable power while maintaining conservative type 

1 error rates when traits were moderately correlated. We are able to leverage univariate 

GWAS summary statistics and improve power to identify pleiotropic effects using our 

two-stage design. We are able to validate our approach by identifying the positive 

controls of pleiotropic effects in the GAW16 simulation datasets [42]. 

 

Meta-analyses that synthesize results from different studies have become a standard 

approach to increase statistical power in many GWAS. Most multivariate methods, 

however, require individual level of data and cannot utilize summary statistics of GWAS 

meta-analysis that most of them are publicly available. Our novel strategy can aid the 

discovery of pleiotropy in meta-analysis of GWAS results. While traditional multivariate 

approaches, such as PCA and MANOVA, are powerful when individual-level data are 

accessible, our simulation studies demonstrate the effectiveness of our proposed eLC 

and dLC approaches when summary test statistics are available. The use of summary 

test statistics is advantageous for reducing potential bias introduced by population 

admixture or stratification, given that these confounders have been well adjusted in 

genome-wide association analyses in each participating study. In addition, instead of 
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using the covariance matrix estimated through individual-level data as O’Brien 

suggested, we demonstrate the feasibility of using the covariance of summary test 

statistics to effectively increase the power as in a meta-analysis. The proposed methods 

can be applied to population-based studies and familial data; as well as quantitative 

traits and binary traits. For family-based studies, we also provided a simple algorithm 

(see Supplementary material for detailed description) for estimating covariance matrix in 

individual-level data. 

 

Many factors affect statistical power of the proposed approach. The statistical power of 

genetic analyses relies on the underlying genetic effect sizes. To evaluate the impact of 

genetic effect size, we specifically simulated SNPs with smaller effect sizes (Simulation 

Series II). Our proposed methods were able to detect the pleiotropic effects. Substantial 

power can also be gained by using the proposed dLC and eLC approaches when the 

genetic effects are not in the same direction. Interestingly, eLC shows superior power to 

dLC when more than two traits are combined, despite similar performance to dLC in 

bivariate scenarios. Considering the intensive computational process involved in 

applying eLC, for bivariate GWAS analysis (only involving two phenotypes), dLC 

provides us a less computational intensity way to mine potential pleiotropic effects. For 

multivariate GWAS analysis with more than five phenotypes involved, eLC is preferable. 

Another important factor determining power is minor allele frequency (MAF) of the 

genetic marker of interest. We fixed MAF at 10% in all our simulation studies. Notably, 

however, the relative efficiency of multivariate methods seems to remain consistent but 

the degree of power changes as MAF varies [26,37]. The results presented here should 

be comparable when the proposed methods are applied to genetic variants with other 

MAFs. 

 

Several multivariate methods (required individual level of data) have been proposed by 

others, such as the canonical correlations analysis (CCA) [43] implemented in 

PLINK[44]. Our simulation showed that this approach has similar power, as expected, to 

the MANOVA in all the scenarios (data not shown). Multivariate approaches for family 

data, such as the FBAT-GEE and FBAT-PC, proposed by Lange et al. [20,45] were also 
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evaluated. Our approach outperformed these methods (data not shown). FBAT-based 

approaches usually introduce concerns about a substantial loss in power, since 

between-family correlations are ignored in the nature of an FBAT algorithm. In our 

simulations, FBAT has far less power to detect main effect markers compared to the 

LME model, the loss of power may be exaggerated in the context of combining 

summary statistics on a genome-wide scale, making it difficult to achieve a significance 

level that supports a positive finding for multivariate analysis. Different from our 

proposed approaches, eLC and dLC, above methods cannot be used when only 

aggregative summary statistics are available, suggesting a broader application that our 

approaches can be applied. 

 

The proposed method of testing pleiotropy at the stage 2, cPLT method, allows us to 

test the specific alternative hypothesis that a genetic marker of interest is independently 

associated with multiple phenotypes, rather than the typical alternative hypothesis that 

association with one phenotype is sufficient in multivariate methods. In our simulations, 

we significantly improve the power to infer true pleiotropy over the two classical 

conditional modeling strategies [40]. However, there are limitations of our proposed 

cPLT method. The proposed cPLT method of testing pleiotropy appears to be 

conservative when phenotypes are closely correlated. In an extreme case, when two 

traits are nearly unrelated, meaning , the individual score in equation (5) (see 

Methods) will be very similar to the regular regression between X and Y. On the other 

hand, two traits are statistically reduced to one when they are closely correlated. Hence, 

there is little independent variance left in the proposed individual score in equation (5). 

This is a common problem for all causal inference statistical algorithms when dealing 

with highly-correlated outcomes or phenotypes. Therefore, as for many association 

analyses, additional biological evidence or animal studies are needed to validate our 

statistical detection of pleiotropy.  

 

It is important to note that the selection of cut-off value in the Stage-1, multivariate 

GWAS screening stage, influences the overall false-positive findings in the two-stage 

approach. It will be too conservative when a stringent threshold (such as the commonly 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 5, 2017. ; https://doi.org/10.1101/184895doi: bioRxiv preprint 

https://doi.org/10.1101/184895
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

used genome-wide significant threshold, p < 5x10-8) is applied. We suggest apply a 

commonly used genome-wide suggestive threshold, such as p < 5x10-6, however, 

further studies are warranted to investigate the best choice of threshold in the 

multivariate GWAS screening stage (Stage-1) to maximize overall power and maintain 

reliable type 1 error. In addition, adopting the smaller multivariate p-value filtering 

criteria (smaller multivariate p-values comparing to univariate p-values) added little 

improvement in terms of type 1 error, but had a significantly reduced power. The power 

loss was depended on the magnitudes of phenotypic correlations and genetic effect 

sizes. 

 

In summary, we have developed a novel and powerful two-stage approach to identify 

pleiotropic effects on a genome-wide scale without complex modeling assumptions. Our 

extensive simulations consistently demonstrated the advantages of the proposed 

approach over other existing multivariate analyses or methods to identify pleiotropic 

effects. The stage-1 multivariate GWAS screening in our two-stage approach does not 

need to have individual level of genotypes and phenotypes, which extend a broader 

application. By leveraging GWAS meta-analysis results, we can efficiently and 

effectively screen for potential pleiotropic markers on a genome-wide scale. A candidate 

marker set then can be selected for the second stage to test of independence, thus 

confirming the “real” pleiotropic effects. A computational program written in C++ for our 

proposed combining approach (eLX) is available at 

https://sites.google.com/site/multivariateyihsianghsu/. 
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Methods 

 

We proposed to identify pleiotropic effects on a genome-wide scale through a two-stage 

design (Figure 1). Briefly, at stage 1, we developed two powerful combining test 

statistics methods to screen for potential pleiotropic-effect SNPs on a genome-wide 

scale. At stage 2, a candidate marker set was then derived from Stage 1 and tested 

using a novel approach of testing pleiotropy, called conditional pleiotropy testing (cPLT). 

   

Stage 1 

 

Direct linear combination of correlated test statistics (dLC) 

In general, let T= (T1,T2,…,Tk)T denote a vector of K correlated test statistics obtained 

individually from each univariate analysis for a  specific trait against a genetic marker. 

Under most circumstances in current GWAS studies, T usually follows an asymptotical 

multivariate normal distribution with mean  )T  and known or estimated 

covariance Σ, where Σ is a k × k symmetric matrix . Assume the null hypothesis we want 

to test in multivariate analysis is H0: = 0. In other words, the genetic variant is not 

associated with any phenotype. In contrast, the general alternative hypothesis H1 is at 

least one >0, k=1,…,k. Extending from O’Brien’s theory[33], we propose a new 

approach for combining correlated traits , called direct linear combination of test 

statistics (dLC). The new test statistics of dLC can be written as:  

  

Under the null hypothesis,  follows a  distribution with K degrees of freedom and 

can be effectively used to test the joint significance of dependent univariate test 

statistics. 

 

Empirical linear combination of correlated test statistics (eLC) 

As illustrated in Xu et al. [33], dLC may not have optimal power against specific 

alternatives resulting from the heavy tail of the  distribution. Therefore, we further 

proposed a data-driven empirical approach to combine correlated test statistics as: 

]           (2) 
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where c is some given non-negative constant. The weight in this new test statistics will 

be optimally determined by the specific data structure. For instance, when c=0, the test 

statistics simply reduces into sum of squares of Tk. When c is relatively large, equal 

weight is assigned to each Tk. Ideally, we would like to find an optimal value of c, so the 

 performs as a linear combination of Ti when under the H0; but, under the alternative 

HA, more weight is given to the larger true Ti. The bona fide p-value for  then can be 

estimated by applying permutation or perturbation techniques (see Supplementary). 

   Estimation of the Variance-Covariance Matrix   

Several methods can be used to estimate the covariance matrix Σ of univariate test 

statistics. For simplicity, we demonstrate two estimation approaches in a bivariate 

scenario. Based on  the method used in Yang et al. [37], we first utilize the sample 

covariance matrix of the test statistics of all SNPs from univariate GWAS analyses as 

an approximation. Σ, the covariance matrix, thus can be estimated as: 

 

where Z1 consists of unbiased univariate test statistics of all the SNPs for the first trait 

on genome-wide scale, so does Z2. On the other hand, Σ can be estimated by using 

generalized least squares from individual-level data, as suggested by O’Brien [34]. A 

similar approach is also demonstrated by Liu et al. [26].  

In this paper, the combining tests utilizing a covariance matrix approximated from the 

summary GWAS test statistics will be denoted by OBz, dLCz, and eLCz. Similarly, those 

with a covariance matrix calculated from individual-level data will be referred to as OBi, 

dLCi, and eLCi. 

   Simulation Study 

Monte-Carlo Simulations were employed to generate data for evaluating the validity and 

performance of all the multivariate methods, especially the proposed dLC and eLC 

approaches. The main scenarios and key parameters for simulating genotype data are 

shown in Table 1. Various conditions were considered, including equal genetic marker 

contributes to both traits (Scenario A) and unequal genetic effects (Scenario B). To 

evaluate the proposed pleiotropy test strategy in Stage 2, a special Scenario C was also 

introduced. In particular, a single continuous trait was first generated with an assigned 
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effect size. The second trait was then simulated by artificially adding random noise on 

the first generated trait. Therefore, the genetic variant is directly associated with the first 

trait but indirectly linked with the second trait, as illustrated in R2 and R3 in Figure 2. In 

all simulations, only quantitative traits and unrelated subjects were generated. A sample 

size of 1000 subjects was simulated in each of 1000 replicates.  

The effect size of the SNP on each trait is estimated from   , where p is 

the minor allele frequency (MAF) at the locus and  , heritability, is the phenotypic 

variance explained by the SNP. The heritability is simulated at 1% and 2% in the 

Simulation Series I, and 0.5% and 0.1% in Simulation Series II for each trait, 

respectively. The variance of the environmental effects was fixed as 1 in all simulation 

studies. The genotypes were then generated under Hardy-Weinberg equilibrium with a 

specified MAF at 10%. 

Bivariate quantitative phenotypes were randomly drawn from a bivariate normal 

distribution to represent the pleiotropic relationship R1 in Figure 1: 

Y= ~ N  

where  is the additive genetic effect size for trait i, X is the additive score of the coded 

allele, and  is the residual correlation between  and ,respectively. 

Various simulation scenarios with respect to  were further generated. Briefly,  was 

selected at -0.75, -0.25, 0.01, 0.25, and 0.75 to mimic the correlations we have 

observed in real GWAS data analyses in the Simulation Series I. A smaller range of  at 

-0.5, -0.25, 0.01, 0.25 and 0.5 was also employed in Simulation Series II with lower 

genetic heritability. Notably, a mixture of protective and deleterious genetic effects was 

introduced when negative  was used in generating data. For instance, we assigned 

β1=- β2 as the alternative hypothesis when  was -0.25. 

In addition to bivariate scenarios, we also generated three moderately correlated 

quantitative traits to evaluate the performance of various approaches when more than 

two traits were combined. For simplicity, the genetic heritability was equivalently set at 

0.5% for each of the three traits. And the pairwise phenotypic residual correlation was 

chosen at 0.25, -0.15, and -0.20. The data were then generated under the null 
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hypothesis Ho: β1=β2=β3=0 and two alternative hypotheses, H1: β1=-β2=-β3 >0 and H1: 

β1=β2=-β3 >0, respectively. 

Each replicate was analyzed by using OB, dLC, and eLC approaches individually. We 

estimated the covariance matrix Σ through approximation from summary data and 

individual-level data. Other multivariate methods were also compared, including LME 

with a random effect accounting for phenotypic correlations, GEE, MANOVA, and PCA, 

in which the first component was used as a dependent variable in the subsequent linear 

model. All analyses were conducted in R software (http://r-project.org/). Power and type 

I error rates of each approach were calculated as the proportion of replicates with a p-

value less than a given significant threshold in the corresponding scenarios. Specifically, 

power was derived with 1000 replicates with the significance level at p-value equal to 

10-4 for each true scenario in Simulation Series I, and 10-2 for those in Simulation Series 

II. Type I error rates were estimated in the settings that β1=β2=0 with 1000 replicates at 

nominal significance levels of 0.05 and 0.01. In the context of adjusting multiple testing 

for two univariate association tests of two phenotypes, standard Bonferroni corrections 

were applied with the significance level at 5*10-5 and 5*10-3 for Simulation Series I and II 

separately. 

Stage 2, Testing of Pleiotropy 

The null hypothesis of multivariate approaches, H0: βk=0 (j=1, 2…k), is rejected when at 

least one of βi  is not equal to 0. This would result in three possible alternative 

relationships for bivariate scenarios (Figure 1). Briefly, when two traits are linked and 

only one of them is indeed associated with the genetic marker, it is likely the other trait 

will be indirectly associated with the same marker even in absence of real pleiotropy, as 

demonstrated in R2 and R3. Pleiotropy explained in R1, however, will be true only when 

the genetic marker is independently associated with two traits under the alternative 

hypothesis, H1:β1≠0 and β2≠0. 

Let  and  be the target phenotypes for the ith subject in the study and  be the 

genetic marker of interest for this subject. A regular strategy of testing this specific 

hypothesis involves applying two separate conditional models for each trait with 

adjusting the other one as a covariate. Specifically, the following linear model is usually 
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used to test the direct genetic effect of marker X contributing to quantitative phenotype 

Yi 

 

where  denote the mean parameters can be estimated by ordinary least 

squares approach. 

Here, we proposed a new approach of testing pleiotropy by combining adjusted 

phenotypes together based on the framework suggested in Lange et al. [40]. 

From equation (3), we can adjust the phenotype  for the effects contributed by the 

phenotype  for ith subject as: 

 

where  is the ordinary least squares estimate for , and  and  represent the 

observed sample mean of phenotype Y and K, respectively. In a population-based study, 

we can derive a new test statistic for  contributed by all subjects as: 

 

Likewise, we can construct the new test statistics for  as: . Both  

and  can be considered as direct scores between the genetic marker and the target 

phenotype. To test the specific alternative hypothesis of pleiotropy, we further proposed 

a new approach as  

 

This new test statistics  can only be rejected when both adjusted individual statistics 

are significant (βK,X|Y≠0 and βY,X|K≠0). The empirical p-value of  can be estimated by 

applying a permutation test.  

We have conducted comprehensive studies to evaluate the performance of this novel 

approach of inferring pleiotropy in the Simulation Series II dataset. Power was defined 

as the number of significant results with p-values less than 0.05 and 0.01 in 1000 

replicates. The robustness of this approach and two-stage strategy were further 

examined under a specific null hypotheses, β1>0,β2=β1+ε. The performance of the two 

conditional models strategy was also investigated and compared to our proposed 

method. 
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GAW16 Problem 3 simulation data sets 

The first replicate in the Genetic Analysis Workshop 16 (GAW 16) Problem 3 simulation 

data sets [42] was selected to validate our approach [42]. The GAW 16 derives from the 

Framingham Heart Study (FHS), which includes 6,476 subjects from 3 generations with 

real genotypes of approximately 550,000 SNP markers and six simulated phenotypes 

with multiple measurements. Subjects are distributed among 942 families and 188 

singletons. The two directly-simulated quantitative traits, high-density lipoprotein (HDL) 

and triglycerides (TG), were used in our analysis. Genotypes were derived from the 

Affymetrix GeneChip Human Mapping 500K Array set and the 50K Human Gene Focus 

Panel. Standard analytical approaches for GWAS are illustrated in detail in the 

Supplementary.  

 

Annotations 

PCA: Principle Component Analysis; MANOVA: Multivariate Analysis Of Variance; GEE: 

Generalized Estimation Equations; LME: Linear Mixed Effects models; OB: O’Brien combining 

statistics method; dLC: Direct Linear Combining statistics method; eLC: Empirical Linear 

Combining statistics method; cPLT: conditional Pleiotropy Testing method 

SdLC: Test statistics for direct Linear Combining method 

SeLC: Test statistics for empirical Linear Combining method 

HDL: High-density lipoprotein; TG: Triglycerides  
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Figure 1. Study design of proposed two-stage approach. Simulation was conducted 
to estimate the performance of proposed multivariate GWAS approaches and testing of 
pleiotropy method. The proposed approaches were then applied in a GWAS dataset with 
correlated serum lipid measurements (HDL and TG). 

 

 

  

Stage I. Multivariate GWAS  

(Screening Stage) 

Screening potential pleiotropic effect SNPs on genome-wide 

scale by applying powerful multivariate approach in 

aggregated-level data  

Stage II. Testing of Pleiotropy 

Inferring independent genetic effects on each phenotype in 

candidate SNP sets  

using individual-level data 

Applied to  GWAS data 
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Figure 2. Possible relationships between genetic marker X and two correlated 

phenotypes Y1 and Y2 when the null hypothesis of a multivariate model is rejected.  

represents direct genetic effects to phenotype Y1 contributed by X;  represents genetic 

effects to phenotype Y2 directly contributed by X.  and  represent indirect 

associations between X and Y1
 and Y2, respectively. 
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Table 1. Key parameters of simulation scenarios  

    Phenotype 1 (Y1) Phenotype 2 (Y2) 

Series Note Scenario H1 H2 β H2 β 

 
I. Higher effect size 

Pleiotropy with equal effect A β1=|β2|>0 0.02 0.34 0.02 0.34 

Pleiotropy with unequal effect B β1>|β2|>0 0.02 0.34 0.01 0.24 

 Non-pleiotropy C β1>0,β2= β1+ε 0.02 0.34 random noise  

 Pleiotropy on multiple phenotypes  Da β1=|β2|=|β3|>0 0.02 0.34   

        

 Pleiotropy with equal effect A β1=|β2|>0 0.005 0.17 0.005 0.17 

II. Lower effect size  Pleiotropy with unequal effect B β1>|β2|>0 0.005 0.17 0.001 0.075 

 Non-pleiotropy C β1>0,β2= β1+ε 0.005 0.17 random noise  

 Pleiotropy on multiple phenotypes   Db β1=|β2|=|β3|>0 0.005 0.17   

Note: Minor Allele Frequency=10% for all scenarios. 
          Variance of environmental effects is fixed at 1 for all scenarios. 
          Total of 1,000 subjects were simulated in each replicate. 
a Equal heritability in this scenario is assigned as 0.02 for all three quantitative traits. 
b Equal heritability in this scenario is assigned as 0.005 for all three quantitative traits. 
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Table 2. Estimated type I error rates of multivariate approaches in 1000 replicates  
with different phenotypic residual correlations ρ 

Correlation 

ρ 
α level 

Analytical method 

PCA MANOVA GEE LME OBi OBz dLCi dLCz eLC 

-0.75 0.05 0.052 0.053 0.052 0.051 0.053 0.052 0.051 0.052 0.051 

 0.01 0.011 0.010 0.012 0.012 0.011 0.011 0.011 0.011 0.012 

-0.25 0.05 0.052 0.051 0.052 0.052 0.052 0.052 0.051 0.051 0.051 

 0.01 0.011 0.012 0.012 0.011 0.012 0.011 0.012 0.012 0.011 

0.01 0.05 0.052 0.052 0.052 0.054 0.052 0.051 0.053 0.053 0.050 

 0.01 0.011 0.012 0.012 0.011 0.012 0.011 0.012 0.012 0.011 

0.25 0.05 0.051 0.051 0.052 0.053 0.051 0.050 0.052 0.053 0.050 

 0.01 0.011 0.012 0.011 0.011 0.011 0.011 0.012 0.013 0.012 

0.75 0.053 0.053 0.052 0.053 0.051 0.053 0.052 0.051 0.051 0.051 

 0.01 0.011 0.012 0.012 0.011 0.012 0.011 0.012 0.012 0.011 

Note: Sample Size N=1000.  

Subscript i indicates that individual-level data were used; z indicates that aggregated data were used.   
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Table 3.  Power of multivariate approaches (Stage 1) in Simulation Series I using individual-level data. 

H1: β1=|β2|=0.34   (Pleiotropy with equal effect size) 

ρ¶ PCA MANOVA GEE LME OB dLC eLC  Y1* Y2* 

-0.75 0.83 0.73 0.00 0.00 0.00 0.74 0.77  0.69 0.67 

-0.25 0.96 0.93 0.00 0.00 0.00 0.93 0.92  0.65 0.68 

0.01 0.82 0.98 0.99 0.99 0.99 0.98 0.97  0.69 0.68 

0.25 0.96 0.93 0.97 0.96 0.96 0.93 0.93  0.66 0.66 

0.75 0.82 0.74 0.83 0.81 0.81 0.75 0.76  0.66 0.68 

        
 

  
H1: β1=0.34; |β2|=0.24  (Pleiotropy with unequal effect size) 

ρ¶ PCA MANOVA GEE LME OB dLC eLC  Y1* Y2* 

-0.75 0.59 0.64 0.03 0.00 0.03 0.65 0.66  0.69 0.19 

-0.25 0.82 0.76 0.00 0.00 0.00 0.77 0.75  0.66 0.21 

0.01 0.74 0.91 0.95 0.94 0.95 0.91 0.90  0.67 0.19 

0.25 0.85 0.78 0.84 0.83 0.84 0.79 0.79  0.65 0.20 

0.75 0.59 0.65 0.58 0.58 0.58 0.65 0.66  0.68 0.20 

         *: p-values were adjusted using Bonferroni corrections in these univariate analyses. 

         ¶: opposite effect direction was assigned when negative phenotypic correlation ρ was used. 
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Table 4. Power of multivariate approaches (Stage 1) in Simulation Series I using aggregated data  

Alternative  

Hypothesis (H1) 

 
ρ¶ 

 
OB dLC eLC 

 
Y1 Y2 Y1* Y2* 

  -0.75  0.00 0.74 0.78  0.74 0.73 0.69 0.67 

  -0.25  0.00 0.93 0.91  0.71 0.74 0.65 0.68 

β1=|β2|=0.34  0.01  0.99 0.98 0.97  0.76 0.73 0.69 0.68 

  0.25  0.97 0.93 0.92  0.73 0.72 0.66 0.66 

  0.75  0.82 0.75 0.76  0.72 0.74 0.66 0.68 

            

  -0.75  0.02 0.65 0.63  0.74 0.23 0.69 0.19 

  -0.25  0.00 0.75 0.72  0.71 0.25 0.65 0.21 

β1=0.34; |β2|=0.24  0.01  0.97 0.94 0.95  0.73 0.24 0.69 0.19 

  0.25  0.85 0.79 0.76  0.71 0.25 0.66 0.20 

  0.75  0.60 0.65 0.63  0.73 0.24 0.66 0.20 

            

  -0.50  0.02 0.44 0.43  0.39 0.39 0.31 0.31 

  -0.25  0.01 0.52 0.50  0.38 0.39 0.28 0.32 

β1=|β2|=0.17  0.01  0.74 0.62 0.63  0.37 0.35 0.28 0.27 

  0.25  0.58 0.46 0.45  0.34 0.34 0.26 0.27 

  0.50  0.50 0.40 0.41  0.36 0.37 0.27 0.30 

  
 

 
   

 
    

  -0.50  0.11 0.30 0.27  0.37 0.07 0.29 0.04 

  -0.25  0.07 0.29 0.31  0.35 0.06 0.27 0.04 

β1=0.17; |β2|=0.075  0.01  0.39 0.35 0.35  0.37 0.07 0.28 0.04 

  0.25  0.29 0.29 0.30  0.35 0.06 0.29 0.04 

  0.50  0.23 0.29 0.29  0.35 0.05 0.28 0.04 

*: p-values were adjusted using Bonferroni correction in these univariate analyses. 
¶: opposite effect direction was assigned when negative phenotypic correlation ρ was used. 
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Table 5. Power of multivariate approaches (Stage 1) on three correlated phenotypes using individual-level data and aggregated data 

Individual-Level Data          

H1 PCA MANOVA GEE LME OBi dLCi eLCi  Y1* Y2* Y3* 

β1=β2=-β3 =0.34 0.99 0.99 0.12 0.07 0.01 0.99 0.99  0.66 0.62 0.63 

β1=-β2=-β3=0.34 0.98 0.99 0.10 0.06 0.12 0.99 0.99  0.64 0.62 0.61 

β1=β2=-β3 =0.17 0.65 0.58 0.13 0.10 0.04 0.58 0.71  0.23 0.24 0.26 

β1=-β2=-β3=0.17 0.17 0.90 0.12 0.10 0.21 0.72 0.80  0.25 0.26 0.24 

            

Aggregated Data      

H1     OBz dLCz eLCz  Y1* Y2* Y3* 

β1=β2=-β3 =0.34 - - - - 0.01 0.99 0.99  0.66 0.62 0.63 

β1=-β2=-β3=0.34 - - - - 0.12 0.99 0.99  0.64 0.62 0.61 

β1=β2=-β3=0.17 - - - - 0.04 0.59 0.71  0.23 0.24 0.26 

β1=-β2=-β3=0.17 - - - - 0.22 0.74 0.79  0.25 0.26 0.24 

*: p-values were adjusted using Bonferroni correction for these univariate analyses. 
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Table 6. Type 1 error rates and power of the proposed Stage 2: causal inference of pleiotropy effects using individual-level data  

under relevant hypotheses 

 Power  Power  Type 1 error   

ρ¶ β1= |β2|>0  
 

β1> |β2|>0  
 

β1>0,β2=β1+ε   

 
cPLT 

 
Yc1 Yc2 

 
cPLT 

 
Yc1 Yc2 

 
cPLT 

 
Yc1 Yc2 

 
α= 0.05 

-0.50 0.150 
 

0.263 0.259 
 

0.199 
 

0.536 0.050 
 

0.065 
 

0.364 0.050 
 

-0.25 0.495 
 

0.441 0.413 
 

0.306 
 

0.566 0.089 
 

0.049 
 

0.349 0.066 
 

0.01 0.789 
 

0.608 0.595 
 

0.487 
 

0.618 0.179 
 

0.066 
 

0.344 0.047 
 

0.25 0.522 
 

0.417 0.389 
 

0.314 
 

0.538 0.086 
 

0.053 
 

0.349 0.055 
 

0.50 0.151 
 

0.260 0.270 
 

0.183 
 

0.504 0.050 
 

0.045 
 

0.326 0.046 
 

Note: Yc1: conditional analysis for trait 1 adjusting for trait 2; Yc2: conditional analysis for trait 2 adjusting for trait 1. 
¶: opposite effect direction was assigned when negative phenotypic correlation ρ was used. 
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Table 7. Type 1 error rates of separate and joint Stages under the null hypothesis, β1>0,β2=β1+ε 

α 
 

0.005 
   

0.01 
   

0.025 
   

0.05 
   

0.1 
 

ρ¶ S1 S2 Pool 
 

S1 S2 Pool 
 

S1 S2 Pool 
 

S1 S2 Pool 
 

S1 S2 Pool 

-0.5 0.209 0.065 0.035 
 

0.287 0.065 0.042 
 

0.415 0.065 0.055 
 

0.531 0.065 0.061 
 

0.652 0.065 0.065 

-0.25 0.211 0.069 0.036 
 

0.27 0.069 0.042 
 

0.398 0.069 0.051 
 

0.512 0.069 0.064 
 

0.636 0.069 0.069 

0.01 0.195 0.066 0.028 
 

0.261 0.066 0.038 
 

0.402 0.066 0.053 
 

0.522 0.066 0.061 
 

0.628 0.066 0.063 

0.25 0.195 0.053 0.034 
 

0.273 0.053 0.039 
 

0.407 0.053 0.05 
 

0.504 0.053 0.053 
 

0.628 0.053 0.053 

0.5 0.199 0.045 0.032 
 

0.264 0.045 0.036 
 

0.374 0.045 0.044 
 

0.475 0.045 0.045 
 

0.600 0.045 0.045 

Note: S1: Stage 1 only; S2: Stage 2 only; Pool: pooled Stage 1+2; p-value=0.05 was fixed at Stage 2.  
¶: opposite effect direction was assigned when negative phenotypic correlation ρ was used. 
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Table 8. Selected pleiotropic SNPs associated with HDL and TG in GAW16 simulation dataset after applying proposed two-stage approach 

    Univariate    Conditional   

rsSNP MAF % Gene  HDL TG  dLC P value  HDL TG  cPLT P value 

rs3200218 21.7 LPL  8.08E-08 4.83E-04  1.34E-10  1.28E-11 5.74E-08  <1E04 

rs8192719 24.9 CYP2B6  7.08E-06 8.17E-06  2.94E-06  9.91E-04 7.02E-04  <1E04 

rs7031748 12.7 ABCA1  5.59E-09 0.725  1.76E-07  4.24E-10 0.025  0.014 
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Table 9. Power of multivariate approaches after filtering SNPs with multivariate p-values smaller than univariate p-values under relevant 

alternative hypotheses  

 

 

 

 

 

 

 

 

 

 

*significance level was defined as p-value=1e-4 for higher effect size Simulation Series I and 0.01 for lower effect size Simulation Series II. 
¶: opposite effect direction was assigned when negative phenotypic correlation ρ was used. 

 

 

 

 

  Simulation Series I. Higher Effect Size    Simulation Series II. Lower Effect Size 

  dLCi dLCz   dLCi dLCz 

 ρ Full Filter Full Filter  ρ Full Filter Full Filter 

 -0.75 0.74 0.06 0.74 0.06  -0.50 0.44 0.05 0.44 0.06 

 -0.25 0.93 0.86 0.93 0.85  -0.25 0.52 0.22 0.52 0.23 

Equal Effect Size 0.01 0.98 0.98 0.98 0.97  0.01 0.61 0.43 0.62 0.45 

 0.25 0.93 0.86 0.93 0.87  0.25 0.46 0.21 0.46 0.21 

 0.75 0.75 0.07 0.74 0.07  0.50 0.40 0.04 0.40 0.03 

            

 -0.75 0.65 0.08 0.65 0.05  -0.50 0.30 0.05 0.30 0.05 

 -0.25 0.77 0.53 0.75 0.48  -0.25 0.28 0.05 0.29 0.06 

Unequal Effect Size 0.01 0.91 0.85 0.94 0.91  0.01 0.36 0.13 0.35 0.13 

 0.25 0.79 0.53 0.79 0.53  0.25 0.29 0.05 0.29 0.06 

 0.75 0.65 0.06 0.65 0.06  0.50 0.28 0.04 0.29 0.03 
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