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Abstract 22 

Phenotypic variation is the raw material of adaptive Darwinian evolution. The phenotypic 23 

variation found in organismal development is biased towards certain phenotypes, but the 24 

molecular mechanisms behind such restrictions are still poorly understood. Gene regulatory 25 

networks have been proposed as one cause of constrained phenotypic variation. However, most 26 

of the evidence for this is theoretical rather than experimental. Here, we study evolutionary 27 

biases in two synthetic gene regulatory circuits expressed in E. coli that produce a gene 28 

expression stripe – a pivotal pattern in embryonic development. The two parental circuits 29 

produce the same phenotype, but create it through different regulatory mechanisms. We show 30 

that mutations cause distinct novel phenotypes in the two networks and use a combination of 31 

experimental measurements, mathematical modelling and DNA sequencing to understand why 32 

mutations bring forth only some but not other novel gene expression phenotypes. Our results 33 

reveal that the regulatory mechanisms of networks restrict the possible phenotypic variation 34 

upon mutation. Consequently, seemingly equivalent networks can indeed be distinct in how 35 

they constrain the outcome of further evolution.  36 
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Introduction 37 

The ability of biological systems to bring forth novel and beneficial phenotypes as a 38 

consequence of genetic mutations is essential for evolutionary adaptation and innovation. This 39 

ability is encapsulated in the concept of evolvability (Kirschner and Gerhart, 1998; Wagner, 40 

2005b). Evolvability can be limited by evolutionary constraints, which are biases or limitations 41 

in the production of novel phenotypes (Smith et al., 1985). An example of such constraints 42 

comes from laboratory selection experiments with butterfly populations for enhanced wing 43 

eyespot colours (Allen et al., 2008). Selection was able to increase the amount of black or gold 44 

colouring in the two eyespots simultaneously, but was unable to do so for the two different 45 

colours independently in the two eyespots. Constrained variation can have multiple genetic and 46 

developmental causes that can be difficult to disentangle in a complex developing organism 47 

(Arnold, 1992; Wagner, 2011). Therefore, few experimental demonstrations of evolutionary 48 

constraints exist. What is more, thirty years after this concept rose to prominence (Smith et al., 49 

1985), we still do not understand the mechanistic causes of evolutionary constraints. 50 

 51 

The instructions for an organism’s development are encoded in gene regulatory networks 52 

(GRNs) – networks of interacting transcription factors that control gene expression in both time 53 

and space (Davidson, 2006). Mutations in the cis-regulatory regions of GRNs play an important 54 

part in evolutionary adaptation and innovation (Payne and Wagner, 2014; Prud'homme et al., 55 

2007; Wray, 2007). Examples include the evolution of the vertebrate spine (Guerreiro et al., 56 

2013), of wing pigmentation in butterflies (Beldade and Brakefield, 2002) and of hindwing 57 

reduction in flies (Carroll et al., 2001). GRNs are thus primary candidates for systems that might 58 

lead to the production of constrained variation (Gompel and Carroll, 2003; Sorrells et al., 2015). 59 

However, no experimental work exists to find out whether GRNs might constrain novel gene 60 

expression phenotypes, and what the mechanistic causes of such constraints might be. These 61 

questions require us to study the relationship between genotypic and phenotypic changes in 62 
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GRNs. Computational models of gene regulation provide one avenue to understand such 63 

genotype-phenotype maps (Ciliberti et al., 2007a, b; Cotterell and Sharpe, 2010; Francois, 64 

2014; Francois et al., 2007; Ma et al., 2006; MacCarthy et al., 2003; Payne and Wagner, 2015; 65 

Wagner, 2005a). Such models predict that GRNs with different topologies – qualitatively 66 

different patterns of interaction between a GRN’s genes – can achieve the same gene expression 67 

phenotypes, while they differ in their ability to bring forth novel phenotypes through DNA 68 

mutations (Ciliberti et al., 2007a, b; Francois et al., 2007; Jimenez et al., 2015; MacCarthy et 69 

al., 2003; Payne and Wagner, 2015). However, experimental validation of the latter prediction 70 

is still lacking. 71 

 72 

To help fill these gaps in experimental evidence, we here use the toolbox of synthetic biology. 73 

It allows us to create novel GRNs by assembling well-characterised parts. We are therefore no 74 

longer limited to studying GRNs in situ, that is, in one or few well-studied organisms where 75 

influences of genetic background or environment may be difficult to control. Instead, we can 76 

construct and modify GRNs to understand the properties and potential of GRNs to create novel 77 

phenotypes (Bodi et al., 2017; Davies, 2017; Lim et al., 2013; Mukherji and van Oudenaarden, 78 

2009; Wall et al., 2004; Wang et al., 2016). We previously built multiple 3-gene synthetic 79 

networks that display the same gene expression phenotype, but create this phenotype through 80 

different regulatory mechanisms (Schaerli et al., 2014) – different regulatory dynamics and 81 

regulatory interactions among network genes resulting in different spatiotemporal gene 82 

expression profiles (Cotterell and Sharpe, 2010; Jimenez et al., 2015; Schaerli et al., 2014). The 83 

final phenotype is a “stripe” of gene expression (low-high-low) along a spatial axis in response 84 

to a chemical concentration gradient that is analogous to a morphogen gradient in development. 85 

A GRN’s ability to “interpret” a gradient by producing such stripes is crucial in the development 86 

of many organisms and body structures, such as axial patterning of the Drosophila embryo and 87 

vertebrate neural tube differentiation (Lander, 2007; Rogers and Schier, 2011; Sagner and 88 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 30, 2018. ; https://doi.org/10.1101/184325doi: bioRxiv preprint 

https://doi.org/10.1101/184325
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

5 
 

Briscoe, 2017; Stanojevic et al., 1991; Wolpert, 1996). The question of which regulatory 89 

mechanisms can produce stripes is therefore itself crucial for developmental genetics (Cotterell 90 

and Sharpe, 2010; Francois et al., 2007). Here we go beyond this question to ask whether 91 

different GRNs that have the same phenotype (a “stripe” of gene expression) can produce 92 

different novel (i.e., “non-stripe”) gene expression phenotypes in response to mutations, and if 93 

so, why.  94 

 95 

Specifically, we use here two synthetic circuits that employ different regulatory mechanisms to 96 

produce a striped gene expression pattern. Both of these circuits are hosted by Escherichia coli 97 

bacteria. When these bacteria are grown as a lawn in the presence of a concentration gradient 98 

of the morphogen analogue, they display a spatially striped gene expression pattern (Fig. 1 c). 99 

We introduced random mutations into the regulatory regions of these circuits, and analysed the 100 

resulting phenotypes. The two circuits indeed produce a different spectrum of novel gene 101 

expression phenotypes. That is, the gene expression variation they produce is constrained. To 102 

identify the mechanistic causes of these constraints, we combined experimental DNA sequence 103 

and phenotypic data with a mathematical model of gene expression dynamics.  104 

 105 

Results 106 

Two networks with distinct regulatory mechanisms differ in their mutant phenotype 107 

distributions 108 

Fig. 1 shows the topologies (Fig. 1a) and the molecular implementations (Fig. 1b) of our two 109 

starting networks, which we had constructed and characterized previously (Schaerli et al., 110 

2014). Briefly, their regulatory input is the sugar arabinose, which serves as a molecular 111 

analogue of a developmental morphogen. The arabinose is sensed by the arabinose-responsive 112 

promoter pBAD that acts in a concentration dependent-manner. The observable network output 113 

is fluorescence, which is produced by superfolder green fluorescent protein (GFP) (Pedelacq et 114 
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al., 2006). Positive regulatory interactions are encoded by T7 and SP6 phage RNA polymerases 115 

(RNAPs), which start transcription at T7 or SP6 promoters, respectively. Negative interactions 116 

are encoded by the transcriptional repressors LacI (lactose operon repressor protein) and TetR 117 

(tetracycline repressor). They inhibit transcription when bound to their operator sites (LacO, 118 

TetO), which are placed downstream of promoters. The two networks employ distinct 119 

mechanisms to produce a gene expression stripe pattern (Cotterell and Sharpe, 2010; Jimenez 120 

et al., 2015; Schaerli et al., 2014). We call these mechanisms the “opposing gradients” and the 121 

“concurring gradients” mechanisms. They essentially correspond to the well-studied type 2 122 

and type 3 incoherent feedforward motifs (FFM) (Mangan and Alon, 2003) (see Box 1 for 123 

explanations). Fig. 1c schematically shows the temporal expression profiles of the three genes 124 

and their steady-state profiles (last panel) of the three genes (color-coded as in Fig. 1a) under 125 

varying arabinose concentrations. Whereas the opposing gradients mechanism is known to be 126 

involved in Drosophila melanogaster anterior–posterior patterning (hunchback, knirps, 127 

krüppel) (Jaeger, 2011), to the best of our knowledge the concurring gradients mechanism has 128 

so far not been observed in a natural stripe-forming regulatory network. However, previous 129 

studies added this network to the repertoire of possible stripe-forming mechanisms (Munteanu 130 

et al., 2014; Rodrigo and Elena, 2011; Schaerli et al., 2014). 131 

 132 
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 133 

Figure 1: Topologies, synthetic implementations and expression profiles of the networks 134 

studied a Topologies of the networks using the opposing gradients (left) and concurring 135 

gradients (right) mechanisms. Arrow: activation; small horizontal arrow: constitutive promoter; 136 

bar: repression; red: morphogen input receiver gene; blue: intermediate loop gene; green: stripe 137 

output gene. b Synthetic implementations of the circuits (Schaerli et al., 2014). Open rectangle: 138 

open reading frame; filled rectangle: operator; bent arrow: promoter. All genes carry a 139 

degradation tag (LVA (Andersen et al., 1998) or UmuD (Gonzalez et al., 1998)). Indicated 140 

variants of T7 promoter, SP6 promoter and LacO were used (Schaerli et al., 2014). J23114 and 141 

J23100 are constitutive promoters (http://partsregistry.org/Promoters/Catalog/Anderson). c 142 

Rectangles: Spatiotemporal course of gene expression (colour-coded as in a) for the two 143 
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networks (see Box 1). The expression level of the “green” gene is the phenotypic “output” of 144 

the network. Circles: Bacterial lawns display green fluorescent rings as a function of arabinose 145 

gradients from central paper disks (white). Figure adapted from (Schaerli et al., 2014).  146 

 147 

----------------------------------------------------------------------------------------------------------------- 148 

Box 1. Two starting circuits producing stripes through two different mechanisms 149 

Opposing gradients mechanism (Incoherent FFM type 2): The “red” gene (with the open 150 

reading frames (ORFs) for LacI and TetR encoded on the same transcript) is activated by the 151 

“morphogen” arabinose (vertical arrow). Its products thus form a gradient of increasing 152 

concentration with increasing arabinose concentration. The “blue” gene (LacI) and the “green” 153 

gene (GFP) are expressed from constitutive promoters. However, the “blue” gene is also 154 

repressed by the “red” gene product (TetR). Thus, the “blue” gene product forms an opposing 155 

gradient with respect to the gradient of the “red” gene product. Both the “blue” (LacI) and “red” 156 

(LacI) gene products repress the “green” gene. The GFP thus reaches a high expression only at 157 

medium morphogen concentration where the repression from the “red” and “blue” genes are 158 

low.  159 

Concurring gradients mechanism (Incoherent FFM type 3): The “red” gene (with the ORFs for 160 

SP6 RNA polymerase (RNAP) and LacI encoded on the same transcript) is activated by the 161 

“morphogen” arabinose, just as in the previous circuit. Its expression thus also mimics the 162 

arabinose gradient. However, in this circuit the “red” gene product SP6 RNAP activates the 163 

“blue” gene, which thus forms a concurring gradient with respect to the gradient of the “red” 164 

gene product. The “green” gene is activated by the “blue” gene (T7 RNAP) and repressed by 165 

LacI of the “red” gene. Its maximum expression occurs at medium arabinose concentration 166 

where there is already activation from the “blue” gene, but not yet a high level of repression of 167 

the “red” gene.  168 

----------------------------------------------------------------------------------------------------------------- 169 
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We introduced mutations into the regulatory regions of these two networks by replacing the 170 

wild-type regulatory sequence with semi-randomised weighted oligonucleotides (Isalan, 2006). 171 

Resulting average mutation rates per regulatory regions ranged from 2.6 to 3.5 mutations 172 

(mainly point mutations and <5% of insertions and deletions) per regulatory region with 173 

individual mutants carrying 1 to 9 mutations (SI sequences, SI Table 4). For each of our two 174 

networks, we first generated three libraries of mutant networks in which mutations were 175 

restricted to regulatory regions of the “red”, “blue” or “green” gene (Fig. 1). After plating cells 176 

from a population whose members harboured a synthetic network variant, we randomly picked 177 

colonies, grew them in liquid culture, and measured their GFP expression at low (0%), middle 178 

(0.0002%) and high (0.2%) arabinose concentrations (SI expression). We classified the 179 

observed fluorescence phenotypes into six categories (Fig. 2a) (see Methods for exact 180 

definitions): “stripe”, “increase”, “decrease”, “flat” and “broken” (all expression values below 181 

a threshold) and “other” (phenotypes that do not fall in any of the previous categories).  182 

 183 

Fig. 2b summarises the spectrum of phenotypes we observed after mutagenesis. We first note 184 

that both networks are to some extent robust to mutations; that is, a considerable fraction of 185 

mutations do not change the “stripe” phenotype (black sectors in Fig. 2b). What is more, the 186 

two types of networks we study differ in their robustness. Averaged across the three genes, 45.5 187 

% of analysed mutants preserve the stripe phenotype in the concurring gradients network, 188 

whereas only 32.9% do so in the opposing gradients network. The concurring gradients network 189 

is thus significantly more robust to mutations [Chi-square goodness of fit test, X2 (1, N = 215) 190 

= 13.67, p =0.0002]. Next, we note that within any one of the two networks the novel 191 

phenotypes do not occur at the same frequency, providing evidence for the biased production 192 

of novel phenotypes, where certain types of phenotypes are more common than others.  193 
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 194 

Figure 2: Different networks create different spectra of novel phenotypes after mutation. 195 

a Phenotype categories used in this study. See methods for exact definitions. [ara]: arabinose 196 

concentration. The colours of the axes are used throughout the paper to colour-code the 197 

phenotypes. b Experimentally observed phenotype distributions when mutating one regulatory 198 

region at a time for the opposing (left) and concurring (right) gradients networks. The pie charts 199 

summarise the spectrum of all mutant phenotypes observed in a network. The data is based on 200 

234 and 215 mutants of the opposing and concurring gradients networks, respectively. c The 201 
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GFP expression level (fluorescence normalised by the absorbance) of each individual mutant 202 

at medium arabinose concentration is compared to the GFP expression levels at low (x axis) 203 

and high arabinose (y axis) concentrations. The numbers written close to each phenotype group 204 

are the average mutation rates for that group. We omitted the “broken” phenotype from this 205 

analysis, as the networks with this phenotype do not show any significant GFP expression. d 206 

Experimentally observed phenotype distributions as displayed in b and c, grouped according to 207 

the mutated gene. 208 

 209 

 210 

We also observed differences in the types of novel phenotypes between the two networks. For 211 

example, 8.2% of mutants of the opposing gradients networks show a “flat” GFP expression 212 

phenotype, where the GFP expression is invariant to arabinose concentrations (yellow sector in 213 

Fig. 2b). In contrast, mutations in the concurring gradients network did not produce a single 214 

such phenotype. In addition, mutations in the opposing gradients network are more likely to 215 

create a “decrease” phenotype (purple, 29.8% of all novel phenotypes) rather than an “increase” 216 

phenotype (orange, 15.4%). For the concurring gradients network, the opposite is true: 217 

Mutations are more likely to create “increase” (23.0%) rather than “decrease” (18.1%) 218 

phenotypes. 219 

Next, we analysed the GFP expression levels of the measured phenotypes quantitatively (Fig. 220 

2c). To this end we compared the GFP expression at medium arabinose concentration to those 221 

at high (y axis) and at low arabinose concentrations (x axis). We note that the previously 222 

classified phenotypes (Fig. 2a) form well-separated clusters in this analysis. For example, 223 

networks in the bottom-right quadrant correspond to “stripe” phenotypes, because their pattern 224 

is described as an increase (positive x-axis) followed by a decrease (negative y-axis) in 225 

expression. Consequently, “decrease” and “increase” phenotypes occupy the upper-right and 226 

bottom-left quadrants, respectively. We also sequenced the mutated regulatory regions of all 227 

analysed networks, and find a weak association between the number of mutations a network 228 
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carries, and the extent to which its observed phenotype differs from the starting stripe phenotype 229 

(as quantified through the Euclidean distance) (SI Figure 2).  230 

 231 

Subsequently, we analysed the differences in novel phenotypes created by mutations in specific 232 

regulatory regions (i.e. of the “red”, “blue” or “green” gene). Within any one of the two network 233 

types, regulatory mutations in the “red” gene most often create “increase” phenotypes (Fig. 2d, 234 

pie charts left to the “red” genes), whereas those in the “blue” gene most often create “decrease” 235 

phenotypes (Fig. 2d, pie charts at the bottom of the “blue” genes), and those in the “green” gene 236 

preferably create “broken” phenotypes (Fig. 2d, pie charts to the right of the “green” genes). As 237 

a consequence, not all phenotypes can be reached by introducing mutations in the regulatory 238 

region of any of the three genes. For example, in the opposing gradient network, the “increase” 239 

phenotype is only reachable by introducing mutations into the “red” gene, but not in the “blue” 240 

and “green” genes.  241 

The two networks differ in the spectrum of novel phenotypes that mutations in individual genes 242 

create, which is especially obvious for mutations in the “green” gene: Unless regulatory 243 

mutations in this gene lead to a complete loss of expression (“broken”), the opposing gradients 244 

network is >5 times more likely to create a “flat” phenotype (23.2 %) than a “decrease” 245 

phenotype (4.1 %). In contrast, the concurrent gradients network does not produce any “flat” 246 

phenotype at all, but readily produces “increase” phenotypes (4.5 %). In sum, mutations in 247 

networks which start with the same phenotype (single stripe formation), but which have 248 

alternative topologies and regulatory mechanisms, create different kinds of novel phenotypes. 249 

Hence, phenotypic variation is subject to constraints, and these constraints differ between 250 

regulatory regions and networks. 251 

  252 
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Differences in constrained variation can be explained by differences in the regulatory 253 

mechanisms behind stripe formation 254 

We next asked whether the regulatory mechanisms contributing to stripe formation can help 255 

explain these phenotypic constraints. In doing so, we focused on novel phenotypes produced 256 

by regulatory mutations in the “green” gene, because such mutations produced the most distinct 257 

spectrum of novel phenotypes (Fig. 2d). Also, the regulation of this gene is most complex, 258 

because it receives two regulatory inputs instead of just one for the other genes (Fig. 1). (Similar 259 

analyses for the “red” and “blue” genes can be found in SI Figures 3-5.) 260 

To address this question, we first used a mathematical model that we had developed previously 261 

and validated experimentally to describe the regulatory dynamics of our networks (Schaerli et 262 

al., 2014). Briefly, the model uses Hill-like functions to represent gene regulation changes based 263 

on equilibrium binding of transcription factors to their DNA binding sites (Bintu et al., 2005) 264 

(see Table 1 and SI Tables 1 - 2 for details). The unmutated (“wild-type”) model for each circuit 265 

used parameter values determined in our previous study (Schaerli et al., 2014). Into these 266 

models we now introduced quantitative changes in the parameters relating to the promoter 267 

activity (binding constants of activators and transcription rates) and to the operator activity 268 

(binding constants of repressors), in order to predict phenotypes that are accessible by mutations 269 

(see Methods for details). We represent the unmutated network as a point in parameter space, 270 

and study regions near this point that are accessible by mutations, and the novel phenotypes 271 

they contain (Dichtel-Danjoy and Felix, 2004). For each parameter we varied, we chose to 272 

examine a uniform distribution in a range between zero and 110% of the starting/wild-type 273 

parameter values, because available mutagenesis data for the components used in the “green” 274 

genes of our synthetic circuits (Imburgio et al., 2000; Niland et al., 1996; Shin et al., 2000) 275 

suggest that most mutations decrease a parameter value rather than increasing it. 276 

  277 
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Definition Name Parameter relates to 

Opposing gradients 

 

𝐺𝐹𝑃 =
𝑎 + 𝑏(𝑐 𝐿𝑎𝑐𝐼)𝑛

1 + (𝑐 𝐿𝑎𝑐𝐼)𝑛
 

 

𝑎 

𝑏 

𝑐 

𝑛 

 

basal transcription rates from the free promoter 

transcription rate when LacI is bound 

binding constant of LacI 

Hill coefficient (multimerization or cooperativity) 

Concurring gradients 

 

 

𝐺𝐹𝑃 = 

𝑎 + 𝑏(𝑐 𝑇7)𝑛 + 𝑒𝑓(𝑐 𝑇7)𝑛(𝑑 𝐿𝑎𝑐𝐼)𝑚

1 + (𝑐 𝑇7)𝑛 + (𝑑 𝐿𝑎𝑐𝐼)𝑚 + 𝑓(𝑐 𝑇7)𝑛(𝑑 𝐿𝑎𝑐𝐼)𝑚
 

 

 

  

𝑎 

𝑏 

𝑐 

𝑑 

𝑒 

𝑓 

𝑛 

𝑚 

 

basal transcription rate in absence of T7 RNAP 

transcription rate when T7 RNAP is bound 

binding constant of T7 RNAP 

binding constant of LacI 

transcription rate when T7 RNAP + LacI are bound 

cooperativity/competition constant of T7 RNAP/LacI 

Hill coefficient (multimerization or cooperativity) 

Hill coefficient (multimerization or cooperativity) 

Table 1: Model (Schaerli et al., 2014) and biological meaning of parameters for the “green” 278 

genes of the opposing and concurring gradients networks, respectively. The complete model 279 

for both networks can be found in the SI Tables 1-2.  280 

 281 

We visualise the results in phenotype diagrams (Fig. 3a and SI Fig. 2), which are projections of 282 

the higher-dimensional parameter space onto two dimensions (Jimenez et al., 2015). These 283 

diagrams are built as pixelated images in which for every combination of parameter values (or 284 

‘pixel’) the model predicts the resulting phenotype and assigns the corresponding colour (see 285 

legend, Fig. 3a). In those diagrams, a parameter value of 100% corresponds to the wild-type 286 

value and other values in this region are expressed as a percentage of the wild-type value. For 287 

example, the black region in Fig. 3 corresponds to mutant parameter combinations that maintain 288 

the “stripe” phenotype. Its area is therefore a measure for a network’s robustness to parameter 289 

changes. The value of those diagrams is that they provide information on which parameters 290 

must be mutated, and by how much, in order to access a given phenotype.  291 

 292 
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For each of the novel phenotypes observed experimentally when mutating the regulatory region 293 

of the “green” gene (Fig. 2b), some “mutated” model parameter values exist which reproduce 294 

the phenotype (Fig. 3a). However, the phenotype diagrams of the two networks (Fig. 3a) are 295 

visually very distinct, indicating that the two networks have different potentials to access 296 

specific phenotypes. Specifically, for the opposing gradients network we find regions 297 

corresponding to the “broken” (grey), “decrease” (purple), “flat” (yellow) and “other” (beige) 298 

phenotypes, whereas for the concurring gradients network we find regions for the “broken” and 299 

“increase” (orange) phenotypes – corresponding to the phenotypes observed experimentally 300 

when mutating the “green” gene (Fig. 2d). Especially instructive are mutants with strongly 301 

decreased repressor binding (i.e. reduced operator activity, arrows in Fig. 3a). Such mutants 302 

produce a “flat” phenotype (yellow region) in the opposing gradient network, but an “increase” 303 

phenotype (orange region) in the concurring gradient network (Fig. 3a). In other words, even 304 

though both networks contain the same operator (LacO) in the “green” gene, the model predicts 305 

that identical operator mutations can lead to different novel phenotypes. Fig. 3b illustrates how 306 

this is possible: If an operator mutation removes the incoming negative interaction of the 307 

“green” gene in the opposing gradient network, the constitutive promoter becomes the sole 308 

driver of “green” gene expression. Consequently, GFP expression becomes independent of 309 

arabinose concentrations, which results in a “flat” phenotype. In contrast, after removing the 310 

repression of the “green” gene in the concurring gradient network, the “green” gene is still 311 

regulated by the activating “blue” gene (T7 RNAP) in an arabinose dependent-manner. Hence, 312 

in this mutant circuit, GFP expression increases with increasing arabinose concentrations. In 313 

sum, different biases in the production of novel phenotypes can be explained by differences in 314 

the regulatory mechanisms of the networks. 315 
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 316 

Figure 3: The same parameter change leads to different phenotypes in the two network 317 

types. a Phenotype diagrams for parameters that describe the activity of the “green” gene. 318 

Horizontal and vertical axes indicate promoter and operator activities of the “green” gene 319 

relative to the wild-type value (WT, 100%). All parameters affecting the promoter or operator 320 

were varied jointly and to the same extent. Colours indicate phenotypes predicted by the model 321 

over the whole range of promoter and operator activity values. White squares indicate the 322 

parameter combination of the unmutated circuit, which produces the “stripe” phenotype, and 323 

white lines are visual guides that project these values onto the two parameter axes. Arrows point 324 

to the phenotype observed when operator activity decreases to a value near zero percent. b 325 

Schematic drawing of how a strong reduction in operator activity of the “green” gene affects 326 

gene expression patterns differently in the two types of networks. Insets: Topologies of the 327 

networks, with dashed lines indicating interactions affected by mutations in the operator.  328 

 329 

Sequence analysis confirms phenotype diagram predictions of constrained phenotypic 330 

variation 331 

We next validated the predictions made by our phenotype diagrams with DNA sequence 332 

analysis. To this end, we analysed the sequences of the regulatory regions of the “green” genes 333 

we had mutagenised. Because many mutagenised circuits have multiple regulatory mutations, 334 
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we first categorised circuits according to the number of mutations that they contained, and 335 

studied the frequency of observed phenotypes in each category (Figure 4a, large diagrams: All 336 

mutations). We followed the same procedure for the subsets of circuits that have mutations only 337 

in the promoter sequence or only in the operator sequence (Fig. 4a, smaller diagrams). This 338 

categorisation reveals that mutations in the operator produce a “flat” phenotype in the opposing 339 

gradient network, but an “increase” phenotype in the concurring gradient network (Fig. 4a, 340 

smaller diagrams), thus validating model predictions (Fig. 3). In addition, the model predicts 341 

that mutations in the operator of the opposing gradient network are able to produce a “decrease” 342 

phenotype (Fig. 3a). Even though we did not find a circuit with a “decrease” phenotype that has 343 

only operator mutations, all circuits with this phenotype carry at least one mutation in the 344 

operator (and additional mutations in the promoter, SI sequences). 345 

 346 

Subsequently, we analysed the locations of mutations in networks with a given phenotype in 347 

greater detail (Fig. 4b for mutations in the “green” gene, SI Fig 5 for mutations in the other 348 

genes). Many networks carry mutations in both the promoter and the operator. Nevertheless, 349 

for the “flat” phenotype of the concurring gradients network, operator mutations are 350 

significantly enriched [Chi-square goodness of fit test, X2 (1, N = 59) = 7.64, p =0.006], as 351 

predicted by the model (Fig. 3). For the “decrease” phenotype in the opposing gradients network 352 

and the “increase” phenotype in the concurring gradients network our dataset is too small to 353 

detect the predicted enrichment of operator mutations.  354 

 355 

Especially informative are those mutants with a novel phenotype that carry only a single point 356 

mutation (red arrows in Fig. 4b). Among them are two different mutants of the opposing 357 

gradient network with a “flat” phenotype. The mutations in them affect the two central 358 

nucleotides of the Lac operator, which are known to be critical for operator function (Falcon 359 

and Matthews, 2000; Kalodimos et al., 2001; Lehming et al., 1987; Zhang and Gottlieb, 1995). 360 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 30, 2018. ; https://doi.org/10.1101/184325doi: bioRxiv preprint 

https://doi.org/10.1101/184325
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

18 
 

Mutations in these positions reduce the operator’s binding affinity for the LacI repressor 361 

dramatically (Lehming et al., 1987), and the observed “flat” phenotype for these mutants 362 

supports our phenotype diagram predictions. 363 

 364 

 365 

Figure 4: Sequence analysis of the regulatory regions. a Distribution of observed phenotypes 366 

of mutant circuits with mutations in the regulatory region of the “green” gene. Phenotypes are 367 

colour-coded (legend). Smaller graphs to the right indicate the subset of networks that have 368 

mutations only in the promoter or only in the operator. The data is based on 73 and 67 mutants 369 

of the opposing and concurring gradients networks, respectively. b Wild-type sequences of 370 

regulatory regions (top of each panel, important elements labelled and coloured) together with 371 

the number of mutations at each site of a regulatory region that produce phenotypes of a given 372 

kind (bar-charts below sequence, phenotypes labelled and colour-coded). The height of each 373 

bar corresponds to the number of mutant networks with a mutation at a given position, where 374 

these mutations produced the indicated phenotype. Only phenotypes produced by at least three 375 

mutant circuits are shown. Red arrows indicate genotypes that can produce a novel phenotype 376 

with a single mutation at the indicated position. 377 

  378 
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Regulatory mechanisms influence the phenotype distributions more than the actual 379 

parameters of the network  380 

So far, we demonstrated that each of the two analysed networks yields a biased spectrum of 381 

novel phenotypes after mutation, and that two networks with different regulatory mechanisms 382 

yield different spectra of novel phenotypes. However, these spectra may not be influenced only 383 

by a network’s regulatory mechanisms. They may also differ among networks with the same 384 

topology and the same regulatory mechanism, but with quantitative differences in the 385 

biochemical parameters that determine a networks gene expression pattern. To find out whether 386 

this is the case, we performed the following experiments: We took two mutant stripe-forming 387 

networks of the concurring gradient mechanism with mutations in all three genes (mutants A 388 

and B) and introduced further mutations into their “green” regulatory regions. Fig. 5a shows 389 

the resulting phenotype distributions and compares them to the initial (“wild-type”, WT) 390 

network. As in the WT network, we observe “stripe”, “broken” and “increase” phenotypes in 391 

the mutants. However, the figure also shows that the proportions of these phenotypes differ 392 

among the networks. In addition, 3% (mutant A) and 1.3% (mutant B) of the two concurring 393 

gradient network variants displayed a “decrease” phenotype. This suggests that by making 394 

“neutral” or “silent” genetic changes in a regulatory network that do not affect its (“stripe”) 395 

phenotype new phenotypes can become accessible through further mutations (Dichtel-Danjoy 396 

and Felix, 2004; Schuster et al., 1994; Wagner, 2011). Nevertheless, the phenotype distributions 397 

observed for the three networks with the concurring gradients mechanism are more similar to 398 

each other than to the one of the opposing gradients network (Fig. 5b). For example, we did not 399 

observe any “flat” phenotype – a phenotype very frequently produced by mutations in the 400 

opposing gradients network. In sum, based on these experiments, the evolution of new 401 

phenotypes in our study networks are more constrained by the regulatory mechanism itself than 402 

by the actual network parameters.  403 
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 404 

Figure 5: Phenotypes are more constrained by the regulatory mechanism itself than by 405 

the actual network parameters a Mutations were introduced into the “green” genes of three 406 

concurring gradients networks with different biochemical parameters. The pie charts display 407 

the observed phenotype distributions. The data is based on 68 (WT, Fig. 2d), 67 (mutant A) and 408 

77 (mutant B) variants. b For comparison, we show again the phenotype distribution of the 409 

“green” gene of the opposing gradients network (Fig. 2d). 410 

 411 

 412 

Phenotype distributions can be explained by the model  413 

Encouraged by the agreement between phenotype diagrams and mutational data, we also aimed 414 

to see whether a model of mutational effects can correctly fit the frequencies instead of just the 415 

kinds of phenotypes caused by mutations. To find out, we simulated the effects of mutations by 416 

changing specific parameters of the model. If a mutation affected a gene’s promoter (or 417 

operator), we changed all the parameters determining promoter (or operator) activity. Some 418 

parameters were changed to the same extent (i.e. we set the parameters to the same percentage 419 

of their wild-type parameter value), because a mutation is likely to affect these specific 420 

parameters in a similar way (SI Table 3). The changed parameters were drawn from a uniform 421 

distribution, and for each parameter we aimed to identify upper and lower bounds for this 422 

distribution that give the best possible agreement between the experimental and model data (SI 423 

Table 3). Guided by the phenotype diagrams, we were indeed able to identify such bounds, 424 

which enabled our model to reproduce experimental phenotype distributions for all three genes 425 

well (Table 2) and in particular for the “blue” and “green” genes where Chi-square tests indicate 426 

no significant difference (p>0.05) between the experimental and model phenotype distributions.  427 
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For 20 out of 25 parameters the lower and upper bounds of the identified intervals were equal 428 

or below the WT parameter value (=100%), consistent with the notion that most random 429 

mutations will disrupt molecular interactions and thus decrease the corresponding parameter’s 430 

value, which is also in agreement with available mutagenesis data of the components used in 431 

our synthetic circuits (Imburgio et al., 2000; Niland et al., 1996; Shin et al., 2000). The first 432 

exception were the parameter values describing the basal transcription promoter activity 433 

(“leakiness”) of the (pBAD) promoter in the “red” genes of both networks (opposing gradients: 434 

aT, aL, concurring gradients: aL, aS). These values have upper bounds higher than 100% of the 435 

unmutated (WT) value (SI Table 3), which is consistent with the DNA looping mechanism of 436 

the pBAD promoter (Lobell and Schleif, 1990) (see SI “Discussion of lower and upper bounds 437 

of the parameter intervals” for details). The second exception was the basal transcription 438 

promoter activity (“leakiness”) of the SP6 promoter in the concurring gradient network (aT). It 439 

also has an upper bound higher than 100% of the unmutated (WT) value (SI Table 3). This was 440 

unexpected and led us to discover a context dependent effect in the plasmid we used to express 441 

the synthetic circuits (see SI “Discussion of lower and upper bounds of the parameter intervals” 442 

for details). In sum, we were able to reproduce the experimental phenotype distributions with 443 

our model by identifying ranges in which “mutated” parameters fall. Moreover, these ranges 444 

are in agreement with known mutational effects. 445 

 446 

The most significant difference between the phenotype distributions of the experiments and the 447 

model is the fraction of networks displaying phenotypes in the “other” category, which is 448 

consistently higher in the model predictions than in our experimental data. This can be 449 

explained by the fact that we excluded any network from further analysis that displayed 450 

phenotypes falling into different categories in at least one of three replicate phenotype 451 

measurements (see Methods for details). This was often the case for the “other” phenotype, 452 
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because it is situated in a narrow range of the phenotype diagram between two other phenotype 453 

categories. For example, networks show this phenotype if they have lower expression levels at 454 

low and high arabinose concentrations than at medium arabinose concentration, but neither 455 

satisfy our (stringent) definition of a “stripe”, nor that of any of the other phenotype definitions 456 

(see e.g. in Fig. 3a for opposing gradient network). Small amounts of variation in replicate 457 

phenotype measurements can therefore lead to different phenotype classifications between 458 

replicates (and subsequent exclusion of a network from further analysis) in our experiments, 459 

but not in the model, which does not incorporate this source of variation.  460 

 461 

 462 

Table 2: Experimentally observed phenotype distributions for the “red”, “blue” and 463 

“green” genes can be reproduced by the model. e: Experimentally observed phenotype 464 

distributions (in %) when mutating one regulatory region at the time (Fig. 2d). m: Phenotype 465 

distributions produced by the model when mutating one regulatory region at a time.  466 

 467 

Non-additive interactions of mutations in multiple regulatory regions are explained by 468 

the regulatory mechanisms of the networks 469 

Because mutations rarely occur in isolation in a single gene, we next asked whether mutations 470 

in different regulatory regions independently affect gene expression phenotypes. To this end, 471 

we pooled networks with mutations in single regulatory regions to obtain networks with 472 

mutations in the regulatory regions of two or three genes. We then measured the gene 473 

expression phenotypes of these multiple-gene mutants (SI expression) and sequenced their 474 

e m e m e m e m e m e m

stripe 44.3 48.1 23.5 27.4 31.5 27.6 30.4 14.8 49.3 45.3 56.7 54.1

increase 45.6 24.1 0.0 0.0 0.0 0.0 64.6 75.9 0.0 0.0 4.5 1.8

decrease 8.9 11.5 76.5 67.5 4.1 7.2 5.1 2.6 49.3 42.9 0.0 0.0

flat 1.3 7.5 0.0 0.0 23.3 14.8 0.0 1.7 0.0 0.0 0.0 0.0

broken 0.0 0.0 0.0 0.0 39.7 44.0 0.0 0.0 0.0 1.1 38.8 43.7

other 0.0 8.8 0.0 5.1 1.4 6.5 0.0 5.1 1.4 10.7 0.0 0.4

Opposing gradients Concurring gradients

red blue green red blue green
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regulatory regions (SI sequences). Fig. 6b shows the resulting distribution of phenotypes. 475 

Similar to the one-gene mutants (Fig. 2b, repeated in Fig. 6a), some phenotypes occur more 476 

frequently than others, and the opposing and concurring gradient networks produce any one 477 

phenotype at different frequencies.  478 

 479 

 480 

Figure 6: Mutations in multiple regulatory regions interact non-additively. a 481 

Experimentally observed phenotype distributions when mutating one regulatory region at a time 482 

for the opposing (top) and concurring (bottom) gradients networks. Data redisplayed from Fig. 483 

2b to facilitate comparison with b Experimentally observed phenotypes of networks with at 484 

least two mutated regulatory regions. The data is based on 36 and 41 mutant networks for the 485 

opposing (top) and concurring (bottom) gradients mechanisms, respectively. c Phenotype 486 

distributions produced by the model when simultaneously mutating multiple regulatory regions.  487 

 488 

 489 

Regardless of the regulatory mechanism, the frequencies of novel phenotypes differed 490 

significantly between networks with mutations in multiple versus single genes (Fig. 6a and 6b; 491 

opposing: [Chi-square, X2 (4, N = 36) = 41.7, p <0.0001]; concurring: [Chi-square, X2 (4, N = 492 

41) = 167.0, p <0.0001]). For example, both networks produce the “flat” phenotype in response 493 
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to multiple mutations, but the concurring gradient networks did not produce this phenotype in 494 

response to single-gene mutations (compare yellow sectors in Fig. 6a and 6b).  495 

 496 

Because the phenotypes we observed in the multiple-gene mutants are not just additive 497 

superpositions or “sums” of phenotypes observed when the mutations occur separately, the 498 

mutations in the different genes must interact non-additively (epistatically) to produce novel 499 

phenotypes, such that a mutation’s phenotypic effect depends on the genetic background in 500 

which it occurs (Lehner, 2011; Mackay, 2014).  501 

In SI Fig. 6 we show an experimental example of how mutations in the “green” and “blue” 502 

genes can interact to produce a “flat” phenotype in the opposing gradient network: The network 503 

with the mutated “green” gene maintains the “stripe” phenotype (SI Fig. 6a) and the network 504 

with the mutated “blue” gene leads to a “decrease” phenotype (SI Fig. 6b). When these two 505 

mutations are combined, the resulting phenotype is “flat” (SI Fig. 5c). Importantly, this new 506 

phenotype cannot just be explained as an additive superposition of the two individual 507 

phenotypes. 508 

To understand the phenotype distributions of the multiple-gene mutants and in particular, the 509 

non-additive interactions, we turned again to our model. Analogous to the experiments, we now 510 

changed parameters of multiple genes simultaneously, within the exact same ranges as used to 511 

model single-gene mutants (SI table 3). The resulting phenotype distributions (Fig. 6c, SI Table 512 

5) predict the experimentally observed distributions (Fig. 6b) very well, with a Chi-Square test 513 

indicating no significant difference between experiment and prediction (opposing: [Chi-square, 514 

X2 (5, N = 36) = 6.962, p = 0.2235]; concurring: [Chi-square, X2 (5, N = 41) = 5.552, p = 515 

0.3522]). This implies that both constrained variation and non-additive interactions of 516 

mutational effects are a direct consequence of how individual network genes interact with each 517 

other.  518 

  519 
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Discussion 520 

Mutations in regulatory regions of GRNs play a crucial role in evolutionary adaptation and 521 

innovation (Payne and Wagner, 2014; Prud'homme et al., 2007; Wray, 2007). Here, we first 522 

introduced random mutations in the regulatory regions of two synthetic stripe-forming GRNs 523 

(Fig. 1) and analysed the resulting distributions of novel gene expression phenotypes (Fig. 2). 524 

Both networks produced a non-uniform distribution of novel phenotypes and are thus 525 

inconsistent with a naïve expectation (null model) that each non-stripe phenotype is produced 526 

at the same frequency. More interestingly, the different networks displayed different phenotypic 527 

variation and consequently different constraints in the production of novel phenotypes. The 528 

identity of the mutated regulatory region, and non-additive interactions among mutations in 529 

multiple regions also influenced these constraints.  530 

A mathematical model describing the regulatory mechanisms of the two networks allowed us 531 

to understand the differences between accessible novel phenotypes for the two networks (Fig. 532 

2 and 3). The model predictions are also supported by DNA sequencing data (Fig. 4). We thus 533 

provide for the first time empirical evidence that GRNs with different regulatory mechanisms 534 

can cause different constrained variation, as was recently proposed (Jimenez et al., 2015). We 535 

also provide experimental evidence that the mechanism by which a network produces a stripe 536 

constrains the origin of novel expression phenotypes more than quantitative parameters driving 537 

gene expression dynamics (Fig. 5).  538 

Comparisons of GRNs in related species indicate that they indeed solve the problem of 539 

producing a specific adaptive phenotype in many different ways, and that these solutions 540 

diverge substantially on evolutionary time scales, even when the ultimate phenotype stays 541 

qualitatively the same (Dalal and Johnson, 2017; Johnson, 2017; Savageau, 1983; True and 542 

Haag, 2001; Weiss and Fullerton, 2000). Examples include the GRN that regulates mating in 543 

yeast: Even though both Saccharomyces cerevisiae and Candida albicans produce two mating 544 

types (a-cells and α-cells), the circuit responsible for determining these mating type has changed 545 
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substantially during evolution (Sorrells et al., 2015; Tsong et al., 2006). Why a specific GRNs 546 

and not one its alternatives evolves remains an open and important question (Carroll, 2008). In 547 

an attempt to understand the rules that govern this selection, Savageau formulated its “demand 548 

rule” (Savageau, 1977). He observed that activators and repressors can achieve the same 549 

regulatory goals, but that frequently expressed genes tend to be regulated by activators (positive 550 

mode), whereas rarely expressed genes tend to be regulated by repressors (negative mode). 551 

These differences can be explained by the fact that the negative and positive regulatory modes 552 

can lead to different phenotypes upon mutation and the error-load caused by a mutation is 553 

different, favouring one or the other mode of regulation (Savageau, 1977, 1983, 1998a, b). 554 

While Savageau's work focuses on maintaining the initial regulation, our observations show 555 

that seemingly equivalent solutions to solve a biological problem are also distinct on what 556 

qualitatively novel phenotypes (which might be adaptive) are accessible.  557 

 558 

While evolutionary constraints are an important concept in evolutionary theory (Arnold, 1992; 559 

Smith et al., 1985), few experimental studies have aimed to detect or quantify them (Allen et 560 

al., 2008; Beldade et al., 2002; Bolstad et al., 2015; de Vos et al., 2015; de Vos et al., 2013; 561 

Frankino et al., 2005; Lagator et al., 2016; Lagator et al., 2017a; Teotonio and Rose, 2000; Zalts 562 

and Yanai, 2017). These studies emphasize the importance of natural selection in determining 563 

the outcome of adaptive evolution (Beldade et al., 2002; Frankino et al., 2005), but they also 564 

show that evolution of development can be biased by the constrained production of phenotypes 565 

(Allen et al., 2008; Bolstad et al., 2015; Kiontke et al., 2007). Laboratory selection experiments 566 

have proven to be a powerful tool for detecting evolutionary constraints (Allen et al., 2008; 567 

Bolstad et al., 2015; Kiontke et al., 2007), for example in the colour pattern of butterfly wing 568 

spots (Allen et al., 2008). However, they have been less successful in disentangling their genetic 569 

and developmental causes (Arnold, 1992; Wagner, 2011). This is not surprising, because 570 

studying the evolution of developmental GRNs in a multicellular organism is extremely 571 
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difficult: GRNs are complex, highly interconnected, often incompletely understood, and their 572 

genes may be highly pleiotropic, serving multiple functions outside any one GRN (Stearns, 573 

2010). In addition, essential molecular tools for manipulating GRNs are often unavailable, 574 

especially in non-model organisms.  575 

 576 

Experimental studies on proteins (Harms and Thornton, 2013; Miller et al., 2006) and cis-577 

regulatory elements (de Vos et al., 2015; de Vos et al., 2013; Lagator et al., 2016; Lagator et 578 

al., 2017a) with simple phenotypes have demonstrated how structure-function relationships of 579 

macromolecules can constrain evolution. Here, we extend this approach to nonlinear GRNs by 580 

studying synthetic circuits in E. coli (Fig. 1). We performed experiments with easily modifiable, 581 

well characterised synthetic circuits that are not essential for the survival of their host organism. 582 

However, the chosen phenotype – stripe formation in a chemical gradient – is crucial for 583 

embryonic development of many organisms and body structures (Lander, 2007; Rogers and 584 

Schier, 2011; Sagner and Briscoe, 2017; Stanojevic et al., 1991; Wolpert, 1996). For example, 585 

an opposing gradients network is part of the gap network responsible for axial patterning in the 586 

Drosophila embryo (Jaeger, 2011). And while a lawn of E. coli cells carrying a synthetic GRN 587 

does not capture the complexity of a developing animal, this reduced complexity also allowed 588 

us to study the potential of GRNs to bias phenotype production without confounding effects.  589 

 590 

Recent developmental and quantitative genetics studies demonstrated that epistatic interactions 591 

among genes are of paramount importance in determining phenotypes (Haag, 2007; Lagator et 592 

al., 2017a; Lehner, 2011; Mackay, 2014). For example, experiments in D. melanogaster have 593 

shown that the phenotypic effects of variation in single genes depend heavily on the genetic 594 

background, and they do so for phenotypes as varied as bristle shape and number, haltere and 595 

eye size, and wing morphology (reviewed in (Lehner, 2011; Mackay, 2014)). Non-linear 596 

regulatory mechanisms of gene regulation such as those we study are one possible cause of 597 
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epistatic interactions (Lehner, 2011). To our knowledge, our study shows for the first time that 598 

non-additive interactions in a nonlinear gene regulatory network help produce constrained 599 

phenotypic variation. These interactions enabled the origin of novel phenotypes that were not 600 

observed when we mutated a single gene (e.g., the “flat” phenotype in concurring gradients 601 

network, SI Fig. 6). Our results suggest that these epistatic interactions can also be predicted, if 602 

the corresponding GRN, its regulatory mechanism, and the effect of mutations in single 603 

regulatory regions are known. This observation complements a recent study suggesting that 604 

epistatic interactions between mutations in transcription factors and DNA-binding sites are 605 

determined by regulatory network structure (Lagator et al., 2017b). Ultimately, understanding 606 

the nonlinearities inherent in complex biological systems will be essential to understand how 607 

such systems constrain the production of phenotypes. 608 

 609 

Since the 19th century, Darwinian evolutionary biology has focused on natural selection and its 610 

power to shape populations and species. Natural selection, however, requires phenotypic 611 

variation, and the molecular mechanisms by which DNA mutations produce novel phenotypes 612 

have only become understood in recent years. While orthodox evolutionary theory assumed, 613 

often tacitly, that DNA mutations may produce any kind of variation (Mayr, 1963), the 614 

discovery of constrained phenotypic variation challenged this view (Arnold, 1992; Smith et al., 615 

1985). As we show here, constrained variation in simple yet important spatial gene expression 616 

patterns can be explained by the simple fact that genes are embedded in regulatory networks. 617 

What is more, the regulatory mechanisms of these GRNs can help explain why specific gene 618 

expression patterns originate preferentially. Given the pervasive nonlinearity of gene regulatory 619 

networks (Davidson, 2006), we surmise that constraints like those we observe are inherent in 620 

biological pattern forming systems. Future work will show whether they can also influence the 621 

trajectories of adaptive evolution. 622 

 623 
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Materials and Methods 624 

Media 625 

Cloning experiments used Luria-Bertani medium (LB:10 g Bacto-tryptone, 5 g yeast extract, 626 

10 g NaCl per 1 l) supplemented with appropriate antibiotic (100 μg/ml ampicillin, 30 μg/ml 627 

kanamycin or 50 μg/ml spectinomycin). Experiments with the complete synthetic circuits used 628 

'Stripe Medium' (SM: LB plus 0.4% (w/v) glucose, 50 μg/ml ampicillin, 15 μg/ml kanamycin 629 

and 25 μg/ml spectinomycin). For the opposing gradients network SM was supplemented with 630 

5 μM isopropyl β-D-1-thiogalactopyranoside (IPTG). 631 

 632 

Molecular cloning reagents 633 

Restriction enzymes and T4 DNA ligase were purchased from New England BioLabs (NEB). 634 

Oligonucleotides were obtained from Microsynth and chemicals were obtained from Sigma-635 

Aldrich. Polymerase Chain Reactions (PCRs) were carried out with KOD Hot Start polymerase 636 

(MERCK MILLIPORE). Plasmids were purified using the QIAprep Spin Miniprep Kit 637 

(QIAGEN). 638 

 639 

Generation of libraries 640 

Two stripe-forming synthetic circuits of our previous work (Schaerli et al., 2014) which 641 

implemented the opposing gradients mechanism (GenBank accession codes of plasmids: 642 

KM229377, KM229382, KM229387) and the concurring gradients mechanism (GenBank 643 

accession codes of plasmids: KM229378, KM229383, KM229388) were used as starting points 644 

(“wild-types”, WT) of our experiments.  645 

 646 

Mutating one regulatory region of a circuit at a time 647 

Oligonucleotides covering the regulatory regions of these circuits were synthesised with 648 

weighted base mixtures (Isalan, 2006). That is, four custom-weighted phosphoramidite 649 
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mixtures were prepared, with the WT base pair constituting 95% and each of the other bases 650 

constituting 1.67% of any one mixture. These mixtures were used to randomise the regulatory 651 

regions (Table 3) during oligonucleotide synthesis (Microsynth). These semi-randomised 652 

weighted single-stranded oligonucleotides (2 µM) were annealed to a reverse primer (Table 4, 653 

2.4 µM) to render them double-stranded by primer extension (2 min 95º C, cooling down to 72º 654 

C in 7 min, 10 min 72º C). The resulting library of double-stranded oligonucleotides was then 655 

purified with the QIAquick nucleotide removal kit (QIAGEN). Next, these double-stranded 656 

oligonucleotides encoding the mutated regulatory regions were cloned into the plasmid 657 

encoding the gene whose regulatory region was to be mutated. For the “blue” and “green” 658 

regulatory regions this was done by restriction enzyme digest and ligation. For the “red” 659 

regulatory region Gibson assembly (Gibson et al., 2009) was performed instead. 660 

 661 

The cloning of the “blue” and “green” regulatory regions by restriction enzyme digest and 662 

ligation was performed as follows: double-stranded oligonucleotides encoding one of the 663 

regions were digested with EcoRI and SacI. The plasmid into which the region was to be 664 

inserted was also digested with EcoRI and SacI, dephosphorylated with CIP, and gel purified 665 

(QIAquick gel extraction kit, QIAGEN). The double-stranded digested oligonucleotide library 666 

(25 ng) was then ligated into the cut plasmid (70 ng).  667 

 668 

The cloning of the “red” regulatory regions by Gibson assembly was performed as follows: The 669 

plasmid into which the region was to be inserted was first amplified using the primers 670 

pBAD_Gibson_f and pBAD_Gibson_r (Table 4), and was then assembled with the double-671 

stranded oligonucleotide library using the Gibson assembly master mix (NEB). Due to a 672 

mistake in primer design, Gibson assembly produced a two-nucleotide deletion (CT) 673 

downstream of the pBAD promoter. Therefore, the library contains sequences with and without 674 

this deletion. We confirmed that this change did not affect the initial “stripe” phenotype.  675 
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Ligation (“blue” and “green” regulatory regions) and Gibson assembly reaction products (“red” 676 

regulatory region) were transformed into electrocompetent MK01 cells (Kogenaru and Tans, 677 

2014) that carried already the two other plasmids necessary to complete the synthetic circuit. 678 

Transformants were plated out on SM-agar plates. 679 

 680 

Mutating multiple regulatory regions of a circuit 681 

For experiments where multiple regulatory regions of a circuit were to be mutated at the same 682 

time, cloning was performed as described above for mutating one regulatory region at a time. 683 

However, instead of transforming plasmids with mutagenised regulatory regions directly into 684 

MK01 cells, ligation products and Gibson assembly reaction products were first transformed 685 

into electrocompetent NEBα cells, and plated out on LB-agar plates containing the appropriate 686 

antibiotic (100 μg/ml ampicillin, 30 μg/ml kanamycin or 50 μg/ml spectinomycin). All colonies 687 

were resuspended in LB, diluted 100-fold into LB containing the appropriate antibiotic, and 688 

grown overnight. Plasmids libraries were extracted from the resulting culture (QIAprep Spin 689 

Miniprep Kit, QIAGEN). The extracted plasmid libraries were mixed with plasmids containing 690 

no mutations in a ratio of 70:30 to generate mutant circuits that have mutations in two or three 691 

genes. The resulting plasmid mix was transformed into electrocompetent MK01 cells 692 

(Kogenaru and Tans, 2014). Circuits that had no mutations or only mutations in one gene were 693 

not considered in the analysis. 694 

  695 
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Network

+ gene 

Weighted olignonucleotide for randomisation (5' -> 3') 

OG1  

red 

CGTCACACTTTGCTATGCCATAGCATTTTTATCCATAAGATTAGCGGTTCCTACCTGA

CGCTTTTTATCGCAACTCTCTACTGTTTCTCCATACCGAATTCATTTCACC 

OG  

blue 

ATTGGAATTCTTTATGGCTAGCTCAGTCCTAGGTACAATGCTAGCGAAGGGTCCCTAT

CAGTGATAGAGAGAGCTCGTTGAGTTACCTGC 

OG green ATTGGAATTCTTGACGGCTAGCTCAGTCCTAGGTACAGTGCTAGCGAAGGGAATTGT

TATCCGGATAACAATTCCGAGCTCGTTGAGTTACCTGC 

CG2  

red 

CGTCACACTTTGCTATGCCATAGCATTTTTATCCATAAGATTAGCGGTTCCTACCTGA

CGCTTTTTATCGCAACTCTCTACTGTTTCTCCATACCGAATTCATTTCACC 

CG  

blue 

ATTGGAATTCATTTTGGTGACACTATAGAAGGGGCCAAGCAGGGGGCCAAGCAGGG

GGCCAAGGAGCTCGTTGAGTTACCTGC 

CG green ATTGGAATTCTAATACGACTCACTGTAGGGGAATTGTTATCCGGATAACAATTCCGA

GCTCGTTGAGTTACCTGC 

CG green 

mutant A 

ATTGGAATTCTAATACGACTCACTGTAGGGGAATTGTTAACCGGATAACAATTCCGA

GCTCGTTGAGTTACCTGC 

CG green 

mutant  

B 

ATTGGAATTCTTAATACGACTCACTGTAGGTGAATTGTTATCCGGATAACATTCCGAG

CTCGTTGAGTTACCTGC 

Table 3: Sequences of oligonucleotides synthesized with weighted base mixtures. The 696 

underlined region was randomised, the remaining sequence was constant. 1OG: opposing 697 

gradient network; 2CG: concurring gradient network 698 

  699 
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name sequence (5' -> 3') 

rev_green/blue GCAGGTAACTCAACGAGCTC 

rev_red GGTGAAATGAATTCGGTATGGA 

pBAD_Gibson_f TCCATACCGAATTCATTTCACC 

pBAD_Gibson_r AGTGTGACGCCGTGCAAATAATC 

Table 4: Sequences of primers used for cloning 700 

 701 

name sequence (5' -> 3') used to sequence 

pET_Seq CCGAAAAGTGCCACCTGAC OG green  

pET_Seq_Amp GACACGGAAATGTTGAATACTCATAC CG green, OG green 

pBAD_f GCCGTCACTGCGTCTTTTAC OG red, CG red 

pCDF_Seq_ori GAGTTCGCAGAGGATTTGTTTAGC OG blue, CG blue 

pCDF_I2_rev TCTACTGAACCGCTCTAG OG blue 

Table 5: Sequences of primers used for sequencing 702 

 703 

Fluorescence measurements of mutagenised circuits 704 

Colonies were picked from agar plates, inoculated into SM medium in a single well of a 96-705 

well plate and grown overnight. Each plate also contained three clones of the WT circuit and a 706 

“blank” (SM medium only). A glycerol stock plate was prepared from the overnight cultures. 707 

This plate was used to inoculate three further 96-well overnight pre-culture plates with SM 708 

medium. Five µl of each well from the 96-well plate were transferred to four wells of a 384-709 

well plate containing 55 µl of SM medium, arabinose, and IPTG. Specifically, the four wells 710 

contained the following amounts of arabinose and IPTG:  711 

1) 0% arabinose (“low”) 712 

2) 0.0002% arabinose (“medium”)  713 

3) 0.2% arabinose (“high”) 714 
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4) 0.2% arabinose with 700 µM IPTG for the opposing gradients network and 0.2% arabinose 715 

with 100 µM IPTG for the concurring gradients network (“metabolic load control”, see section 716 

“Phenotype classification, metabolic load” for details).  717 

The pipetting steps for this part of the experiment were carried out with a manual pipetting 718 

system (Rainin Liquidator 96, METTLER TOLEDO).  719 

 720 

The 384-well plate was incubated at 37 °C in a Tecan plate reader (Infinite F200 Pro or SPARK 721 

10M) until the E. coli cells had reached stationary phase (approximately 5 h). During this 722 

incubation absorbance at 600 nm and green fluorescence (excitation: 485 nm, emission: 520 723 

nm) were measured every 10 min. Between readings, plates were shaken continually (orbital, 2 724 

mm). Plates were incubated and read with their lids in place to reduce evaporation. Absorbance 725 

and green fluorescence was measured for each colony in three independent experiments, each 726 

started from a separate pre-culture plate. 727 

 728 

Analysis 729 

The time-point when the fluorescence of the WT network at the medium arabinose 730 

concentration (0.0002%) peaked was chosen for further analysis of all fluorescence 731 

measurements. The background fluorescence of the SM medium was subtracted from each 732 

culture’s fluorescence. Likewise, the background absorbance was subtracted from each 733 

culture’s absorbance. Background-corrected fluorescence was then normalised for the number 734 

of cells by dividing it by the background-corrected absorbance. This background corrected 735 

normalised fluorescence (nF) was used for all further analyses.  736 

All expression data is listed in the file “SI expression”. 737 

  738 
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Exclusions  739 

A circuit was excluded from further analysis if  740 

(i) any of its nF values (except the one at 0% arabinose) was smaller than zero 741 

or 742 

(ii) the absorbance of the circuit differed by more than 0.1 from the absorbance of the WT 743 

controls in any of the four conditions (which indicates a substantially different growth 744 

rate of the circuit) 745 

or 746 

(iii) it suffered from metabolic load (see below) 747 

 748 

Metabolic load: The 4th condition (highest arabinose concentration with IPTG) served as a 749 

metabolic load control. We previously noted that expressing the genes of synthetic networks at 750 

high levels can induce a strong bacterial stress response that affects the expression of genes and 751 

the growth rate of the cell (Schaerli et al., 2014). This can lead to a spurious “stripe” phenotype 752 

caused by a stress-induced GFP expression that is shut down at the highest arabinose 753 

concentration (Schaerli et al., 2014). We therefore checked for each circuit whether it suffers 754 

from this metabolic load problem. To this end, we removed LacI repression at the highest of 755 

our three arabinose conditions through addition of IPTG. Without repression, we are no longer 756 

expecting to observe a “stripe” phenotype. If the observed phenotype is nevertheless a “stripe”, 757 

this is a strong indication that the network suffers from metabolic load. Specifically, a circuit 758 

was excluded due to high metabolic load if its nF value in the 4th condition was lower than 90% 759 

of its nF value at the medium arabinose concentration, and if the nF value at the medium 760 

arabinose concentration was higher than the corresponding nF of the WT controls (we know 761 

that expression levels as high as that of the WT do not induce metabolic load (Schaerli et al., 762 

2014)). 763 

  764 
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Phenotypic categories 765 

All mutant circuits that remained after the filtering procedure just described were classified into 766 

the following phenotypic categories (in this order): 767 

 768 

Broken: A threshold value of nF below which a phenotype was considered “broken” was 769 

defined as follows: For the opposing gradients networks, nF needed to lie below the nF of the 770 

WT controls at the highest of our three arabinose concentrations. For the concurring gradients 771 

networks, nF needed to lie below 1/3 of the nF of the WT controls at this highest arabinose 772 

concentration. Any circuit whose nF was below this threshold in all four conditions was 773 

assigned the “broken” phenotype. The reason for the different definitions of the threshold for 774 

the two networks is that the WT concurring gradient network circuit has a much higher level of 775 

basal fluorescence. 776 

 777 

Flat: The average nF at the lowest, medium and highest arabinose concentration was calculated. 778 

If all three nFs differed by less than 10% from this average, the circuit was assigned the “flat” 779 

phenotype. 780 

 781 

Decrease: If the following three statements were true, the mutant circuit was assigned the 782 

“decrease” phenotype: 783 

1) The nF at the lowest arabinose concentration was higher than 90% of the nF at the 784 

medium arabinose concentration.  785 

2) The nF at the medium arabinose concentration was higher than 90% of the nF at the 786 

highest arabinose concentration.  787 

3) The nF at the lowest arabinose concentration was higher than 120% of the nF at the 788 

highest arabinose concentration. 789 

 790 
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Increase: If the following three statements were true, the mutant was assigned the “increase” 791 

phenotype: 792 

1) The nF at the highest arabinose concentration was higher than 90% of the nF at the 793 

medium arabinose concentration.  794 

2) The nF at the medium arabinose concentration was higher than 90% of the nF at the 795 

lowest arabinose concentration.  796 

3) The nF at the highest arabinose concentration was higher than 120% of the nF at the 797 

lowest arabinose concentration. 798 

 799 

Stripe: If the nF at medium arabinose concentration was higher than 120% of the nF at the 800 

lowest and highest arabinose concentrations, the mutant was assigned the “stripe” phenotype.  801 

 802 

Other: Any phenotype that did not fall into one of the previous categories. 803 

 804 

Sequencing 805 

The mutagenised region(s) of all circuits whose phenotype fell into one of our six main 806 

categories, and did so consistently in three independent measurements were sent for Sanger 807 

sequencing (High-throughput service, Microsynth, see Table 5 for primers).  808 

 809 

Mutagenised circuits with WT regulatory sequences despite mutagenesis, with polymorphic 810 

nucleotides in the sequences (mainly due to transformation of multiple plasmid variants into 811 

the same cell) or with cloning artefacts (shortened or multiple regulatory regions) were 812 

discarded. The remaining mutants were used for the phenotypic statistics we report, and their 813 

sequences were analysed further. Pairwise alignment to the WT sequence was performed with 814 

the Biopython (Cock et al., 2009) Bio.pairwise2 module. A custom-made Python script was 815 
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used to categorise mutations as point mutations, insertions, or deletions, and to identify their 816 

positions.  817 

 818 

All sequences are listed in the SI sequences.  819 

 820 

Experimental confirmation of rare observed phenotypes  821 

Phenotypes observed fewer than three times in a library (except “others”) were experimentally 822 

confirmed. The fluorescence output of these circuits was measured in a 96-well plate assay as 823 

described previously (Schaerli et al., 2014) at the arabinose concentrations also used in the 386-824 

well plate assay. If the phenotypes of the two assays did not agree, the circuits were excluded 825 

from the data set. 826 

 827 

Experimental confirmation of epistasis (SI Fig. 6) 828 

The plasmids from mutant 4_4_f (see SI sequences) were isolated. For SI Fig. 5a the mutated 829 

plasmid coding for the “green” gene was transformed together with the WT plasmids for the 830 

“blue” and “red” genes into electrocompetent MK01 cells (Kogenaru and Tans, 2014). For SI 831 

Fig. 5b the mutated plasmid coding for the “blue” gene was transformed together with the WT 832 

plasmids for the “green” and “red” genes into electrocompetent MK01 cells (Kogenaru and 833 

Tans, 2014). For SI Fig. 5c the initial 4_4_f mutant was assayed (the “red” gene is not mutated). 834 

The fluorescent phenotypes were measured in a 96-well plate assay as described (Schaerli et 835 

al., 2014) at the following arabinose concentrations (w/v): 0.2%, 0.02%, 0.002%, 0.0002%, 836 

0.00002%, 0%.  837 
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Statistical tests 838 

Chi-square goodness of fit tests (Snedecor and Cochran, 1989) were used to compare observed 839 

and expected frequencies. An online tool (https://graphpad.com/quickcalcs/chisquared1.cfm) 840 

was used to perform the calculations. 841 

 842 

Phenotype diagrams 843 

A previously developed and experimentally validated model was used to describe the regulatory 844 

dynamics of our networks (see SI Tables 1 and 2 for details) (Schaerli et al., 2014). To generate 845 

phenotype diagrams a custom-made Python script was written that systematically varies the 846 

combinations of two or more parameters between 0-110% (for the “blue” and “green” genes) 847 

or 0-200% (for the “red” genes) of the wild-type parameter value in 1000 steps. Analogously 848 

to our experiments for each parameter combination the model’s phenotype was evaluated at 3  849 

arabinose concentrations (0%, 0.000195%, 0.2% for opposing gradients network and 0%, 850 

0.000195%, 0.1% for concurring gradients network). In order to allocate the obtained GFP 851 

expression pattern to a phenotype category the same rules as described above for the 852 

experimental data (“Phenotypic categories”) were used. An R script (R Development Core 853 

Team, 2016) was applied to create a digital image where every pixel corresponds to a 854 

combination of parameter values and has a colour corresponding to the model’s phenotype. For 855 

SI Fig. 3, combinations of two parameters as indicated on the axes were varied. For Fig. 3a 856 

multiple parameters affecting the promoter or operator were varied jointly and to the same 857 

extent. For the opposing gradients network, these were parameters a and b for promoter activity, 858 

and parameter c for operator activity. For the concurring gradients network these were 859 

parameters b, c and e for promoter activity and parameter d for operator activity.   860 
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Distributions of novel phenotypes 861 

In order to fit quantitatively the distributions of novel phenotypes for the single-gene mutants 862 

and predict the distributions of novel phenotypes for the multiple-gene mutants a custom-made 863 

Python scripts was used. We first discuss the single-gene mutants: 864 

Multiple iterations of a procedure were performed that consisted of the following three steps: 865 

First, a series of simulated mutants was created. For each gene, a random binary vector whose 866 

length corresponds to the number of nucleotides in the regulatory sequence (SI Table 4) was 867 

generated. In this binary vector 0’s and 1’s indicate whether a nucleotide is not mutated (0) or 868 

mutated (1), and the probability to obtain either 0 or 1 is given by the average mutation rate 869 

extracted from the experimental sequencing data (SI Table 4). For every network, it was then 870 

assessed which genes were mutated, according to the entries of this vector. For the single-gene 871 

mutants, mutants that had only one gene mutated were selected. This process was repeated until 872 

1000 single-gene mutants had been obtained. For a particular mutant, all parameters related to 873 

the mutated sequence were varied (see SI Tables 1-3). A given single-gene mutant had either 874 

only its promoter mutated, only its operator mutated, or both. If a mutation affected the 875 

promoter (operator), all parameters determining promoter (operator) activity were changed (SI 876 

Table 3). A subset of the changed parameters was varied jointly and to the same extent (i.e. all 877 

of them were changed to same percentage of their wild-type parameter value), because a 878 

mutation is likely to affect these parameters in a similar way (SI Table 3). New (mutant) 879 

parameters were chosen according to a standard uniform distribution between upper and lower 880 

ranges which were kept constant for a given model iteration.  881 

Second, for each mutant the phenotype of the model (SI Tables 1 and 2) was evaluated at 3 882 

arabinose concentrations (0%, 0.000195%, 0.2% for opposing gradients network and 0%, 883 

0.000195%, 0.1% for concurring gradients network). In order to allocate the resulting GFP 884 

expression pattern to a phenotype category the same rules as described above for the 885 

experimental data (“Phenotypic categories”) were used. 886 
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Third, the obtained phenotype distribution of the 1000 assessed mutants was compared to the 887 

experimentally observed phenotype distribution.  888 

After each iteration of these three steps, the upper and lower ranges of each parameter were 889 

manually adjusted to best fit the results of the model to the phenotype distributions observed in 890 

the experimental data (see SI “Discussion of intervals”). Finally, the best upper and lower 891 

ranges for each mutant parameter distribution were kept (SI Table 3) and used to produce Fig. 892 

2c.  893 

To predict the distributions of novel phenotypes for the multiple-gene mutants (Fig. 2e) the 894 

same procedure was used, with the following modifications: 1) only mutants containing more 895 

than one mutated gene were kept for analysis. 2) The upper and lower ranges of the parameter 896 

distributions were not adjusted, but the intervals derived from the single-gene mutants were 897 

used (SI Table 3). 3) Only one iteration of the three steps above was performed. 898 

 899 

Schematic drawings 900 

Fig. 3b contains schematic depictions, based on the mathematical model. The model uses the 901 

parameters as in SI tables 1-2 with following changes: 902 

Fig. 3b: opposing gradient (left): Parameter c of the “green” gene was changed from 0.103 to 903 

0; concurring gradient (right): Parameter c of the “green” gene was changed from 16.5 to 0. 904 
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