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ABSTRACT 1	

Temporal data on gene expression and context-specific open chromatin states can 2	

improve identification of key transcription factors (TFs) and the gene regulatory 3	

networks (GRNs) controlling cellular differentiation. However, their integration 4	

remains challenging. Here, we delineate a general approach for data-driven and 5	

unbiased identification of key TFs and dynamic GRNs, called EPIC-DREM. We 6	

generated time-series transcriptomic and epigenomic profiles during differentiation of 7	

mouse multipotent bone marrow stromal cells (MSCs) towards adipocytes and 8	

osteoblasts. Using our novel approach we constructed time-resolved GRNs for both 9	

lineages. To prioritize the identified shared regulators, we mapped dynamic super-10	

enhancers in both lineages and associated them to target genes with correlated 11	

expression profiles. We identified aryl hydrocarbon receptor (AHR) as a 12	

mesenchymal key TF controlled by a dynamic cluster of MSC-specific super-13	

enhancers that become repressed in both lineages. AHR represses differentiation-14	

induced genes such as Notch3 and we propose AHR to function as a guardian of 15	

mesenchymal multipotency. 16	

 17	

 18	
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INTRODUCTION 1	

Understanding the gene regulatory interactions underlying cell differentiation and 2	

identity has become increasingly important, especially in regenerative medicine. 3	

Efficient and specific reprogramming of cells towards desired differentiated cell types 4	

relies on understanding of the cell type-specific regulators and their targets  (Rackham 5	

et al., 2016).  Similarly, knowledge of the regulatory wiring  in the intermediate stages 6	

might allow controlled partial dedifferentiation, and thereby endogenous regeneration, 7	

also in mammals (Aguirre et al., 2014). 8	

Great progress has been made in reconstruction of GRNs for various cell types in 9	

recent years. While successful, many of the approaches derive their regulatory 10	

interactions from existing literature and databases, which may be limiting as the 11	

majority of enhancers harboring transcription factor (TF) binding sites are cell type-12	

specific (Consortium et al., 2014). Thus, the regulatory interactions derived from 13	

existing databases and literature might be misleading and are likely to miss important 14	

interactions that have not been observed in other cell types. Therefore, context-15	

specific expression data have been used to overcome such biases and allow a data-16	

driven network reconstruction (Janky et al., 2014). In addition, other approaches 17	

taking advantage of time-series data, such as Dynamic Regulatory Events Miner 18	

(DREM) (Schulz et al., 2012), have been developed to allow hierarchical 19	

identification of the regulatory interactions. However, while time-series epigenomic 20	

data has been used in different studies to derive time point-specific GRNs (Ramirez et 21	

al., 2017) (Goode et al., 2016), systematic approaches that integrate the different types 22	

of data in an intuitive and automated way are missing.  23	

The central key genes of biological networks under multi-way regulation by many 24	

TFs and signaling pathways were recently shown to be enriched for disease genes and 25	
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are often controlled through so called super-enhancers (SEs), large regulatory regions 1	

characterized by broad signals for enhancer marks like H3 lysine 27 acetylation 2	

(H3K27ac) (Galhardo et al., 2015) (Hnisz et al., 2013) (Parker et al., 2013) (Siersbaek 3	

et al., 2014). Hundreds of SEs can be identified per cell type, many of which are cell 4	

type- or lineage-specific and usually control genes that are important for the identity 5	

of the given cell type or condition. Thus, SE mapping can facilitate unbiased 6	

identification of novel key genes. 7	

An example of lineage specification events with biomedical relevance is the 8	

differentiation of multipotent bone marrow stromal progenitor cells (MSCs) towards 9	

two mesenchymal cell types: osteoblasts and bone marrow adipocytes. Due to their 10	

shared progenitor cells, there is a reciprocal balance in the relationship between 11	

osteoblasts and bone marrow adipocytes. Proper osteoblast differentiation and 12	

maturation towards osteocytes is important in bone fracture healing and osteoporosis 13	

and osteoblast secreted hormones like osteocalcin can influence insulin resistance 14	

(Lee et al., 2007) (Silva & Kousteni, 2012). At the same time bone marrow 15	

adipocytes, that occupy as much as 70% of the human bone marrow (Fazeli et al., 16	

2013), are a major source of hormones promoting metabolic health, including insulin 17	

sensitivity (Cawthorn et al., 2014). Moreover, increased commitment of the MSCs 18	

towards the adipogenic lineage upon obesity and aging was recently shown to inhibit 19	

both bone healing and the hematopoietic niche (Ambrosi et al., 2017). 20	

Extensive temporal epigenomic analysis of osteoblastogenesis has been recently 21	

reported (Wu et al., 2017). However, a parallel investigation of two lineages 22	

originating from the same progenitor cells can help to understand both the lineage-23	

specific and the shared regulators important for their (de)differentiation. To identify 24	

shared regulators of adipocyte and osteoblast commitment and to delineate a general 25	
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approach for systematic unbiased identification of key regulators, we performed time-1	

series epigenomic and transcriptomic profiling at 6 different time points over 15 day 2	

differentiation MSCs towards both lineages. We combine segmentation-based TF 3	

binding predictions from time point-specific active enhancer data (Schmidt et al., 4	

2017) with probabilistic modeling of temporal gene expression data (Schulz et al., 5	

2012) to derive dynamic GRNs for both lineages. By merging overlapping SEs 6	

identified using H3K27ac signal from different time points we obtained dynamic 7	

profiles of SE activity across the two differentiations and use these dynamic SEs to 8	

prioritize the key regulators identified through the network reconstruction. With this 9	

approach, we identify aryl hydrocarbon receptor (AHR) as a central regulator of 10	

multipotent MSCs under dynamic control from 4 adjacent SEs that become repressed 11	

in the differentiated cells. The AHR repression allows upregulation of many 12	

adipocyte- and osteoblast-specific genes, including Notch3, a conserved 13	

developmental regulator.  14	

 15	

RESULTS 16	

A subset of differentially expressed genes are shared between adipocyte and 17	

osteoblast differentiation 18	

To identify shared regulators of MSC differentiation towards adipocytes and 19	

osteoblasts, and to delineate a general approach for a systematic unbiased 20	

identification of key regulators, we performed time-series ChIP-seq and RNA-seq 21	

profiling at 6 different time points over 15 days of differentiation of mouse ST2 22	

MSCs (Figure 1A). Using ChIP-seq, genome-wide profiles of three different histone 23	

modifications, indicating active transcription start sites (TSS) (H3K4me3), active 24	

enhancers (H3K27ac), and on-going transcription (H3K36me3) were generated. 25	
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These data were complemented by corresponding time-series RNA-seq analysis. 1	

Importantly, at genome-wide level all the histone modifications showed good 2	

correlation with the RNA-seq data across the time points (Pearson correlation co-3	

efficients of approximately 0.5), further arguing for the reproducibility of the obtained 4	

results (Becker et al. in preparation). The successful differentiations were confirmed 5	

by induced expression of known lineage-specific marker genes and microscopic 6	

inspection of cellular morphology and stainings (Supplementary Figure S1). 7	

Interestingly, profiles of the adipogenic marker genes resembled those reported for the 8	

yellow adipose tissue (YAT) found in the bone marrow, rather than classic white 9	

adipose tissue (WAT) (Scheller et al., 2016), consistent with ST2 cells originating 10	

from bone marrow stroma (Figure S1A). Moreover, the expression profiles of Sp7 and 11	

Runx2 were consistent to those previously reported for mouse osteoblasts (Yoshida et 12	

al., 2012). 13	

Principal component analysis of the obtained transcriptome profiles confirmed the 14	

specification of the cells towards two different lineages with differential temporal 15	

dynamics (Figure 1B). Osteoblastogenesis was accompanied by gradual and 16	

consistent progression towards a more differentiated cell type while adipogenesis 17	

showed more complex dynamics with a big transcriptome shift after one day of 18	

differentiation, followed by a more gradual progression during the following days. 19	

This is in keeping with the change in the composition of the differentiation medium 20	

from day 2 onwards (see Methods for details). In total the adipocyte differentiation 21	

was characterized by 5156 significantly differentially expressed genes (log2FC>1, 22	

FDR<0.05) compared to the MSCs (Figure 1C; Supplementary Table S1). During 23	

osteoblast differentiation 2072 genes were dfifferentially expressed. 1401 of these 24	

genes were affected in both lineages. However, as illustrated by the top 100 genes 25	
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with highest variance across the time points and depicted in the heatmap in Figure 1D, 1	

most genes exhibit either lineage-specific or opposing behavior between the lineages. 2	

Only a subset of genes showed similar changes in both lineages (Figure 1D), thus, 3	

narrowing the list of genes that could serve as shared regulators of both differentiation 4	

or dedifferentiation processes. 5	

 6	

Unbiased data-driven derivation of context-specific dynamic regulatory 7	

networks of adipocyte and osteoblast differentiation using EPIC-DREM 8	

In order to take an unbiased and data-driven approach that can benefit from the time 9	

series profiles, we have developed a new method to predict condition-specific TF 10	

binding using footprint calling in H3K27ac data and TF motif annotation  (Gusmao et 11	

al., 2016) (Roider et al., 2007) (Schmidt et al., 2017). Our approach uses a novel 12	

randomization strategy, which accurately accounts for differences in footprint lengths 13	

and GC-content bias, to assess the significance of TF binding affinity values for each 14	

condition or time point (Figure 2). These time point-specific predictions can be 15	

combined with the DREM approach (Schulz et al., 2012) to construct lineage-specific 16	

networks that are supported by epigenetics data (called EPIC-DREM, Figure 2). 17	

At first we have used 78 TF ChIP-seq datasets from three ENCODE cell lines 18	

(GM12878, HepG2, and K562) to test the ability of our approach to prioritize 19	

condition-specific TF binding sites using this pipeline. Using a p-value cutoff < 0.05 20	

we obtained accurate cell-type specific TF binding predictions with a median 21	

precision of ~70%  without a major decrease in recall (Supplementary Figure S2) and, 22	

thus, used the same cut-off for our time-series differentiation data. 23	
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We applied EPIC-DREM to the analysis for each timepoint of the two differentiation 1	

time series. Depending on the time point and lineage we predicted 0.6 to 1.4 million 2	

footprints per time point, consistent with previous reports on the presence of 3	

approximately 1.1 million DNase-seq footprints per cell type (Neph et al., 2012). 4	

These footprints were annotated with TFs that show expression in the differentiation 5	

series and associated to genes within 50 kb to obtain the TF scores per gene and per 6	

time point  (see Methods and Figure 2). The full matrix of the time point-specific TF-7	

target gene interactions per lineage can be downloaded at (Gerard et al., 2017). 8	

The derived matrix of the predicted time point-specific TF-target gene interactions 9	

was combined with the time series gene expression data to serve as input for DREM 10	

to identify bifurcation events, where genes split into paths of co-expressed genes 11	

(Figure 2 and 3). Knowing the time point-specific TF-target gene interactions allows 12	

to associate split points and paths with the key TFs regulating them. Figure 3 shows 13	

the split points and the paths of co-expressed genes identified for adipocyte (Figure 14	

3A) and osteoblast (Figure 3B) differentiation. The total number of TFs controlling 15	

the individual paths are indicated with the top TFs per path listed (based on their fold 16	

change (FC) and split score; see Supplementary Table S2 for all TFs per split).  17	

Inspection of the identified key TFs confirmed many known positive (e.g. CEBPA, 18	

CEBPB, PPARG, and STAT5A/STAT5B) and negative (e.g. HES1 and GATA2) 19	

regulators of adipocyte differentiation (Farmer, 2006), to be among the TFs 20	

controlling the genes in the induced paths, while becoming up- or down-regulated 21	

themselves, respectively (Figure 3A). Interestingly, while not changing in their 22	

expression, TFs like E2F4 were annotated among those with highest split score during 23	

the first day of adipogenesis, consistently with E2F4’s role as early repressor of 24	

adipogenesis whose activity is controlled by its co-repressor p130 (Farmer, 2006). At 25	
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the same time E2F7 and E2F8 seem to be associated with regulation of genes first 1	

repressed at early adipogenesis, and then upregulated during the following days 2	

(Figure 3A). 3	

The results of the regulatory network of osteoblastogenesis confirms many known 4	

regulators such as DLX3 (Hassan et al., 2004) , DDIT3 (CHOP) (Shirakawa et al., 5	

2006), ATF4, and FOXO1 (Long, 2011), while revealing many other factors that have 6	

not been previously associated to osteoblast differentiation (Figure 3B). 7	

The analysis identified several TFs that could play a role in both lineages. In keeping 8	

with previous findings using the same ST2 cell line, ID4 was identified by EPIC-9	

DREM as an activator of upregulated genes during osteoblastogenesis, while in 10	

adipocytes ID4 was controlling downregulated genes, thereby favouring the osteoblast 11	

lineage (Tokuzawa et al., 2010). Among other TFs implicated in several different 12	

splits in both lineages we found for example VDR, GLIS1, ARNT2 and AHR. 13	

Taken together, the EPIC-DREM approach can identify many known key regulators 14	

of adipocyte and osteoblast differentiation and predicts additional novel regulators 15	

and the bifurcation events they control in an entirely unbiased manner relying only on 16	

the available time series data.  17	

 18	

Identification of dynamic SEs in adipocyte and osteoblast differentiation 19	

While EPIC-DREM can efficiently identify many of the main regulators of the 20	

differentiation time courses, it still yields a list of tens of TFs. In order to further 21	

prioritize the identified main regulators, we hypothesized that the key TFs of the 22	

differentiation processes would be controlled by SEs with dynamic profiles. To obtain 23	

such profiles of SEs across time points, we first identified all SEs with a width of at 24	
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least 10 kb separately in each of the 10 H3K27ac ChIP-seq data sets from the two 1	

time courses. Next, to allow a quantification of the SE signals across time while also 2	

accounting for the changes in the width of the SEs, we combined all SEs from all time 3	

points with at least 1 nucleotide overlap into one broader genomic region, called a 4	

merged SE. Figure 4A illustrates how the 49 SEs found at the Cxcl12 locus, 5	

producing a chemokine essential for maintenance of the hematopoietic stem cells 6	

(HSCs) (Ambrosi et al., 2017), can be combined into one exceptionally large merged 7	

SE region that enables the quantification of the SE signal across the time. The 8	

normalized read counts under the merged SE region were collected and the relative 9	

SE signals normalized to D0 are shown in Figure 4B. To confirm that the obtained 10	

profile is a reasonable estimate of the SE activity and to see whether it could indeed 11	

be regulating the Cxcl12 gene expression, we compared the SE signal profiles to the 12	

Cxcl12 mRNA profiles. As shown in Figure 4B, in both lineages the SE signal closely 13	

followed the mRNA expression profile with Pearson correlation coefficients of 0.83 14	

and 0.89, respectively. Moreover, similar correlations could be seen for most other 15	

identified merged SEs, further confirming the applicability of our approach. 16	

In total, we identified 1052 merged SEs across the two lineages (Supplementary Table 17	

S3). 120 and 79 merged SEs showed a dynamic profile (log2FC>1 in at least one time 18	

point) in adipocyte and osteoblast differentiation, respectively (Figure 4C-4E). 19	

Consistent with the different dynamics in transcriptomic changes (Figure 1), the 20	

adipocyte SEs could be divided into four separate main profiles based on their 21	

dynamics (Figure 4C; Supplementary Figure S3) while most osteoblast SEs could be 22	

assigned into one of two simple profiles that either increase or decrease in signal over 23	

time (Figure 4D).  24	
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25 dynamic SEs showed changes in both differentiation processes (Figure 4E). Based 1	

on the proximity, presence of H3K4me3-marked TSSs and correlation with the 2	

expression profiles, these SEs could be assigned to 18 separate genes, several of 3	

which have already been implicated in MSCs or cell types derived from them (Figure 4	

4E) (e.g. (Ambrosi et al., 2017) (Gu et al., 2007) (Cui et al., 2007)). However, only 5	

three of the genes, aryl hydrocarbon receptor (Ahr), GLIS family zinc finger 1 (Glis1), 6	

and Meningioma 1 (Mn1), encode TFs and could serve as central nodes in GRNs. 7	

Interestingly, both AHR and GLIS1 were already predicted by EPIC-DREM as 8	

regulators of multiple bifurcation events in both lineages (Figure 3), while MN1 motif 9	

is not included in the motif collection currently used by EPIC-DREM.  Moreover, Ahr 10	

is associated with four separate merged SEs, more than any other TF in our analysis. 11	

Therefore, we next focused on Ahr regulation.   12	

 13	

Ahr is controlled by multiple SEs in MSCs and repressed with lineage-specific 14	

dynamics  15	

The four adjacent merged SEs (SE283, SE284, SE285, and SE286) at Ahr locus together 16	

cover a continuous region over 300 kb of active enhancer signal downstream of the 17	

Ahr gene in the MSCs (Figure 5A and 5B). All four SE regions follow similar 18	

dynamics across the time points (Figure 5A-5D) although SE283 did not pass the FC 19	

cut-off in the initial analysis in Figure 4. Moreover, all four SEs showed a very high 20	

correlation (r>0.95) with Ahr mRNA levels as measured by RNA-seq (Figure 5C-5D, 21	

upper panels) and validated by RT-qPCR (Figure 5C-5D, lower panels). In 22	

adipogenesis Ahr expression is repressed already by D1 and remains repressed 23	

throughout the differentiation. Similarly, the signal from all SE regions is becoming 24	

reduced already after 1 day. In contrast in osteoblasts, the SE regions first show an 25	
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increase in signal on D1, followed by gradual reduction from D3 onwards, consistent 1	

with the Ahr mRNA levels. Finally, in both lineages the repression is accompanied by 2	

a decreased signal of H3K36me3 in the gene body of Ahr, confirming repression at 3	

transcriptional level. 4	

While the newly identified SE cluster at the Ahr locus is also flanked by another 5	

active gene, Snx13, it is unlikely that the SEs contribute to its regulation; during the 6	

differentiations Snx13 shows very few changes in its expression or H3K36me3 signal 7	

(Figure 5A-5B and data not shown). Moreover, inspection of Hi-C data of 8	

surrounding the Ahr locus in different mouse cell types indicates that Ahr and the four 9	

SEs are located in their own topological domain (TAD) separate from the Snx13 gene 10	

(Supplementary Figure S4) ("The 3D Genome Browser,"). 11	

Interestingly, the SEs controlling Ahr appear to be specific for the multipotent MSCs 12	

as only weak H3K27ac signal could be detected in the corresponding genomic region 13	

in mouse 3T3-L1 pre-adipocytes that are more committed towards the white 14	

adipocyte lineage (Figure 5E, (Mikkelsen et al., 2010)). Importantly, the large SE 15	

domains downstream of the Ahr gene could be identified also in human MSCs, but 16	

not in other inspected human cell types, suggesting that the complex regulation of Ahr 17	

expression in these multipotent cells could be conserved and relevant also in human 18	

development (Supplementary Figure S5).  19	

 20	

AHR regulates mesenchymal multipotency through repression of lineage-specific 21	

genes such as Notch3  22	

Based on the above results, we reasoned that Ahr could play an important role in 23	

maintaining MSCs in a multipotent state. Indeed, previous work has separately shown 24	

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 3, 2017. ; https://doi.org/10.1101/183988doi: bioRxiv preprint 

https://doi.org/10.1101/183988
http://creativecommons.org/licenses/by/4.0/


Gerard	et	al.:	Time-series epigenomic profiles of mesenchymal differentiation 
	

	 13	

that both adipogenesis and osteoblastogenesis can be inhibited by toxic compounds 1	

like dioxin that are xenobiotic ligands of AHR (Alexander et al., 1998). (Naruse et al., 2	

2002), (Korkalainen et al., 2009).  3	

While AHR is best known for its role as a xenobiotic receptor, it has been recently 4	

suggested that it could also play a role in stem cell maintenance in HSCs under the 5	

control of endogenous ligands (Gasiewicz, Singh, & Bennett, 2014). We therefore 6	

tested whether the endogenous activity of AHR is important for the maintenance of 7	

the appropriate transcriptional program of the MSCs by knocking down AHR in 8	

undifferentiated cells, or those differentiated for one day towards either lineage 9	

(Figure 6A, Supplementary Figure S6). Two days following the KD total RNA was 10	

extracted and subjected to RNA-seq analysis. 11	

At first, we took advantage of these context-specific KD data to ask whether the 12	

EPIC-DREM predicted primary AHR targets at the corresponding time points were 13	

indeed affected by depletion of AHR. As shown in Figure 6B, at each condition the 14	

predicted AHR targets were significantly more affected by AHR-KD than all genes on 15	

average. Especially the top genes with highest affinity scores for AHR regulation, 16	

were clearly shifted towards more upregulation at each condition, arguing for 17	

functional relevance of the EPIC-DREM predictions and for AHR’s role as 18	

transcriptional repressor. 19	

The number of genes significantly affected by the AHR-KD compared to the 20	

respective control siRNA transfections was greatly dependent on the cellular 21	

condition and ranged from 614 genes in the undifferentiated cells to 722 and 1819 22	

genes in the one day differentiated osteoblasts and adipocytes, respectively (Figure 23	

6B-6D, Supplementary Table S4). The higher extent of genes affected in the 24	

differentiated cells, and especially in the adipocyte lineage, is well in keeping with the 25	
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ratio of genes normally changing in the early osteoblasto- and adipogenesis. This 1	

suggests that early changes induced by the knock-down in the undifferentiated cells 2	

are amplified in the differentiating cells. To further elucidate the role of AHR in the 3	

undifferentiated cells, we asked how the genes deregulated were behaving later in the 4	

normally differentiated D15 adipocytes and osteoblasts. The scatter plots in Figure 6C 5	

indicate the transcriptome changes taking place upon AHR-KD in MSCs compared to 6	

changes of the same genes in the differentiated cell types. As indicated by the colour 7	

coding, approximately half of the genes affected by AHR-KD were also differentially 8	

expressed after normal differentiation (286 in adipocytes and 314 in osteoblasts). 9	

Moreover, genes that were upregulated in AHR-KD were also often induced in the 10	

differentiated cell types (Figure 6C). Therefore AHR might serve as a guardian of the 11	

multipotent state in the undifferentiated cells, with its downregulation allowing 12	

increased expression of the lineage-specific genes, as already suggested by the EPIC-13	

DREM analysis (Figure 3). 14	

To better understand the function of putative AHR target genes in the MSCs, we 15	

overlapped the differentially expressed genes from the undifferentiated cells with 16	

those identified in the two other KD experiments and obtained 266 high-confidence 17	

target genes that were affected in all three conditions (Figure 6D). Enrichment 18	

analysis for tissue-specific expression profiles of these genes in human and mouse 19	

gene atlas databases revealed smooth muscle, adipocytes, and osteoblasts as the most 20	

enriched cell types, where the AHR regulated genes are normally expressed (Figure 21	

6E). Consistently, inspection of publicly available ChIP-seq data from various cell 22	

types revealed the other regulators of the AHR targets to include CEBPB, PPARG, 23	

and NR1H3, all of which are important regulators involved in induction of genes 24	

during adipocyte differentiation (Galhardo et al., 2014) (Nielsen et al., 2008) . 25	
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Taken together, the above findings support a role for AHR as a regulator of lineage-1	

specific genes that need to remain repressed in the multipotent MSCs. Among such 2	

genes induced upon AHR-KD we identified Notch3, a known regulator of cellular 3	

differentiation (Bray, 2016) (Figure 6C). In both differentiation time courses Notch3 4	

expression showed an anti-correlating profile compared Ahr, with Notch3 becoming 5	

induced while Ahr levels decreased (Figure 6F). The Notch3 induction was also 6	

accompanied by increased Notch4 levels in both lineages while the third abundantly 7	

expressed receptor, Notch1, was concomitantly downregulated (Supplementary Figure 8	

S6). Thus, it appears that a reprogramming of Notch signaling could be involved in 9	

the commitment of MSCs and this rewiring is at least partially under AHR-mediated 10	

control.   11	

 12	

DISCUSSION 13	

The ability to obtain unbiased GRNs and to identify their key nodes for any given cell 14	

state transition in a data-driven manner is becoming increasingly relevant for 15	

regenerative and personalized medicine. Understanding such dynamic networks can 16	

be improved by obtaining genome-wide time-series data sets such as transcriptomics 17	

or epigenomics data. To seamlessly integrate such data sets we have combined time 18	

point-specific high accuracy TF binding predictions with probabilistic modeling of 19	

temporal gene expression data and applied it to our own time-series data from 20	

mesenchymal differentiation (Figure 2 and Figure 3). Similar time series data 21	

collections have previously been used to study for example hematopoiesis (Goode et 22	

al., 2016) and myeloid differentiation (Ramirez et al., 2017). However, the derived 23	

dynamic GRNs have relied on experimentally identified TF binding sites, that cover 24	
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only a fraction of all TF-target gene interactions, or on a sub-network of selected TF-1	

TF interactions, respectively.  2	

EPIC-DREM can reveal the key TFs controlling co-expressed gene sets of interest. 3	

Still, consistent with the co-operative nature of TF activity (Siersbaek et al., 2014),  4	

the number of putative master regulators is often very large. Recent work elucidating 5	

the role of SEs in controlling cell type-specific master regulators has provided 6	

researchers with a new tool for data-driven identification of such regulators (Hnisz et 7	

al., 2013) (Parker et al., 2013). We hypothesized that merged SEs with dynamic 8	

behavior during differentiation based on their H3K27ac signal would allow finding 9	

the genes, including the TFs, most relevant for the dynamic process. Indeed, 10	

quantification of merged SEs shows high correlation with expression levels of their 11	

target genes over time, both validating the approach and allowing for more accurate 12	

association of SEs to their target genes (Figure 4). A recent study applied a similar 13	

strategy for SE quantification and further showed that SE dynamics, as measured by 14	

MED1 occupancy, were predictive of enhancer looping to target genes, and 15	

highlighted H3K27ac as the histone modification that best predicted such loop 16	

dynamics, further supporting the validity of our approach (Siersbaek et al., 2017). 17	

Combining EPIC-DREM results and dynamic SE profiling points towards two TFs 18	

with potentially significant roles in both lineages, Ahr and Glis1 (Figure 4). In 19	

addition, dynamic SE profiling supports a role for Mn1. Both Ahr and Glis1, and their 20	

SEs, show an overall reduction in signal during both differentiations, although with 21	

differential and lineage-specific dynamics (Figure 5 and data not shown), suggesting 22	

that they could play an important role in maintaining MSCs. On contrary, the SE 23	

downstream of Mn1 shows an increase in its signal in both lineages (data not shown), 24	

suggesting it could be a general driver of differentiation. Indeed, MN1 has already 25	
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been shown to be targeted by VDR in osteoblasts and to be required for proper 1	

osteoblast differentiation (Meester-Smoor et al., 2005; Sutton et al., 2005; X. Zhang et 2	

al., 2009). Our results suggest a similar role also in adipocytes.  3	

GLIS1 has not been functionally associated to adipocyte or osteoblast differentiation 4	

although recent work has implicated it as differentially expressed in brown adipocyte 5	

differentiation (Pradhan et al., 2017). However, consistent with a potential role in the 6	

multipotent progenitors, GLIS1 has been shown capable of promoting reprogramming 7	

of fibroblasts to induced pluripotent stem cells (iPSCs) (Maekawa et al., 2011). 8	

Further work will be needed to elucidate the role of GLIS1 in MSCs. 9	

Unlike for GLIS1 and MN1, previous work has already linked AHR separately to 10	

inhibition of both adipocyte and osteoblast differentiation through studies on 11	

biological impact of dioxin, an environmental toxin capable of activating AHR 12	

(Alexander et al., 1998), (Naruse et al., 2002), (Korkalainen et al., 2009). In 3T3-L1 13	

adipocytes this inhibition is known to be mediated through overexpression of Ahr in a 14	

dioxin-independent manner (Shimb et al., 2001), while increased levels of Ahr 15	

expression in MSCs in rheumatoid arthritis are inhibitory of osteogenesis (Tong et al., 16	

2017). Still, the biological function of AHR in the MSCs has remained unclear while 17	

maintanance of HSCs, located in the same niche of bone marrow with MSCs, has 18	

been suggested to depend on the normal function of AHR (Gasiewicz et al., 2014). 19	

Moreover, as HSC maintenance also depends on the cytokines and chemokines 20	

provided by the MSCs, AHR is likely to impact HSCs through its gene regulatory 21	

functions in both MSCs and HSCs (Ambrosi et al., 2017) (Boitano et al., 2010) 22	

(Jensen et al., 2003). 23	

Here we show that repression of Ahr in MSC differentiation happens with lineage-24	

specific dynamics and is accompanied by similar reduction in signal of an 25	
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exceptionally large SE cluster downstream of Ahr. Together Ahr and the SEs form 1	

their own TAD in mouse cells and in human cells the SE signal is specific for MSCs. 2	

Analysing the contributions of the different constituents of the Ahr-SEs will be 3	

important for understanding which pathways converge to regulate Ahr in MSCs and 4	

whether they function in a synergistic manner as suggested for some other large SEs 5	

(Hnisz et al., 2015) (Dukler et al., 2016). 6	

AHR depletion in the undifferentiated and early stage differentiated cells confirmed 7	

many of the EPIC-DREM predictions but also revealed an enrichment for lineage-8	

specific genes among AHR targets, including Notch3 (Figure 6). Notch signaling has 9	

been implicated in numeours developmental processes with highly diverse outcomes 10	

(Bray, 2016) and also in MSCs Notch3 regulation is accompanied by changes in other 11	

Notch genes (Supplementary Figure S6). Interestingly, AHR has been recently linked 12	

to regulation of Notch signaling in mouse lymphoid cells and testis (Lee et al., 2011) 13	

(Huang et al., 2016). However, the affected Notch receptors varied depending on the 14	

cell type in question. Notch genes show different expression profiles across tissues 15	

and cell types and Ahr-mediated regulation of Notch signaling could be context-16	

specific depending on the prevailing GRN or chromatin landscape. Curiously, Notch3 17	

has a cell type-selective expression profile, favouring mesenchymal tissues like bone, 18	

muscle and adipose tissue (Wu et al., 2016). 19	

Our approach for identification of the dynamic GRNs and SEs allows key regulator 20	

identification in various time series experiments involving cell state changes. Our 21	

current results together with previous data identify AHR as a likely guardian of 22	

mesenchymal multipotency and provide an extensive resource for further analyses of 23	

mesenchymal lineage commitment. 24	

 25	

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 3, 2017. ; https://doi.org/10.1101/183988doi: bioRxiv preprint 

https://doi.org/10.1101/183988
http://creativecommons.org/licenses/by/4.0/


Gerard	et	al.:	Time-series epigenomic profiles of mesenchymal differentiation 
	

	 19	

METHODS 1	

Cell culture 2	

The mouse MSC line ST2, established from Whitlock-Witte type long-term bone 3	

marrow culture of BC8 mice (Ogawa et al., 1988), was used during all experiments. 4	

Cells were grown in Roswell Park Memorial Institute (RPMI) 1640 medium (Gibco, 5	

Life Technologies, 32404014) supplemented with 10% fetal bovine serum (FBS) 6	

(Gibco, Life Technologies, 10270-106, lot #41F8430K) and 1% L-Glutamine (Lonza, 7	

BE17-605E) in a constant atmosphere of 37°C and 5 % CO2. For differentiation into 8	

adipocytes and osteoblasts, ST2 cells were seeded 4 days before differentiation (day-9	

4), reached 100% confluency after 48 hours (day-2) and were further maintained for 10	

48 hours post-confluency (day 0). Adipogenic differentiation was subsequently 11	

initiated on day 0 (D0) by adding differentiation medium I consisting of growth 12	

medium, 0.5 mM isobutylmethylxanthine (IBMX) (Sigma-Aldrich, I5879), 0.25 µM 13	

dexamethasone (DEXA) (Sigma-Aldrich, D4902) and 5 µg/mL insulin (Sigma-14	

Aldrich, I9278). From day 2 (D2) on differentiation medium II consisting of growth 15	

medium, 500 nM rosiglitazone (RGZ) (Sigma-Aldrich, R2408) and 5 µg/mL insulin 16	

(Sigma-Aldrich, I9278) was added and replaced every 2 days until 15 days of 17	

differentiation. Osteoblastic differentiation was induced with growth medium 18	

supplemented with 100 ng/mL bone morphogenetic protein-4 (BMP-4) (PeproTech, 19	

315-27). Same media was replaced every 2 days until 15 days of osteoblastogenesis. 20	

	21	

Gene silencing 22	

Undifferentiated ST2 cells (day-1) were transfected with Lipofectamine RNAiMAX 23	

(Life Technologies, 13778150) according to manufacturer’s instructions using 50 nM 24	
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of gene-specific siRNAs against mouse Ahr (siAhr) (Dharmacon, M-044066-01-0005) 1	

or 50 nM of a negative control siRNA duplexes (siControl) Dharmacon, D-001206-2	

14-05). Cells were collected 48 h post-transfection. Sequences of the siRNAs are 3	

listed in Supplementary Table S5. 4	

 5	

Western blotting 6	

After a washing step of the cells with 1x PBS, and addition of 1x Läemmli buffer, the 7	

lysates were vortexed and the supernatants were heated at 95°C for 7 minutes. 8	

Proteins were subjected to SDS-PAGE (10% gel) and probed with the respective 9	

antibodies. The following antibodies were used: anti-AHR (Enzo Life Biosciences, 10	

BML-SA210-0025), anti-ACTIN (Merck Millipore, MAB1501). HRP-conjugated 11	

secondary antibodies were purchased from Cell Signaling. Signals were detected on a 12	

Fusion FX (Vilber Lourmat) imaging platform, using an ECL solution containing 2.5 13	

mM luminol, 100 mM Tris/HCl pH 8.8, 0.2 mM para-coumaric acid, and 2.6 mM 14	

hydrogenperoxide. 15	

 16	

RNA extraction and cDNA synthesis 17	

Total RNA was extracted from ST2 cells using TRIsure (Bioline, BIO-38033). 18	

Medium was aspirated and 1000 µL of TRIsure was added to 6-wells. To separate 19	

RNA from DNA and proteins, 200 µL of chloroform (Carl Roth, 6340.1) was added. 20	

To precipitate RNA from the aqueous phase, 400 µL of 100% isopropanol (Carl Roth, 21	

6752.4) was added and RNA was incubated at -20°C overnight. cDNA synthesis was 22	

done using 1 µg of total RNA, 0.5 mM dNTPs (ThermoFisher Scientific, R0181), 2.5 23	

µM oligo dT-primer (Eurofins MWG GmbH, Germany), 1 U/µL Ribolock RNase 24	
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inhibitor (ThermoFisher Scientific, EO0381) and 1 U/µL M-MulV Reverse 1	

transcriptase (ThermoFisher Scientific, EP0352) for 1h at 37°C or 5 U/ µL RevertAid 2	

Reverse transcriptase for 1 h at 42°C. The PCR reaction was stopped by incubating 3	

samples at 70°C for 10 minutes. 4	

 5	

Quantitative PCR 6	

Real-time quantitative PCR (qPCR) was performed in an Applied Biosystems 7500 7	

Fast Real-Time PCR System and using Thermo Scientific Absolute Blue qPCR 8	

SYBR Green Low ROX Mix (ThermoFisher Scientific, AB4322B). In each reaction 5 9	

µL of cDNA, 5 µL of primer pairs (2 µM) and 10 µL of the Absolute Blue qPCR mix 10	

were used. The PCR reactions were carried out at the following conditions: 95°C for 11	

15 minutes followed by 40 cycles of 95°C for 15 seconds, 55°C for 15 seconds and 12	

72°C for 30 seconds. To calculate the gene expression level the 2-(ΔΔCt) method were 13	

used where ΔΔCt is equal to (ΔCt(target gene) – ΔCt(housekeeping gene))tested condition - (ΔCt(target 14	

gene) – ΔCt(housekeeping gene))control condition. Rpl13a was used as a stable housekeeping gene 15	

and D0 or siControl were used as control condition. Sequences of the primer pairs are 16	

listed in Supplementary Table S5. 17	

 18	

Chromatin Immunoprecipitation 19	

Chromatin immunoprecipitation of histone modifications was performed on indicated 20	

time points of adipocyte and osteoblast differentiation. Cells were grown on 10 cm2 21	

dishes. First, chromatin was cross-linked with formaldehyde (Sigma-Aldrich, F8775-22	

25ML) at a final concentration of 1% in the culture media for 8 minutes at room 23	

temperature. Then, the cross-linked reaction was quenched with glycine (Carl Roth, 24	

3908.3) at a final concentration of 125 mM for 5 minutes at room temperature. The 25	
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formaldehyde-glycine solution was removed and cells were washed twice with ice-1	

cold phosphate-buffered saline (PBS) (Lonza, BE17-516F) containing cOmpleteTM 2	

mini Protease Inhibitor (PI) Cocktail (Roche, 11846145001). Then, cells were lysed in 3	

1.7 mL of ice-cold lysis buffer [5 mM 1,4-Piperazinediethanesulfonic acid (PIPES) 4	

pH 8.0 (Carl Roth, 9156.3); 85 mM potassium chloride (KCl) (PanReac AppliChem, 5	

A2939); 0.5 % 4-Nonylphenyl-polyethylene glycol (NP-40) (Fluka Biochemika, 6	

74385)] containing PI and incubated for 30 minutes on ice. The cell lysates were then 7	

centrifuged at 660 xg for 10 min at 7°C and the pellet was resuspended in 400 µL of 8	

ice-cold shearing buffer [50 mM Tris Base pH 8.1 (Carl Roth, 4855.2); 10 mM 9	

Ethylenediamine tetraacetic acid (EDTA) (Carl Roth, CN06.3); 0.1 % Sodium 10	

Dodecylsulfate (SDS) (PanReac Applichem, A7249); 0.5 % Sodium deoxycholate 11	

(Fluka Biochemika, 30970)] containing PI. Chromatin was sheared with a sonicator 12	

(Bioruptor®Standard Diagenode, UCD-200TM-EX) during 20 cycles at high 13	

intensity (30 s off and 30 s on) for the ST2 cells differentiated into adipocytes and 14	

osteoblasts and 25 cycles at high intensity (30 s off and 30 s on) for the ST2 15	

differentiated into osteoblasts for 9 days on. The sheared cell lysate was then 16	

centrifuged at 20817 xg for 10 minutes at 7°C and the supernatant containing the 17	

sheared chromatin was transferred to a new tube. For each immunoprecipitation 10 µg 18	

(for H3K4me3) or 15 µg (for H3K27ac and H3K36me3) of sheared chromatin and 4 19	

µg as input were used. The sheared chromatin was diluted 1:10 with modified RIPA 20	

buffer [140 mM NaCl (Carl Roth, 3957.2); 10 mM Tris pH 7.5 (Carl Roth, 4855.2); 1 21	

mM EDTA (Carl Roth, CN06.3); 0.5 mM ethylene glycol-bis(β-amino-ethyl ether)-22	

N,N,N’,N’-tetraacetic acid (EGTA) (Carl Roth, 3054.3); 1 % Triton X-100 (Carl 23	

Roth, 3051.2); 0.01 % SDS (PanReac Applichem, A7249); 0.1 % sodium 24	

deoxycholate (Fluka Biochemika, 30970)] containing PI. The diluted sheared 25	
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chromatin was incubated overnight with the recommended amount provided by the 1	

manufacturer of an antibody against H3K4me3 (Millipore, 17-614), 5 µg of an 2	

antibody against H3K27ac (Abcam, ab4729) or 5 µg of an antibody against 3	

H3K36me3 (Abcam, ab9050). The next day, the antibodies were captured using 25 4	

µL of PureProteome™ Protein A Magnetic (PAM) Bead System (Millipore, 5	

LSKMAGA10) for 2 hours at 4°C on a rotating wheel. After, the PAM beads were 6	

captured using a DynaMagTM-2 magnetic stand (Life Technologies, 12321D). The 7	

supernatant was discarded and the PAM beads were washed twice with 800 µL of 8	

Immunoprecipitation wash buffer 1 (IPWB1) [20 mM Tris, pH 8.1 (Carl Roth, 9	

4855.2); 50 mM NaCl (Carl Roth, 3957.2); 2 mM EDTA (Carl Roth, CN06.3); 1 % 10	

Triton X-100 (Carl Roth, 3051.2); 0.1 % SDS (PanReac Applichem, A7249)], once 11	

with 800 µL of Immunoprecipitation wash buffer 2 (IPWB2) [10 mM Tris, pH 8.1 12	

(Carl Roth, 4855.2); 150 mM NaCl (Carl Roth, 3957.2); 1 mM EDTA (Carl Roth, 13	

CN06.3), 1 % NP-40 (Fluka Biochemika, 74385), 1 % sodium deoxycholate (Fluka 14	

Biochemika, 30970), 250 mM of lithium chloride (LiCl) (Carl Roth, 3739.1)], and 15	

twice with 800 µL of Tris-EDTA (TE) buffer [10 mM Tris, pH 8.1 (Carl Roth, 16	

4855.2); 1 mM EDTA (Carl Roth, CN06.3), pH 8.0].  Finally, the PAM beads and the 17	

inputs were incubated with 100 µL of ChIP elution buffer [0.1 M sodium bicarbonate 18	

(NaHCO3) (Sigma-Aldrich, S5761); 1 % SDS (PanReac Applichem, A7249)]. The 19	

cross-linking was reversed by adding 10 µg of RNase A (ThermoFisher, EN0531) and 20	

20 µg of proteinase K (ThermoFisher, EO0491) at 65°C overnight. Then, the eluted 21	

chromatin was purified using a MinElute Reaction Cleanup Kit (Qiagen, 28206) 22	

according to the manufacturer’s instructions. The DNA concentration was measured 23	

using the Qubit® dsDNA HS Assay Kit (ThermoFisher, Q32851) and the Qubit 1.0 24	

fluorometer (Invitrogen, Q32857) according to the manufacturer’s instructions. 25	
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 1	
ChIP-Seq 2	

The sequencing of the ChIP samples was done at the Genomics Core Facility in 3	

EMBL Heidelberg, Germany. For sequencing, single-end and unstranded reads were 4	

used and the samples were processed in an Illumina CBot and sequenced in an 5	

Illumina HiSeq 2000 machine. In total, 979 572 918 raw reads were obtained. Raw 6	

reads quality was assessed by fastqc [v0.11, ("FastQC,")]. This quality control 7	

unveiled that some reads were containing part of the adapters. Those spurious 8	

sequences were cleaned up from the genuine mouse sequences by AdapterRemoval 9	

(Lindgreen, 2012) [v1.5]. The PALEOMIX pipeline (Schubert et al., 2014) [v1.0.1] 10	

was used for all steps from FASTQ files to BAM files including trimming, mapping, 11	

and duplicate marking. This workflow ensures that all files are complete and valid. 12	

Retained reads were required to have a minimum length of 25 bp. Bases with 13	

unreliable Phred scores (0-2) were trimmed out. In total 31 909 435 reads were 14	

discarded (3.26%). Eventually, 947 663 483 reads were retained (96.74%). Trimmed 15	

reads were further mapped using BWA (Li & Durbin, 2009) [v0.7.10] with the 16	

backtrack algorithm dedicated to short sequences. The mouse reference was the 17	

mouse genome GRCm38.p3 (mm10, patch 3) downloaded from NCBI. For validating, 18	

merging BAM files, and marking duplicates, we used the suite tool Picard [v1.119, 19	

("Picard,")]. Duplicates were marked but not removed. Only reads with a mapping 20	

quality of 30 were retained to ensure a unique location on the genome resulting in 661 21	

364 143 reads (69.79% of the trimmed reads). The samples with a coverage of less 22	

than 8 million reads (mapping quality > 30) were excluded from the downstream 23	

analysis. Raw FASTQ and BAM files have been deposited in the European 24	

Nucleotide Archive with the accession number PRJEB20933. 25	
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The ChIP-Seq peaks were called with Model-based analysis of ChIP-Seq (Zhang et 1	

al., 2008) (MACS) version 2.1.0 for H3K4me3, with HOMER (Heinz et al., 2010) for 2	

H3K27ac, and with SICER (Zang et al., 2009) version 1.1 for H3K36me3, using input 3	

from undifferentiated ST2 cells as control for IPs from D0 cells and input from D5 4	

adipocyte- or osteoblast-differentiated cells for the IPs from the respectively 5	

differentiated cells. 6	

 7	

RNA-Seq 8	

The sequencing of the time course samples was done at the Genomics Core Facility in 9	

EMBL Heidelberg, Germany. For sequencing, single-end and unstranded reads were 10	

used and the samples were processed in an Illumina CBot and sequenced in an 11	

Illumina NextSeq machine. 12	

The sequencing of the AHR knock-down samples was performed at the Luxembourg 13	

Center for Systems Biomedicine (LCSB) Sequencing Facility. The TruSeq Stranded 14	

mRNA Library Prep kit (Illumina) was used to prepare the library for sequencing with 15	

1 µg of RNA as starting material according to manufacturer’s protocol. The library 16	

quality was checked using an Agilent 2100 Bioanalyzer and quantified using Qubit 17	

dsDNA HS assay Kit. The libraries were then adjusted to 4 nM and sequenced on a 18	

NextSeq 500 (Illumina) according to the manufacturer’s instructions.  19	

The obtained reads were quality checked using FastQC version 0.11.3 ("FastQC,"). 20	

Cutadapt version 1.8.1 (Martin, 2011) was used to trim low quality reads (-q 30 21	

parameter), remove Illumina adapters (-a parameter), remove reads shorter than 20 22	

bases (-m 20 parameter) with an error tolerance of 10% (-e 0.1 parameter). 23	

Then, removal of reads mapping to rRNA species was performed using SortMeRNA 24	

(Kopylova et al., 2012) with the parameters --other, --log, -a, -v, --fastx 25	
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enabled. Lastly, the reads were quality checked using FastQC version 0.11.3 to 1	

control whether bias could have been introduced after the removal of Illumina 2	

adapters, low quality reads and rRNA reads. Then, the reads were mapped to the 3	

mouse genome mm10 (GRCm38.p3) and using the gene annotation downloaded from 4	

Ensembl (release 79) using the Spliced Transcripts Alignment to a Reference (Dobin 5	

et al., 2013) (STAR) version 2.5.2b using the previously described parameters 6	

(Baruzzo et al., 2017) . The reads were counted using the function featureCounts from 7	

the R package Rsubread (Liao et al., 2014) version 1.4.6-p3 and the statistical 8	

analysis was performed using DESeq2 (Love et al., 2014) version 1.14.1 in R 3.3.2 9	

and RStudio (RStudio Team (2015). RStudio: Integrated Development for R. 10	

RStudio, Inc., Boston, MA).  11	

 12	

 EPIC-DREM analysis 13	

To identify TFs that have a regulatory function over time, we designed a new 14	

computational workflow that combines the computational TF prediction method 15	

TEPIC (Schmidt et al., 2017) with DREM (Schulz et al., 2012), a tool to analyze the 16	

dynamics of transcriptional regulation.  17	

We identified TF footprints in the H3K27ac signal using HINT-BC  (Gusmao et al., 18	

2016), which is included in the Regulatory Genomics Toolbox, version 0.9.9. Next, 19	

we predicted TF binding in those footprints using TEPIC, version 2.0. We used the 20	

provided set of 687 PWMs for Mus musculus and mouse genome version mm10 21	

(GRCm38). As DREM requires a time point-specific prediction of binding of a 22	

regulator with its target, we needed to develop an approach to determine a suitable 23	

TF-specific affinity cut-off, for each time point. For this, we created a similar set of 24	

random regions that mirrors the GC content and length distribution of the original 25	
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sequences of the footprints. TF affinities calculated in the random regions are used 1	

to determine a suitable cut-off for the original affinities  using the frequency 2	

distribution of the TF affinities. Affinities for TF  are denoted by  and . Let 3	

 denote a randomly chosen genomic region that is screened for TF binding, and 4	

let  denote its length. Analogously, let  denote a footprint that is screened for 5	

TF binding, and let  denote its length. We normalize both  and   by the 6	

length of their corresponding region and obtain the normalized TF affinities and  7	

 8	

, . 9	

Using the distribution of values we derive a TF-specific affinity threshold for a 10	

p-value cut-off of 0.05 (See section ChIP-seq validation of TEPIC affinity cut-off for 11	

how this p-value was chosen). For a TF   we compute a binary affinity value  12	

from the original affinity according to the cut-off with: 13	

. 14	

The binary affinity values  can be used to compute a binary TF – gene association 15	

 between gene  and TF : 16	

 , where  denotes all footprint regions that occur 17	

within a window of size  around the TSS of gene . 18	

Informally, a gene  is associated to TF  if there is a predicted binding site within a 19	

window of predefined size  around the gene's TSS. Here, we use . 20	

Together with gene expression estimates, the TF– gene associations can be directly 21	

used as input to DREM. In this analysis, we used version 2.0.3 of DREM. The entire 22	

workflow of EPIC-DREM is shown in Figure 2. TEPIC is available online at 23	

("TEPIC"), DREM can be downloaded at ("DREM"). 24	
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 1	

ChIP-seq validation of TEPIC affinity cut-off 2	

To validate that the affinity threshold described above indeed results in an adequate 3	

separation between bound and unbound sites, we conducted a comparison to TF-4	

ChIP-seq data. We obtained TF-ChIP-seq data from ENCODE for K562 (18 TFs), 5	

HepG2 (36 TFs), and GM12878 (24 TFs). In addition, we downloaded H3K27ac data 6	

for the mentioned cell lines from ENCODE. A list of all ENCODE accession numbers 7	

is provided in Supplementary Table S6. As described above, we called footprints 8	

using HINT-BC and calculated TF affinities in the footprints as well as in the 9	

randomly selected regions that map the characteristics of the footprints. To understand 10	

the influence of different thresholds, we calculated affinity thresholds for the 11	

following p-values: 0.01, 0.025, 0.05, 0.075, 0.1, 0.2, 0.3, 0.4, and 0.5. All affinities 12	

below the selected affinity value are set to zero, the remaining values are set to one. 13	

The quality of the discretization is assessed through the following "peak centric" 14	

validation scheme, as used before in (Cuellar-Partida et al., 2012). The positive set of 15	

the gold standard is comprised of all ChIP-seq peaks that contain a motif predicted by 16	

FIMO (Grant et al., 2011) , the negative set contains all remaining ChIP-seq peaks. A 17	

prediction is counting as a true positive (TP) if it overlaps the positive set, it counts as 18	

a false positive (FP) it if overlaps the negative set. The number of false negatives (FN) 19	

is the number of all entries in the positive set that are not overlapped by any 20	

prediction. For all TFs in all cell lines we calculate Precision (PR) and Recall (REC) 21	

according to  22	

.  23	

As one can see, Precision is increasing with a stricter p-value threshold, while Recall 24	

is decreasing. We found that using 0.05 seems to be a reasonable compromise 25	
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between Precision and Recall. The median Precision and Recall values calculated 1	

over all cell lines and all TFs are shown in Supplementary Figure S2A. Detailed 2	

results on a selection of TFs that are present in all three cell lines are shown in 3	

Supplementary Figure S2B.   4	

 5	

Identification of dynamic merged SEs 6	

In order to identify temporal SEs across both lineages, BedTools (Quinlan & Hall, 7	

2010) version 2.24.0, Hypergeometric Optimization of Motif EnRichment (Heinz et 8	

al., 2010) (HOMER) version 4.7.2 and  Short Time-series Expression Miner (Ernst & 9	

Bar-Joseph, 2006) (STEM) version 1.3.8 were used. First, the coverage of individual 10	

SEs was summarized using genomeCoverageBed command using –g mm10 and 11	

–bg parameters. Then, unionBedGraphs command was used to combine multiple 12	

SEs coverage into a single map such that the SEs’ coverage is directly comparable 13	

across multiple samples. Finally, mergeBed command was used to combine SEs 14	

overlapping ≥ 1 bp into a single merged SE which spans all the combined SEs. In 15	

order to calculate the normalized read count number of merged SEs, 16	

annotatePeaks.pl with –size given and –noann parameters was used. 17	

Lastly, STEM was used to cluster and identify SEs temporal profiles and SEs with 18	

Maximum_Unit_Change_in_Model_Profiles_between_Time_Points 2 and Minimum 19	

Absolute Expression Change 1.0 were considered as dynamic. 20	

 21	

Enrichment analysis 22	

EnrichR (14.4.2017) (Chen et al., 2013; Kuleshov et al., 2016) was used to perform 23	

gene enrichment analysis. 24	

 25	
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Availability of data and materials 1	

The datasets generated and analysed during the current study are available in the 2	

European Nucleotide Archive with the accession number PRJEB20933. Scripts can be 3	

requested from authors directly. 4	
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Figure 1. Time-series RNA-seq and ChIP-seq profiling of adipocytes and 1	

osteoblass from shared bone marrow progenitor cells. (A) Schematic 2	

representation of the experimental set-up. ST2 MSCs were differentiated towards 3	

adipocytes or osteoblasts. Total RNA and chromatin was collected at the indicated 4	

time points from both differentiation time courses and subjected to RNA-seq or ChIP-5	

seq analysis using antibodies against the indicated histone modifications. (B) 6	

Principle component analysis (PCA) of the RNA-seq data. All replicates are indicated 7	

with each time point in a different colour. Triangles marks the undifferentiated ST2 8	

cells, circles the adipocyte (Ad) samples and squares the osteoblast (Ob) samples. (C) 9	

Venn diagram comparing all differentially expressed genes at any time point of 10	

adipogenesis (log2FC > 1, FDR<0.05) to those similarly affected in 11	

osteoblastogenesis. (D) Heatmap depicting the top 100 genes with the highest 12	

variance across the time points and lineages.  13	

 14	

 15	

 16	

 17	

 18	

 19	

 20	

 21	

 22	

 23	

 24	

 25	

26	
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Figure 2: Workflow of the EPIC-DREM approach. (A-D) From time-series 1	

epigenetic experiments, e.g. DNase1-seq or Histone ChIP-seq, putative TF binding 2	

sites are identified through footprint/peak calling and are annotated with TF affinities 3	

using TRAP. (E-F) Random genomic regions with similar genomic characteristics 4	

(GC-content and length) compared to measured footprints/peaks are generated and 5	

annotated with TF affinities as well.  (G) A TF- and timepoint-specific affinity 6	

threshold can be obtained by applying an empirical p-value threshold (e.g. 0.05) on 7	

the distribution of TF affinities calculated on the randomly selected regions. (H) 8	

Applying the threshold on the TF affinities computed in (D) results in a set of discrete 9	

TF affinities per TF and timepoint. (I-J) Using TEPIC, the discrete TF affinities are 10	

integrated into discrete, timepoint specific TF-gene association scores. (J-K) TF-gene 11	

associations and time-series gene expression data are used as input to DREM, which 12	

predicts regulators that distinguish subsets of genes that show similar gene expression 13	

changes over time.  In panels A-J,K different time points are indicated by different 14	

colours. 15	
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Figure 3. Derivation of lineage-specific regulatory interactions using EPIC-1	

DREM.  EPIC-DREM clusters genes into paths of similar expression over time in (A) 2	

adipocyte and (B) osteoblast differentiation. Split points differentiate time point-3	

specific changes in gene expression, that are annoted by DREM with matching TFs. 4	

The paths where the predicted TF-target gene interactions cover at least 30% of the 5	

genes in the upstream split point with a split score < 0.01 are shown. The top TFs 6	

based on their time point-specific FCs and split scores are annotated in the grey 7	

boxes. The top TFs are colored depending whether they are induced (blue), repressed 8	

(red), or unchanged (black). The total number of TFs predicted to control each path is 9	

indicated and the corresponding TFs are listed in Supplementary Table S2.  10	
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Figure 4. Identification of dynamic SEs. (A) Overview depicting the enrichment of 1	

H3K27ac at the Cxcl12 locus across the time points of adipogenesis (in magenta) and 2	

osteoblastogenesis (in light blue). The magenta and light blue bars indicate the SE 3	

regions identified by HOMER in adipogenesis and osteoblastogenesis, respectively, 4	

and black bar indicates the merged SE derived through overlapping of the individual 5	

SEs across the lineages. (B) The correlation between mRNA levels and SE signal. 6	

The Cxcl12 mRNA levels as measured by RNA-seq and the merged SE signal at the 7	

Cxcl12 locus as measured by the reads detected in the H3K27ac IPs are depicted 8	

across the time-series of adipocyte (upper panel) and osteoblast (lower panel) 9	

differentiation. Intact line = mRNA level and dashed line = merged SE signal. r = 10	

Pearson correlation co-efficient (C-D) STEM clustering of the merged SEs according 11	

to their dynamic profiles identifies (C) 4 main profiles in adipogenesis and (D) two 12	

main profiles in osteoblastogenesis. The additional profiles are shown in 13	

Supplementary Figure S3. y-axis indicates the signal change in log2-scale. (E) Venn 14	

analysis of the dynamic merged SEs from both lineages identifies 25 shared dynamic 15	

SEs with log2FC>1. The identified SEs and their proximal expressed genes with the 16	

highest correlation across time are listed in the box. Adipocyte D9 sample for 17	

H3K27ac was not included in the above analysis due to low number of mappable high 18	

quality reads. 19	
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Figure 5. AHR is regulated by multiple SEs with lineage-specific dynamics. (A-B) 1	

Overview depicting the enrichments of H3K4me3 (in dark blue and purple), 2	

H3K36me3 (in light and dark green), and H3K27ac (magenta and light blue) at the 3	

Ahr locus across the time points of adipogenesis (A) and osteoblastogenesis (B), 4	

respectively. The magenta and light blue bars indicate the merged SE regions 5	

identified through the analysis described in Figure 4. See also Supplementary Figure 6	

S4. (C-D) Ahr downregulation correlates with a decreased signal from all four SEs. 7	

The Ahr mRNA level was measured across the differentiation by RNA-seq (upper 8	

panel) and RT-qPCR (lower panel) in both adipocyte (C) and osteoblast (D) 9	

differentiation and is indicated as the intact line. Dashed lines represent the signal 10	

from the individual indicated merged SEs. r = Pearson correlation co-efficient. The 11	

statistical significance for RT-qPCR measurements compared to the value on D0 was 12	

determined by two-tailed Student’s t-test. *=p<0.05, **=p<0.01 and ***=p<0.001. 13	

Data points represent mean of 3 biological replicates +/- SEM.  AD9 sample for 14	

H3K27ac and OD15 for H3K4me3 were not included in the above analysis due to 15	

lower number of mappable high quality reads. (E) Overview depicting the enrichment 16	

of H3K27ac at the Ahr locus in the confluent undifferentiated (D0) and differentiated 17	

(D7) 3T3-L1 adipocyte cell line. No SE formation could be detected in these more 18	

lineage-committed cells. The data were obtained from (Mikkelsen et al., 2010). The 19	

H3K27ac enrichments at the corresponding locus in human cell types are indicated in 20	

Supplementary Figure S5.  21	

 22	

 23	

 24	

25	

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 3, 2017. ; https://doi.org/10.1101/183988doi: bioRxiv preprint 

https://doi.org/10.1101/183988
http://creativecommons.org/licenses/by/4.0/


Gerard	et	al.:	Time-series epigenomic profiles of mesenchymal differentiation 
	

	 50	

Figure 6. AHR-KD confirms EPIC-DREM predictions and leads to induction of 1	

Notch3 and other lineage-specific genes. (A) Schematic representation of the 2	

experimental set-up. See Supplementary Figure S6 for the efficiency of the AHR 3	

downregulation. (B) Confirmation of EPIC-DREM predictions. Cumulative 4	

distribution of all expressed  genes (black line), all EPIC-DREM predicted AHR 5	

target genes (blue line), and top 200 targets of AHR (red line) in relation to their FC 6	

upon AHR depletion per condition as indicated. The significance of the increased FC 7	

of the AHR targets was confirmed with the Kolmogorov-Smirnov test and the 8	

corresponding p-values are indicated. (C) Scatter plots indicating the transcriptome-9	

wide log2-FCs as measured by RNA-seq in undifferentiated ST2 cells with reduced 10	

AHR levels in comparison to the log2-FCs of the same transcripts in D15 11	

differentiated adipocytes (left panel) or osteoblasts (right panel). The colour code 12	

separates transcripts expressed differentially only in AHR-KD (yellow), or both in 13	

KD and in differentiation (red). (D) Venn diagram comparing the differentially 14	

expressed genes from the three different KD conditions (FDR<0.1) identifies 266 15	

genes consistently deregulated in all conditions. (E) Enrichment analysis of the 266 16	

identified AHR targets their preferred tissue expression profiles in human and mouse, 17	

and proteins identified as shared regulators in existing ChIP-seq studies. Top5 most 18	

enriched hits are shown for each type of enrichment. X-axis indicates the combined 19	

enrichment score (Chen et al., 2013) and coloring the enrichment p-value. (F) Notch3 20	

is induced in parallel with Ahr downregulation. The Ahr (intact line) and Notch3 21	

(dashed line) mRNA levels as measured by RNA-seq are depicted across the time-22	

series of adipocyte (left panel) and osteoblast (right panel) differentiation. The values 23	

for all biological replicates are indicated separately. See also Supplementary Figure 24	

S6 for other Notch receptors. 25	

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 3, 2017. ; https://doi.org/10.1101/183988doi: bioRxiv preprint 

https://doi.org/10.1101/183988
http://creativecommons.org/licenses/by/4.0/

