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Abstract 
 
Data sharing is increasingly recommended as a means of accelerating science by facilitating 
collaboration, transparency, and reproducibility. While few oppose data sharing philosophically, 
a range of barriers deter most researchers from implementing it in practice (e.g., workforce and 
infrastructural demands, sociocultural and privacy concerns, lack of standardization). To justify 
the significant effort required for sharing data (e.g., organization, curation, distribution), funding 
agencies, institutions, and investigators need clear evidence of benefit. Here, using the 
International Neuroimaging Data-sharing Initiative, we present a brain imaging case study that 
provides direct evidence of the impact of open sharing on data use and resulting publications 
over a seven-year period (2010-2017). We dispel the myth that scientific findings using shared 
data cannot be published in high-impact journals and demonstrate rapid growth in the 
publication of such journal articles, scholarly theses, and conference proceedings. In contrast to 
commonly used ‘pay to play’ models, we demonstrate that openly shared data can increase the 
scale (i.e., sample size) of scientific studies conducted by data contributors, and can recruit 
scientists from a broader range of disciplines. These findings suggest the transformative power 
of data sharing for accelerating science and underscore the need for the scientific ecosystem to 
embrace the challenge of implementing data sharing universally. 
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Now more than ever, the potential and actual benefits of open data sharing are being debated in 
the pages of premier scientific journals, funding agency communications, scientific meetings 
and workshops1, 2, 3. Throughout these discussions an array of potential benefits are 
acknowledged, ranging from increased transparency of research and reproducibility of findings 
to decreased redundancy of effort and the generation of large-scale data repositories that can 
be used to achieve more appropriate sample sizes for analyses. Equally important, data sharing 
is commonly described as a means of facilitating collaboration across the broader scientific 
community.  
  
Despite its potential, for many, the benefits of data sharing are more theoretical than practical2,4. 
The reality is that data sharing is relatively limited in many disciplines and little information on its 
outcomes exists5. In the absence of clear demonstrations of data sharing’s impact, debates on 
the topic are dominated by its formidable — albeit hypothetical — downsides. Common 
concerns include loss of competitive advantage (especially for junior investigators)6, fear of 
being scooped with one's own data, scientifically unsound uses of the data, and concerns that 
high-impact journals will not accept manuscripts that report findings generated by secondary 
analysis of open datasets.  
 
To assess the tangible benefits of open data sharing, we provide a bibliometric analysis of a 
large brain image data sharing initiative. The brain imaging community is a particularly valuable 
target for examination, as its challenges are representative of those commonly encountered in 
biomedical research. The high costs and workforce demands required to capture primary data 
limit the ability of individual labs to generate properly powered sample sizes. These obstacles 
are amplified when addressing more challenging (e.g., developing, aging, clinical) populations 
or attempting biomarker discovery — both prerequisites for achieving clinically useful 
applications. Inspired by the momentum of molecular genetics, the first functional neuroimaging 
data sharing initiative was launched in 20007, though it encountered logistical challenges (e.g., 
lack of standardization for task-based fMRI methods) and vigorous social resistance. Since 
then, a range of initiatives for sharing brain imaging data have emerged (e.g., OASIS8, ADNI9, 
Human Connectome Project10, OpenfMRI11).  
 
While some open data sharing initiatives work to aggregate and share previously collected 
datasets, others explicitly generate large-scale data resources for the purposes of sharing. The 
present work focuses on the International Neuroimaging Data-sharing Initiative (INDI)12, as it 
uniquely embodies both of these models of sharing. The bibliometric measures we have 
employed could be easily applied to other initiatives in future work. Another distinctive aspect of 
INDI is its reliance on the formation of grassroots consortia as a primary vehicle for achieving its 
goal of aggregating and sharing previously collected data. Self-initiated and organized by 
scientists in the community, these consortia aggregate and share independently collected data 
from sites around the world. Examples of INDI-based consortia include the 1000 Functional 
Connectomes Project (FCP; n = 1,414, released in December, 2009)13, the ADHD-200 (n = 874, 
released in March, 2010)14, the Autism Brain Imaging Data Exchange (ABIDE; n = 1,112, 
released in August, 2012)15 and the Consortium for Reliability and Reproducibility (CoRR; n = 
1,629, released in June, 2014)16. In the present work, we use the grassroots consortium 
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component of the INDI model to examine the relative benefits of open data sharing versus ‘pay 
to play’ models, in which only those who give data can benefit from sharing. To examine the 
benefits of data resources explicitly generated for the purposes of sharing, we use INDI’s 
Nathan Kline Institute-Rockland Sample (NKI-RS) initiatives, a combination of large-scale cross-
sectional and longitudinal multimodal imaging samples of brain development, maturation and 
aging (ages 6.0-85.0)17,18 (initial release in October, 2010; quarterly releases ongoing, current n 
= 1,000+). INDI efforts have been lauded by funding agencies, journal editors, and members of 
the imaging community. However, such subjective recognition does not quantify research 
impact. Drawing from the field of bibliometrics, we carried out a range of citation analyses19 to 
quantify the impact of INDI datasets on the brain imaging and broader scientific literature. 
 
We started our bibliometric analysis with a search for publications that used INDI datasets. This 
was a non-trivial task due to the lack of requirements for author-line recognition of INDI, a policy 
intended to maximize freedom of use for the data. We identified publications using a full-text 
search in Google Scholar; the following names and URLs were included as keywords: 
‘fcon_1000.projects.nitrc.org’, ‘Rockland Sample’, ‘1000 Functional Connectomes’, ‘International 
Neuroimaging Data-Sharing Initiative’, ‘Autism Brain Imaging Data Exchange’, ‘ADHD-200’, and 
‘Consortium for Reproducibility and Reliability’. Next, we downloaded all available PDF files for 
manual review by a team of five research assistants, who classified each as ‘downloaded and 
used INDI subject data’, ‘only mentions or references INDI data’, ‘used INDI scripts but not INDI 
data’, or ‘irrelevant’. To facilitate this process and enable rapid review, each PDF was converted 
to a text file (using the Unix-based pdftotext shell command). Paragraphs including the 
keywords from the Google Scholar search were then identified and extracted from each PDF for 
review in an automated fashion using regular expressions (code for analyses is available at 
https://github.com/ChildMindInstitute/Biblio_Reader/blob/165ddc56779a5e55149184a0f95b7c14
874cf0c5/biblio_reader/text_tools/text_tools.py); full PDFs were available to the reviewers for 
verification. Classifications were determined from the consensus of two independent reviewers; 
conflicts were resolved by a third. During this step, research assistants also indicated the type of 
publication (e.g., thesis, book chapter, peer-reviewed journal article, non peer-reviewed journal 
article, preprint) for each paper. 
 
Data Use. Our keyword-based search identified 1,541 possible INDI-related publications as of 
March 22, 2017, of which 913 were determined to have used data from INDI. Figure 1a provides 
a non-cumulative breakdown of the 913 publications by year and initiative, revealing steady 
yearly increases in shared data use. Author affiliations for the 913 publications using INDI data 
spanned 50 countries across 6 continents, with peak affiliation densities in the United States 
(48.5%), China (10.7%), Germany (6.5%), and the United Kingdom (6.0%) (see 
http://fcon_1000.projects.nitrc.org/indi/bibliometrics/map/map.html for the world map of author 
affiliations generated using the Google Maps JavaScript API V3). The overwhelming majority of 
publications were either peer-reviewed journal articles (n = 739; 81%) or preprints (n = 65; 7%); 
scholarly theses had a substantial presence as well (n = 58 [33 doctoral/19 master's/4 
bachelor's/2 unspecified]), demonstrating the potential value of shared data for trainees and 
early career investigators (see Figure 1b). As would be expected given the brain imaging focus 
of the INDI consortia, the relative majority (45.7%) of publications were in journals focused on 
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general neuroscience, neurology, psychiatry, and psychology. However, there was evidence of 
INDI datasets penetrating other domains as well (e.g., mathematics, computer science, physics, 
and engineering journals accounted for 6.6% of publications) (see Figure 1c).  
 
Publication Impact. The impact of each of the major INDI efforts (FCP, NKI-RS, ADHD-200, 
ABIDE, CoRR) on the scientific literature was quantified using an array of commonly used 
citation-based indices (see Table 1). As of March 22, 2017, the 913 publications that explicitly 
used INDI data had been cited 20,697 times by publications referenced in Google Scholar, with 
an average of 4.4 citations per article per year; h-indices for the five initiatives ranged from 7 to 
52 (overall: 66) and i10-indices from 6 to 123 (overall: 295). The FCP and ADHD-200 have had 
the highest impact to date across various measures, though this likely reflects their older age 
compared to other initiatives (e.g., ABIDE, NKI-RS), which enjoy greater publication growth in 
recent years (see Figure 1a).  
 
To address concerns about publishing analyses of shared data in high impact journals, we also 
examined journal impact factors for publications using INDI data. While the assessment of 
journal impact remains somewhat controversial given the growing number of indices available 
(e.g., impact factor, CiteScore, altmetrics)20, several articles that used INDI data have been 
published in high-impact specialized journals (e.g., Biological Psychiatry, Neuron) and general 
interest journals (e.g., Proceedings of the National Academy of Sciences, Nature 
Communications) (see Figure 2a for the 15 highest impact journals in which publications using 
INDI datasets have appeared based on CiteScore20). As shown in Figure 2b, of all publications 
measured by 2015 CiteScore values, 50 percent were published in a journal with a CiteScore of 
4.05 or higher, 25 percent with a CiteScore of 6.71 or higher, 5 percent with a score of 8.84 or 
higher and 1 percent with a score of 12.02 or higher. Two of the three journals with the highest 
number of publications were NeuroImage and Human Brain Mapping, which are among the 
highest ranked field-specific brain imaging journals. 
 
Beneficiaries of Sharing. A common alternative to open data sharing is the “pay to play” model, 
where only those who contribute data can gain access to shared data. While such models can 
incentivize data sharing, they miss out on valuable analyses that researchers lacking data to 
contribute would perform if given the opportunity. INDI’s consortium model provides a unique 
opportunity to compare use of shared data by contributing and non-contributing researchers. 
Specifically, for each initiative (FCP, ADHD-200, ABIDE, CoRR, NKI-RS), “contributing authors” 
were defined as any co-author of the announcement publication for the respective initiative. 
Using this definition, 90.3% of INDI-based publications were authored by research teams that 
did not include any data contributors. As shown in Figure 3, the number of publications by non-
contributors is rapidly increasing year to year. This differential between publications authored by 
contributors vs. non-contributors reflects the potential missed opportunity associated with the 
‘pay to play’ model of data sharing. 
 
The publication patterns of INDI consortia members can also be used to glean insights into the 
benefits of contributing data beyond inclusion as a coauthor on data announcement or 
descriptor papers. To accomplish this, we focused on the ADHD-200 and ABIDE consortia, as 
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they consist of data from clinical populations, which are among the most costly to generate. For 
each ADHD-200 or ABIDE paper co-authored by a data contributor, we calculated the difference 
between the amount of data used in the publication (i.e., sample size) and the total contribution 
to the consortium (from co-authors on the manuscript). The median difference between 
publication sample size and data contribution by coauthors was 286 for the ADHD-200 and 
142.5 for ABIDE. Obtaining a similar increase in sample size by acquiring data from these 
clinical populations in a single lab would have been expensive and time consuming. 
Interestingly, we found that 20% of INDI-based publications from ABIDE data contributors used 
fewer samples than they contributed — largely reflecting more restrictive inclusion criteria 
related to age, sex, diagnostic phenotype, and/or image quality. Application of such criteria was 
made possible by the availability of shared data, and presumably enhanced the validity and 
reproducibility of the findings.  
 
Another means by which shared datasets are becoming increasingly available is the resource 
generation model, in which data are specifically collected for the purpose of sharing (e.g., 
Human Connectome Project, Brain Genomics Superstruct, NIH ABCD, Child Mind Institute 
Healthy Brain Network). This model is advantageous in that the explicit open access intent 
allows researchers and funding agencies to justify investing in the creation of data resources 
that are notably larger in scale and broader in scope than what would typically be acquired by a 
single team. In INDI, the NKI-RS is an ongoing coordinated effort of three principal investigators 
and four funded projects dedicated to generating an open lifespan data resource for the 
scientific community. To date, 189 articles have been published based on NKI-RS data, 167 of 
which did not include the NKI-RS PIs and 76 of which were written by individuals completely 
outside of their publication sphere (i.e., there is no detectable relationship between the PIs and 
the authors of these papers based on coauthorship histories in the literature). 
 
Impact Beyond. It is important to note the various forms of impact that are not captured by the 
present analyses. First, our searches revealed 639 publications that mentioned INDI in their text 
but did not use INDI data, suggesting that INDI and resultant research has impacted the thinking 
of authors in ways other than simply providing data. Second, 71 publications employed either 
the scripts used for the analysis of data in the initial FCP release manuscript13 or their derivative 
platforms (21,22). Third, INDI has also given rise to the Preprocessed Connectomes Project 
(http://preprocessed-connectomes-project.org), which shares processed forms of INDI data, as 
well as quality measures. Finally, it is worth acknowledging the unpublished training and testing 
of protocols and algorithms not captured by our analyses, as well as the unique scientific 
opportunities created by the aggregation of independently collected datasets. Examples of such 
opportunities include the ability to demonstrate reproducibility of findings across independent 
datasets (e.g., 23), to assess potential solutions for overcoming batch effects (i.e., 
scanner/protocol differences) (e.g., 24–26), and to provide robust assessments of statistical noise 
(e.g., 27). 
 
Concluding Remarks. Having demonstrated the impact of data sharing, the remaining challenge 
is to make sharing a widespread reality. Multiple advances are necessary to accomplish this 
change. First, there is a need for greater incentivization of both sharing and using open 
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datasets. While funding agencies increasingly espouse mandates to share data and encourage 
secondary data analysis, voices vilifying openly shared data and its users28 continue to be 
expressed in top journals. Second, the mechanisms for recognizing data sharing contributions 
remain underspecified in, for example, grant, promotion, or tenure reviews29. Third, widespread 
data sharing requires infrastructure. To date, the storage costs of the INDI have been relatively 
limited, requiring about 10TB to share over 15,000 datasets. However, resource limitations must 
be considered as data sharing and the size of shared datasets continue to grow along with 
acceptance of data sharing and of data sharing mandates by funding agencies and journals. 
Central to these considerations will be decisions regarding the emphasis to be placed on 
centralized vs. federated models for data storage, as the scope and scale of data sharing 
increases. Such decisions are non-trivial, as they entail a range of financial, logistical and 
ethical questions regarding data maintenance and privacy. Finally, increased harmonization of 
data acquisition procedures is needed within each scientific field. Adoption of common 
strategies for phenotyping (e.g., common data elements) can dramatically improve the value of 
shared datasets. Similarly, the harmonization of data acquisition procedures (e.g., MRI scan 
sequences, experimental procedures, phenotyping instruments) and establishing quality 
assessment standards will further improve the quality and value of data sharing (see 30 for a 
comprehensive discussion related to brain imaging). We assert that it is the responsibility of the 
entire scientific ecosystem, from funding agencies to junior scientists, to accelerate the pace of 
progress by making data sharing the norm. 
 
 
  

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 4, 2017. ; https://doi.org/10.1101/183814doi: bioRxiv preprint 

https://doi.org/10.1101/183814
http://creativecommons.org/licenses/by-nd/4.0/


References 

1. Nelson, B. Data sharing: Empty archives. Nature 461, 160–163 (2009). 

2. [editorial]. Empty rhetoric over data sharing slows science. Nature 546, 327 (2017). 

3. Poldrack, R. A. & Poline, J. B. The publication and reproducibility challenges of shared 

data. - PubMed - NCBI. Available at: https://www.ncbi.nlm.nih.gov/pubmed/25532702. 

(Accessed: 29th August 2017) 

4. Spires- Jones, T. L., Poirazi, P. & Grubb, M. S. Opening up: open access publishing, 

data sharing, and how they can influence your neuroscience career. Eur. J. Neurosci. 43, 

1413–1419 (2016). 

5. Perera, B. J. C. Data sharing: Some points of view for scrutiny. Sri Lanka Journal of 

Child Health 46, 105 (2017). 

6. Gewin, V. Data sharing: An open mind on open data. Nature 529, 117–119 (2016). 

7. Van Horn, J. D. & Gazzaniga, M. S. Why share data? Lessons learned from the fMRIDC. 

Neuroimage 82, 677–682 (2013). 

8. Marcus, D. S. et al. Open Access Series of Imaging Studies (OASIS): cross-sectional 

MRI data in young, middle aged, nondemented, and demented older adults. J. Cogn. 

Neurosci. 19, 1498–1507 (2007). 

9. Weiner, M. W. et al. Impact of the Alzheimer’s Disease Neuroimaging Initiative, 2004 to 

2014. Alzheimers. Dement. 11, 865–884 (2015). 

10. Van Essen, D. C. et al. The WU-Minn Human Connectome Project: an overview. 

Neuroimage 80, 62–79 (2013). 

11. Poldrack, R. A. et al. Toward open sharing of task-based fMRI data: the 

OpenfMRI project. Front. Neuroinform. 7, 12 (2013). 

12. Mennes, M., Biswal, B. B., Castellanos, F. X. & Milham, M. P. Making data 

sharing work: The FCP/INDI experience. Neuroimage 82, 683–691 (2013). 

13. Biswal, B. B. et al. Toward discovery science of human brain function. 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 4, 2017. ; https://doi.org/10.1101/183814doi: bioRxiv preprint 

https://doi.org/10.1101/183814
http://creativecommons.org/licenses/by-nd/4.0/


Proceedings of the National Academy of Sciences 107, 4734–4739 (2010). 

14. Milham, M. P., Fair, D., Mennes, M., Mostofsky, S. H. & Others. The ADHD-200 

consortium: a model to advance the translational potential of neuroimaging in clinical 

neuroscience. Front. Syst. Neurosci. 6, 62 (2012). 

15. Di Martino, A. et al. The autism brain imaging data exchange: towards a large-

scale evaluation of the intrinsic brain architecture in autism. Mol. Psychiatry 19, 659–667 

(2014). 

16. Zuo, X.-N. et al. An open science resource for establishing reliability and 

reproducibility in functional connectomics. Sci Data 1, 140049 (2014). 

17. Nooner, K. B. et al. The NKI-Rockland Sample: A Model for Accelerating the 

Pace of Discovery Science in Psychiatry. Front. Neurosci. 6, 152 (2012). 

18. McDonald, A. R. et al. The real-time fMRI neurofeedback based stratification of 

Default Network Regulation Neuroimaging data repository. Neuroimage 146, 157–170 

(2017). 

19. Moed, H. F. Citation Analysis in Research Evaluation. (Springer Science & 

Business Media, 2006). 

20. Van Noorden, R. Controversial impact factor gets a heavyweight rival. Nature 

540, 325–326 (2016). 

21. Craddock, R. C. et al. Towards Automated Analysis of Connectomes: The 

Configurable Pipeline for the Analysis of Connectomes (C-PAC). Front. Neuroinform. 7, 

(2013). 

22. Xu, T., Yang, Z., Jiang, L., Xing, X.-X. & Zuo, X.-N. A Connectome Computation 

System for discovery science of brain. Sci Bull. Fac. Agric. Kyushu Univ. 60, 86–95 (2015). 

23. Tomasi, D. & Volkow, N. D. Functional connectivity density mapping. Proc. Natl. 

Acad. Sci. U. S. A. 107, 9885–9890 (2010). 

24. Yan, C.-G., Craddock, R. C., Zuo, X.-N., Zang, Y.-F. & Milham, M. P. 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 4, 2017. ; https://doi.org/10.1101/183814doi: bioRxiv preprint 

https://doi.org/10.1101/183814
http://creativecommons.org/licenses/by-nd/4.0/


Standardizing the intrinsic brain: towards robust measurement of inter-individual variation in 

1000 functional connectomes. Neuroimage 80, 246–262 (2013). 

25. Abraham, A. et al. Deriving reproducible biomarkers from multi-site resting-state 

data: An Autism-based example. Neuroimage doi:10.1016/j.neuroimage.2016.10.045 

26. Kalcher, K. et al. Fully exploratory network independent component analysis of 

the 1000 functional connectomes database. Front. Hum. Neurosci. 6, (2012). 

27. Eklund, A., Nichols, T. E. & Knutsson, H. Cluster failure: Why fMRI inferences for 

spatial extent have inflated false-positive rates. Proc. Natl. Acad. Sci. U. S. A. 113, 7900–

7905 (2016). 

28. Longo, D. L. & Drazen, J. M. Data Sharing. N. Engl. J. Med. 374, 276–277 

(2016). 

29. Gorgolewski, K. J., Margulies, D. S. & Milham, M. P. Making data sharing count: 

a publication-based solution. Front. Neurosci. 7, 9 (2013). 

30. Nichols, T. E. et al. Best practices in data analysis and sharing in neuroimaging 

using MRI. Nat. Neurosci. 20, 299–303 (2017). 

 

  

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 4, 2017. ; https://doi.org/10.1101/183814doi: bioRxiv preprint 

https://doi.org/10.1101/183814
http://creativecommons.org/licenses/by-nd/4.0/


TABLE LEGENDS 
 
Table 1 | Quantifying Impact of INDI Efforts Using Common Publication-based 
Indices. 
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FIGURE LEGENDS 
 
Figure 1 | Publications that used INDI shared data. a-c, Publications sorted by INDI 
dataset and year, for the period of 2010 to 2016 (publications from 2017 not depicted as 
year was in progress at time of present work) (a), publication type (b), and journal 
discipline (limited to peer-reviewed publications; based on Web of Science 
classifications) (c). 
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Figure 2 | Quantification of Publication Impact. a, 15 highest impact journals in 
which publications using INDI datasets have appeared (based on CiteScore; number of 
publications depicted for each journal). b, Cumulative density function for CiteScores of 
publications based on INDI data. Select publications depicted to provide reference 
points to assist in interpretation of CiteScore. 
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Figure 3 | Data use by authors. Breakdown of publications by contributor status, for 
the period of 2010 to 2016 (publications from 2017 not depicted as year was in progress 
at time of present work). 
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