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Abstract
Given finite cognitive resources, agents should allocate these to maximise de-
sirable outcomes while minimising cognitive effort. This trade-off has often
been studied as a competition between Bayesian inference and ‘fast-and-
frugal’ heuristic strategies. An important open question in this regard is
whether utilisation of Bayesian inference is dependent upon motivational
state, and how this is reflected in the brain. We recorded electroencephalog-
raphy from 23 participants performing a perceptual learning task with both
monetary and a non-monetary instructive feedback conditions. Using model-
based cluster analysis, we found that only participants who switched between
a Bayesian and a heuristic strategy showed worse performance for instructive
than monetary feedback, whereas participants who consistently employed
Bayesian inference showed equivalent performance in both feedback condi-
tions. This pattern of behavioural results was mirrored by differences in neu-
ral encoding of feedback in two event-related potential components: the P3,
and the late positive potential. These findings suggest that use of Bayesian
inference in perceptual learning may depend on motivational state.
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Introduction

Humans possess finite cognitive resources. In judgment and decision making these re-
sources should be allocated so as to optimise decisions about behaviourally relevant out-
comes, while minimising expenditure of cognitive resources on irrelevant or inconsequential
tasks (Pitz & Sachs, 1984; Simon, 1976). Cognitive resource constraints are thought to
provide a principled explanation for the finding that in many tasks humans rely on simple
heuristics rather than adopting superior but more computationally demanding task strate-
gies (Goldstein & Gigerenzer, 2002; Tversky & Kahneman, 1973, 1974). By producing
reasonably accurate choices while consuming relatively few cognitive resources, heuristics
can be a valuable tool to overcome cognitive resource constraints (Conlisk, 1996; Gigerenzer
& Goldstein, 1996). However, the cognitive and neurophysiological factors affecting the use
of optimal strategies versus resource-cheap heuristics remain unclear. In particular, one
open question is how the presence of reward and motivational state might affect strategy
choice (Achtziger, Alós-Ferrer, Hügelschäfer, & Steinhauser, 2015; Charness & Levin, 2005).
This question is of particular importance given ongoing debate in educational psychology
and personnel economics regarding the efficacy of using rewards to incentivise performance
(Hidi, 2016; Lazear, 2000).

In learning research, one way that the trade-off between optimal and heuristic strategies
has been conceptualised is as a competition between Bayesian inference, which is statis-
tically ideal but computationally demanding, and a win-stay lose-shift (WSLS) heuristic
(Bennett, Murawski, & Bode, 2015; Charness & Levin, 2005; Steyvers, Lee, & Wagenmak-
ers, 2009). Whereas Bayesian inference involves repeatedly revising a complete prior belief
distribution, the WSLS heuristic assumes that participants simply select choice options
which have previously led to reinforcement, or shift to a new option if a previous choice
is not reinforced (Robbins, 1952). Although Bayesian models often fit learning behaviour
well overall, their goodness-of-fit deteriorates sharply as the cognitive demands of Bayesian
inference increase (Payzan-LeNestour & Bossaerts, 2011), or when a WSLS heuristic con-
flicts with Bayesian inference (Achtziger et al., 2015; Charness & Levin, 2005). Moreover,
even in studies where Bayesian models fit group-level data well, a substantial proportion
of participants nevertheless made choices better explained by a WSLS heuristic (Bennett
et al., 2015; Steyvers et al., 2009). It remains to be determined how these findings can be
reconciled within Bayesian theories of cognition. Such theories, which include both weak
and strong variants, claim that much of human behaviour can be explained as a form of
Bayesian inference (e.g., Knill & Pouget, 2004; Chater & Oaksford, 2008; Friston et al.,
2015).

One possible explanation for these findings is that motivational factors may affect the
use of Bayesian versus heuristic strategies. Given the greater cognitive demands of Bayesian
inference compared with simple heuristics, participants may require more task motivation
to employ a Bayesian strategy. As a result, individual differences in motivational state are
likely to result in the utilisation of different task strategies and the recruitment of different
neural processes by different participants. One corollary of this explanation is that, since
feedback delivered in the form of monetary reward is thought to enhance participants’
cognitive control (Fröber & Dreisbach, 2014; Jimura, Locke, & Braver, 2010), providing
rewarding performance feedback should incentivise the use of Bayesian inference strategies
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in complex task environments.
In the present study, we investigated the effect of motivational state on the use of

Bayesian versus heuristic strategies in a perceptual learning task with graded feedback. In
this task, feedback was delivered in the form of either monetary reward or instructional
directives. Importantly, feedback values were constrained such that the exact amount of
information provided by feedback was identical across the two feedback conditions. Then,
to assess the question of strategy selection in a principled way, we formulated competing
computational cognitive models implementing Bayesian, heuristic, or mixed strategies, and
compared the predictions of these models with behavioural data. In order to elucidate the
neural mechanisms underlying selection of Bayesian versus heuristic strategies, we investi-
gated the effect of feedback condition on three event-related potential (ERP) components
associated with learning and/or reward processing: the P3 (Polich, 2007), the feedback-
related negativity (FRN; Yeung & Sanfey, 2004), and the late positive potential (LPP;
Ito, Larsen, Smith, & Cacioppo, 1998). Finally, using a model-based cluster analysis, we
investigated how neural encoding of feedback differed between participant subgroups em-
ploying different task strategies.

Method

Participants

Twenty-three participants were recruited from among students of the University of Mel-
bourne, Australia (mean age = 23.40; age range 19-31; 17 female, six male). Participants
were right-handed and had normal or corrected-to-normal visual acuity. Exclusion criterion
was a medical history of any neurological disorder. Informed consent was acquired from
all participants in accordance with the Declaration of Helsinki, and approval was obtained
from the University of Melbourne Human Research Ethics Committee (ID 1339694). Par-
ticipants received monetary compensation for participation (mean = $25.24; SD = 4.05)
that was proportional to task winnings in the monetary feedback condition only (see below).
For all participants, total remuneration value was within the range AUD $20-30.

Four participants were excluded from analysis of EEG data: one because of an excessive
number of artefacts (more than 80 percent of trials affected), one because of a failure of the
eyeblink artefact removal routine, and two additional participants because of computer error
during EEG acquisition. Final EEG analyses were therefore performed on data provided
by 19 participants (mean age = 23.75; age range 19-31; 13 female, six male).

Behavioural task

While EEG was recorded, participants performed a perceptual learning task modified
from a previous study by Bennett et al. (2015). This task required participants to use
visually presented feedback in sequential trials to learn the target contrast of a greyscale
checkerboard stimulus (see Figure 1A). The present study employed a novel variant of this
task in which feedback regarding the target contrast could be either monetary (as in the
original paradigm) or instructive.

In each trial, the checkerboard was presented for up to 30 seconds (see Figure 1A), during
which time its contrast changed linearly (alternately increasing and decreasing, changing
direction at upper/lower contrast bounds). Initial contrast, initial direction of contrast
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Figure 1 . (A) Trial schematic. Following a self-paced button press, a checkerboard stimulus
was presented with a linearly changing contrast. The participant could at any time select
the contrast displayed on screen by pressing a button with the right index finger. The
trial continued until a button was pressed, or until stimulus duration exceeded 30 seconds.
Following the participant’s choice, the selected contrast remained on screen for two seconds,
after which time the monetary or instructive feedback associated with the chosen contrast
was displayed for 2.5 seconds. In the event that no button was pressed within 30 seconds,
feedback was a message reminding the participant of the task instructions. (B) Feedback
mapping for monetary feedback condition. The mapping was a symmetrical triangular
function with a centre of zero percent contrast difference, a half-width of 15 percent contrast
difference, and a height of 25 cents. As such, received reward was maximal when the
participant responded at the target contrast, and decreased with increasing difference of
chosen contrast from the target. Reward was zero for responses at greater than 15 percent
distance. Feedback received was rounded to the nearest whole-cent value. (C) Feedback
mapping for the instructive feedback condition. For responses at less than 15 percent
difference from the target, participants were informed of the difference between the chosen
contrast and the target (rounded to the nearest of 49 equally spaced values, in order to
match precisely the step size of the monetary condition’s feedback mapping). For responses
at greater than 15 percent difference from the target, participants were informed only that
their response was “too far” from the target (equivalent to the monetary condition’s zero
cent feedback).
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change (increasing/decreasing), and rate of change were randomised on each trial using the
same parameters as in Bennett et al. (2015). At any time during stimulus presentation, the
participant could choose the contrast displayed on screen by pressing a button with the right
index finger. After a delay in which the chosen contrast remained on screen, participants
received feedback regarding their chosen contrast. In the monetary condition, this feedback
was presented in the form of monetary reward (e.g. “You won 15 cents”) according to a
triangular function M of the distance between the chosen and the target contrast (see Figure
1B). Responses closer to the target contrast earned proportionally more (up to a maximum
of 25 cents per trial, rounded to the nearest integer), and participants received zero reward
for responses at greater than 15 percent distance from the target:

M(rt, xt) =
{∥∥∥25− 5|rt−xt|

3

∥∥∥ , |rt − xt| ≤ 15
0, |rt − xt| > 15

(1)

where t is the trial number, rt is the target contrast on trial t, and xt is the participant’s
chosen contrast on trial t. Double bars denote rounding to the nearest integer.

By contrast, feedback in the instructive condition took the form of an explicit instruc-
tional directive informing the participant of the distance between their chosen contrast and
the target (e.g. “You were 11.25% away from the target”; see Figure 1C). For responses
at greater than 15 percent distance from the target, participants were informed only that
their response was ‘too far’ from the target. As such, in the instructive feedback condition
the function reward mapping function M from Equation 1 was replaced with the instruction
mapping function I:

I(rt, xt) =
{
|rt − xt| , |rt − xt| ≤ 15
"Too far", |rt − xt| > 15 (2)

Crucially, in order to ensure strict equivalence in feedback information between instruc-
tive and monetary feedback, instructive feedback values were constrained to follow an equiv-
alent functional form to monetary feedback (compare Figures 1B and 1C). This was done by
rounding instructive feedback values to the nearest value in the set {0, 0.625, 1.25, 1.875, ...15}.
For any given sequence of choices, therefore, feedback in the two conditions provided iden-
tical information regarding the target contrast. Consequently, any differences in task per-
formance between instructive and monetary conditions cannot be attributed to differences
in the information content of feedback.

Prior to the task, participants were trained in interpretation of feedback in both feedback
conditions, and testing commenced only when satisfactory levels of task understanding were
displayed. Participants then completed 14 blocks of the task in total over approximately
50 minutes. Each block had a different target contrast, selected pseudo-randomly from the
interval [25%, 85%]. Monetary and instructive conditions were presented in seven consec-
utive blocks each, with condition order counterbalanced across participants. Each block
continued until cumulative checkerboard presentation duration for the block exceeded three
minutes, or until 25 trials were completed, whichever occurred sooner. As a result, the num-
ber of trials per block varied, ensuring that participants could not rush through the task
in an attempt to trade off experiment duration against monetary winnings. Upon receiv-
ing feedback, participants were not informed of the exact numerical contrast level of their
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choice; instead, the checkerboard remained on-screen at the chosen contrast while feedback
was presented. As a result, learning was necessarily affected by perceptual uncertainty
regarding the identity of the chosen contrast.

Stimuli were presented using a Sony Trinitron G420 CRT monitor at a framerate of 120
Hz. During task performance, participants were seated comfortably in a darkened room,
using a chin rest at a distance of 77 cm from the screen. Checkerboard stimuli were 560 ×
560 pixels in size, measuring 19.5 × 19.5 cm on the screen and subtending a visual angle
of 14.43 × 14.43◦. Responses were recorded using a five-button Cedrus Response Box. All
other task parameters were identical to those employed by Bennett et al. (2015), with the
exception that the checkerboard in the present task did not phase-reverse, and therefore
had a smoothly changing (rather than flickering) appearance.

Computational models of behaviour

We tested four competing computational cognitive models of the task by generating all
possible configurations of Bayesian and heuristic strategies according to feedback condi-
tion. This model configuration permitted us to test formally several possible ways in which
participants might have switched, or not have switched, between Bayesian and heuristic
strategies as a function of feedback condition (see below for formal specifications and choice
rules for the Bayesian and heuristic strategies).

The first model, termed the ‘Consistent Bayesian’ (CB) model, assumed that partici-
pants employed a Bayesian inference strategy irrespective of the feedback condition. Simi-
larly, the second model, the ‘Consistent Heuristic’ (CH) model, assumed that participants
employed a WSLS heuristic strategy in both the monetary and the instructive feedback con-
dition. A third possibility was that participants might employ a Bayesian inference strategy
when monetary feedback was provided, but switch to a WSLS heuristic strategy in blocks
with instructive feedback. Such a model implies the use of a more computationally de-
manding strategy in the presence of reward and a simpler heuristic strategy in the absence
of reward, and was therefore termed the ‘Incentive-Compatible Switching’ (ICS) model.
Finally, for the fourth model we also considered the possibility that participants might
employ a WSLS heuristic strategy in monetary feedback blocks, and a Bayesian inference
strategy in instructive feedback blocks. This model was termed the ’Incentive-Incompatible
Switching’ (IIS) model, and can be thought of as corresponding to the idea of “choking
under pressure” (see also Achtziger et al., 2015; Baumeister, 1984), in which the presence
of monetary incentives produces a decrement in performance.

Each of these four models was parameterised by the perceptual uncertainty parameter
σ (see below); this parameter was permitted to vary between participants, but was fixed to
take the same value across different feedback conditions for each participant, since neither
perceptual stimuli nor observation environment varied across feedback conditions. Con-
straining the σ parameter across feedback conditions was done for identification purposes,
to ensure that differences in task performance between feedback conditions could not simply
be accounted for by changes in a perceptual uncertainty parameter. One prominent criti-
cism of Bayesian models in psychology and neuroscience is that flexible parameterisations of
Bayesian models permit qualitatively and quantitatively distinct patterns of behaviour to be
described within an identical model architecture (Bowers & Davis, 2012). The constraints
on σ applied in the present study ensured that the goodness-of-fit of each of the four models
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described below gave an unbiased estimate of the likelihood of each behavioural strategy.
For each model, σ was estimated using maximum likelihood estimation as implemented in
the MATLAB Optimization Toolbox (The Mathworks, Natick, MA) and choice likelihood
functions as specified by Bennett et al. (2015). Model fitting was performed with multiple
different initial parameter values for each participant to ensure that identified values of
sigma corresponded to global rather than local optima.

The relative performance of these four models also informed subsequent ERP analy-
ses. By comparing model fits for individual participants we derived an index of which
model strategy provided the best explanation of each participant’s data. Groups of partic-
ipants who all used the same strategy were then clustered into subgroups for subsequent
ERP analyses. Differences in neural encoding of feedback between subgroups were, there-
fore, interpretable with respect to the different behavioural strategies employed by different
participants. This model-based clustering analysis is a principled alternative to more tradi-
tional model-free cluster analysis algorithms, which have been criticised for clustering data
in order to maximise intra-cluster homogeneity in a way that may not result in psychologi-
cally meaningful differences between participant subgroups (Fraley & Raftery, 1998; Meehl,
1992). By contrast, a model-based clustering procedure allows for principled segregation
of participants into subgroups representing different computational models of task perfor-
mance. As such, different subgroups necessarily correspond to meaningful and distinct
psychological constructs. In the present study, this approach meant that differences be-
tween subgroups in neural encoding of feedback could be readily interpreted with reference
to the employment of different behavioural strategies. This approach can be considered a
classification-based counterpart of Bayesian model selection (Marković, Gläscher, Bossaerts,
O’Doherty, & Kiebel, 2015; Stephan, Penny, Daunizeau, Moran, & Friston, 2009), which
also takes into account within-participants variability in the likelihood of different compu-
tational models.

It should also be noted that the model of Bayesian inference implemented in the present
study is only one among many models capable of approximating Bayesian updating for
feedback-based learning under uncertainty (e.g., Behrens, Woolrich, Walton, & Rushworth,
2007; Mathys, Daunizeau, Friston, & Stephan, 2011; Nassar, Wilson, Heasly, & Gold, 2010).
The statistical mechanics of Bayesian updating are not unique to the model used in the
present study; as such, this model should be considered as representing a specific imple-
mentation of broad computational principles which are applicable to a large number of
distinct model architectures.

Bayesian strategy. To model choices under the Bayesian inference strategy, we esti-
mated beliefs using a Bayesian grid estimator (Moravec, 1988) as described and implemented
for the perceptual learning task used in the present study by Bennett et al. (2015). This es-
timator calculated a probabilistic estimate of participants’ beliefs regarding the level of the
target contrast in each trial, and used this belief distribution to estimate choice likelihoods.
Formally, beliefs were described by a probability mass function θ over a contrast space dis-
cretised into J equally sized bins, where the value of the function θ at each bin represented
the participant’s subjective probability that the target contrast (denoted rt) fell within bin
j on trial t. On each trial t, participants observed the feedback ft after the choice of contrast
bin xt, determined according to the monetary and instructive feedback mapping functions
M and I as specified by Equations 1 and 2, respectively. Belief estimates were initialised in
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each block as a discrete uniform distribution, representing participants’ a priori uncertainty
regarding the target contrast level. This belief distribution was then updated sequentially
according to Bayes’ Rule as feedback was received, such that the posterior distribution of
trial t formed the prior distribution for trial t+ 1:

θt+1(j) = θt(j)Pr(ft, xt|rt ∈ j)
Pr(ft, xt)

(3)

The left-hand side of Equation 3 represents the posterior belief distribution for contrast
bin j following trial t, and is calculated by multiplying the participant’s prior belief that
the target contrast fell within bin j, θt(j) by the likelihood of observing the choice/feedback
pair (ft, xt) if the target were in bin j, Pr(ft, xt|rt ∈ j), and dividing by the marginal
likelihood of the update, Pr(ft, xt).

As described above, variability in task performance between participants was captured
by the perceptual uncertainty parameter σ. Formally, σ represents the standard deviation of
the Gaussian noise affecting belief updates after feedback receipt, such that larger values of
σ indicate a greater degree of noise in the updating process, and therefore more imprecise
belief updates. Since participants were not informed of exactly what contrast they had
chosen, but had to estimate this chosen contrast from the visual display, this perceptual
uncertainty therefore also results in a Gaussian prior over chosen contrast. For a complete
discussion of the mathematical role of σ in the Bayesian updating model see Bennett et al.
(2015).

To estimate choice likelihood, this model used a probability of maximum utility choice
rule (cf. Speekenbrink & Konstantinidis, 2015), whereby contrast bins with a higher prob-
ability of containing the target contrast had a proportionally higher probability of being
chosen, subject to response uncertainty during choice:

Pr(xt) = θ ∗G0 [J ]
k

(4)

As such, on each trial the choice likelihood probability mass function was determined
by convolving the prior belief distribution θ by the uncertainty function G0 over the set
of contrast bins J , where k is a normalisation constant and square parentheses denote the
domain of convolution. Intuitively, this response model implies that response probabilities
are derived by the addition of Gaussian noise to the target contrast distribution J . The
uncertainty function G0 was a zero-mean Gaussian function of the contrast difference be-
tween the true chosen contrast xt and each bin xj of the distribution θ. This function was
also parameterised by σ (truncated to the available range of contrasts):

G0(xt, xk, σ) ∼ N (xt − xj , σ) (5)

WSLS Heuristic Strategy. In contrast to the Bayesian inference strategy, the WSLS
heuristic strategy did not assume that participants attempted to infer the location of the
target contrast. Instead, behaviour under the WSLS heuristic was assumed to be driven
by a one-trial memory, such that participants’ behaviour on a given trial was a function
of whether or not they had received reinforcement on the preceding trial (Robbins, 1952).
Specifically, the model assumed that participants attempted to repeat the choice made
on the previous trial if this choice had resulted in any level of reinforcement (defined as
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any monetary reward amount in the monetary feedback condition, and as any numerical
instruction amount in the instructive feedback condition). The WSLS model assumed that
participants shifted randomly to a new contrast if they received no reinforcement on trial
t− 1, or at the start of a new block. This gives the following choice probability function:

Pr(xt) =


(δ(j−xt−1)∗G0)[J ]

k , ft−1 > 0

1
J , otherwise

(6)

where G0 is defined as per Equation 5, J is the number of bins in the belief distribution,
δ is the Dirac delta function, and k is a normalisation constant. See Bennett et al. (2015)
for a full formal characterisation of the WSLS heuristic as implemented for the perceptual
learning task used in the present study.

Note that perceptual uncertainty in the WSLS choice rule was implemented in an iden-
tical manner to the Bayesian inference choice rule, using the same zero-mean Gaussian
function. This allowed for an identical specification of perceptual uncertainty across all
four models, thereby ensuring that predicted choice probabilities were directly comparable
between models.

EEG data acquisition

The electroencephalogram was recorded from 35 Ag/AgCl active scalp electrodes (Fp2,
AF7, AF3, AFz, AF4, AF8, F5, F1, Fz, F2, F4, F6, FC1, FCz, FC4, FC6, C5, C3, Cz, C4,
CP5, CP3, CP1, CPz, CP6, P5, P1, Pz, P4, P6, POz, PO8, O1, Oz, Iz in the International
10-20 System). Electrodes interfaced with a BioSemi ActiveTwo 64-channel system running
ActiView acquisition software, and used an implicit reference during recording. Due to
technical problems with electrode hardware, not all 64 channels could be recorded for all
participants. Therefore, based on previous (Bennett et al., 2015) and planned analyses,
data was acquired from prespecified channels of interest, including all fronto-central and
centro-parietal midline electrodes. All electrode channels included in subsequent event-
related potential (ERP) analyses were recorded without issue for all participants, and data
quality was not compromised. Data were linearly detrended and re-referenced offline to an
average of left and right mastoid electrodes. The vertical and horizontal electrooculogram
(EOG) were recorded from electrodes infraorbital and horizontally adjacent to the left eye.
EEG was recorded at a sampling rate of 512 Hz.

Preprocessing of data was performed using a semi-automated preprocessing pipeline (cf.
Bode, Bennett, Stahl, & Murawski, 2014; Brydevall, Bennett, Murawski, & Bode, 2017).
Data were first manually screened to exclude epochs contaminated by skin potential or
muscle artefacts. Using a linear FIR filter, data were then highpass filtered at 0.1 Hz,
lowpass filtered at 70 Hz, and notch filtered at 50 Hz to remove background electrical
noise. Epochs were generated consisting of data from 1500 milliseconds before to 1500
milliseconds after feedback presentation. An independent components analysis (ICA) as
implemented in the EEGLAB toolbox (Delorme & Makeig, 2004) was performed on the
resulting dataset to identify and remove components related to eye movements and eye-
blink artefacts. Finally, an automatic artefact screening procedure excluded all epochs
from analysis in which maximum/minimum amplitudes exceeded ±200 µV.
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ERP data analysis

We assessed three ERP components: the P3, the feedback-related negativity (FRN), and
the late positive potential (LPP). Component amplitudes were calculated using estimation
routines implemented in the ERPlab plugin (Lopez-Calderon & Luck, 2014), time-locked
to feedback presentation on each trial and baseline-corrected from 0 to 500 milliseconds
pre-feedback.

P3 amplitude was calculated as the largest positive peak in the window from 250-550ms
post-feedback at the frontocentral and centroparietal midline electrodes AFz, Fz, FCz, Cz,
and CPz (Bennett et al., 2015). This time window allowed us to estimate peak amplitude
within a symmetrical window about the peak of the P3 as identified in grand average
waveforms. Past research suggests that P3 amplitude is an index of individuals’ revision
of probabilistic beliefs (Kolossa, Kopp, & Fingscheidt, 2015), and we therefore investigated
whether P3 amplitude varied between Bayesian belief updating and heuristic strategies.

At the same midline electrodes as the P3 analysis, FRN amplitude was calculated as
the peak-to-peak distance between the most negative peak in the window from 200 to 550
milliseconds and the immediately preceding positive peak (Achtziger et al., 2015; Frank,
Woroch, & Curran, 2005; Yeung & Sanfey, 2004). A peak-to-peak measure of the FRN
was used rather than a mean amplitude measure to ensure that estimates of FRN and P3
amplitude were statistically independent of one another. FRN amplitude was investigated
because of its importance as an index of outcome evaluation in reinforcement learning and
feedback processing (Frank et al., 2005; Yeung & Sanfey, 2004; Holroyd & Coles, 2002).

Finally, LPP amplitude was calculated as the mean voltage within the window from 550
to 900 milliseconds post-feedback at the centro-parietal midline electrodes Cz, CPz, and
Pz (Hajcak, Dunning, & Foti, 2009; Ito et al., 1998). This time window was chosen both
to accord with previous literature (e.g., Keil et al., 2002), and to ensure that P3 and LPP
analysis windows did not overlap. In research studying the processing of emotional stimuli,
LPP amplitude is thought to differentially encode positive and neutrally valenced stimuli
(Keil et al., 2002; Schupp et al., 2000); we therefore sought to investigate whether LPP
amplitude differed between monetary and instructive feedback conditions.

ERP analyses investigated the neural correlates of differential processing of monetary
and instructive feedback. Where formal comparison of computational cognitive models
indicated the presence of participant subgroups using distinct performance strategies, we
investigated interactions between model-derived participant subgroups and feedback con-
dition. This allowed us to identify electrophysiological indices associated with the use of
different behavioural strategies in different subgroups.

Results

Behavioural results

Participants completed a variable number of trials per block (mean = 17.57; SD =
2.70). A paired-samples t-test indicated that the average number of trials completed per
block did not differ between instructive and monetary conditions (t(22) = 0.33, p = .74).

Behavioural performance was quantified by choice error, defined as the absolute contrast
difference between the chosen contrast and the target contrast on each trial. We investigated
differences in choice error as a function of trial number and feedback condition using linear
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Figure 2 . (A) Overall task performance among all participants (n = 23). All participants’
mean choice error (measured as absolute difference between chosen and target contrasts) as
a function of feedback condition (red: monetary feedback; black: instructive feedback) and
trial number. Only trials 1-15 are shown, since data was not available for all participants for
trials 16 – 25. Error bars represent the standard error of the mean. (B) Overall behavioural
results among the subgroup of participants whose choices were best fit by the Consistent
Bayesian (CB) model in a two-model comparison (n = 13). (C) Overall behavioural results
among the subgroup of participants whose choices were best fit by the Incentive-Compatible
Switching (ICS) model in a two-model comparison (n = 10).

mixed-effects analysis with feedback condition and trial number as fixed effects. Results
indicated a significant main effect of trial number (F (24,60.95) = 13.09, p = 4 ×10−16),
with performance improving over time within each block (see Figure 2A), and a significant
main effect of feedback condition (F (1,9.29) = 20.07, p = .001), driven by better overall
performance in the monetary than the instructive feedback condition. In addition, we
observed a significant interaction between feedback condition and trial number (F (24, 60.95)
= 2.89, p = .0004). This effect is likely to have been driven by greater differences between
monetary and instructive feedback conditions in mid- and late-block trials, rather than in
block-initial trials. Such a pattern stands to reason, since participants began each block
with no a priori knowledge regarding the target contrast, and were as likely to make a
correct as an incorrect initial guess regardless of feedback condition.

Computational model results

Using standard model comparison techniques, we next determined which of the com-
putational models defined above provided the best account of choices across participants.
Table 1 presents Bayesian Information Criterion (BIC) values for each of the four mod-
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els. Results showed that, as in a previous study using this perceptual learning paradigm,
the CB model, which assumed that participants adopted a Bayesian inference strategy in
both feedback conditions, provided the best fit to data across all participants (Bennett et
al., 2015). However, further examination of model fits for individual participants using
participant-specific BIC values (see ’n best fit’ columns) revealed that there was consider-
able variability in the best-fitting model across participants. Indeed, in spite of providing
the best overall fit to data, the CB model was the best-fitting behavioural model for fewer
than half (n = 11) of all participants considered separately. This strongly suggests the
presence of inter-individual heterogeneity in task strategy. Closer inspection of individual
model fits revealed that the second-best-fitting model overall, the ICS model, was the best-
fitting model for approximately an additional third of participants. This model assumed
that participants switched between a Bayesian inference strategy in the monetary feedback
condition and a WSLS heuristic strategy in the instructive feedback condition.

Table 1
Summary of computational model fits to 5651 choices by 23 participants.
Model n parameters -LL1 BIC2 n best fit (4 models) n best fit (2 models)
CB3 1 26094.18 52387.07 11 13
ICS4 1 26178.47 52555.66 7 10
IIS5 1 26254.21 52707.13 2 -
CH6 1 26344.96 52888.63 3 -

1 Negative log likelihood 2 Bayesian Information Criterion 3 Consistent Bayesian model
4 Incentive-Compatible Switching model 5 Incentive-Incompatible Switching model
6 Consistent Heuristic model

As such, more than three-quarters of participants were best-fit by either the CB or the
ICS model. Furthermore, for four of the five participants best fit by one of the other two
models (IIS or CH), the second-best-fitting model was either the CB or the ICS model, such
that the CB and ICS models were together either the first- or second-choice model for 22 of
the 23 participants. Given the marked superiority of the CB and ICS models, therefore, we
divided participants into two subgroups using a two-model comparison of the CB and ICS
models (Fraley & Raftery, 1998). This model-based cluster analysis produced a two-model
solution in which the principle of parsimony was balanced against the evident heterogeneity
in individual task strategies detailed in Table 1.

We termed the two approximately evenly sized participant subgroups resulting from this
two-model comparison the ’CB’ (n = 13) and ’ICS’ (n = 10) subgroups respectively. Sub-
group membership was included as a between-subjects grouping variable in all subsequent
behavioural and ERP analyses, in order to investigate whether patterns of learning and neu-
ral responses to feedback differed between participant subgroups. Furthermore, since the
order in which feedback conditions were presented was counterbalanced across participants,
we performed an additional control analysis to ensure that the two behavioural subgroups
identified by model comparison were not merely a reflection of between-participants dif-
ferences in condition order. A chi-square test of independence revealed no relationship
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between condition order and model subgroup (χ2(1) = 0.73, p = .39); as such, there was no
evidence to suggest that the classification of participants into behavioural subgroups was
related to the order in which participants completed the instructive and monetary feedback
conditions.

Next, we sought to determine whether behavioural strategy (as indexed by subgroup
membership) was associated with different levels of overall task performance. We used a 2 ×
2 repeated-measures ANOVA with within-groups factor of condition (instructive, monetary)
and between-groups factor of model subgroup (CB, ICS), and mean choice accuracy across
all trials as a dependent variable. We found a significant effect of feedback condition on
accuracy (F (1,21) = 20.88, p = .00017, η2

p = .50), indicating better overall performance in
the monetary condition than the instructive condition. Crucially, we also found a significant
interaction between reward condition and model subgroup (F (1,21) = 8.13, p = .01, η2

p

= .28). Follow-up paired-samples t-tests revealed that this interaction was driven by a
significantly better overall performance in the monetary than the instructive condition in
the ICS subgroup (t(9) = -4.01, p = .003; see Figure 3C), but not in the CB subgroup,
(t(12) = -1.66, p = .12; see Figure 3B). In addition, we observed a non-significant trend
toward better performance overall among the CB subgroup than among the ICS subgroup
(F (1,21) = 3.71, p = .07).

ERP results

We next investigated whether any of the three identified ERP components displayed an
interaction between feedback condition and behavioural subgroup that might account for
the analogous interaction observed in behavioural data (see Figure 3). This analysis al-
lowed us to identify electrophysiological indices which were associated with the differential
relative performance between monetary and instructive feedback in participants who con-
sistently adopted a Bayesian inference strategy (the CB model subgroup), compared with
participants who switched between a Bayesian inference strategy and a heuristic strategy in
different feedback conditions (the ICS subgroup). Scalp maps for the P3 and LPP analysis
windows are presented in Figure 4.

P3. A 5×2×2 repeated-measures ANOVA with within-groups factors of electrode
(AFz, Fz, FCz, Cz, CPz) and feedback condition (instructive, monetary) and between-
groups factor of model subgroup (CB, ICS) revealed a significant main effect of electrode
on P3 amplitude (F (1.50, 25.56) = 13.94, p = .0002, η2

p = .45), as well as a significant inter-
action between feedback condition and model subgroup on P3 amplitude (F (1,17) = 4.96,
p = .04, η2

p = 0.23; see Figure 5A). Follow-up paired-samples t-tests marginalised across
electrodes revealed that this interaction was driven by a significantly larger P3 amplitudes
for monetary than instructive feedback in the ICS subgroup (t(8) = -2.88, p = .02), but not
in the CB subgroup (t(9) = .29, p = .78). This indicates that P3 amplitudes differed be-
tween feedback conditions solely for participants who switched between a Bayesian strategy
in the monetary feedback condition and a heuristic strategy in the instructive feedback con-
dition; by contrast, there was no difference in P3 amplitudes for participants who employed
a Bayesian strategy in both feedback conditions.

Finally, we also observed a non-significant trend toward a main effect of feedback con-
dition on P3 amplitude (F (1,17) = 3.32, p = .09). No other main effects or interactions
were statistically significant, all p > .10.
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Figure 3 . Grand average feedback-locked ERP waveforms at electrode Fz, grouped by feed-
back condition (red: monetary feedback; black: instructive feedback). Time 0 denotes the
presentation of performance feedback. (A) Grand average waveforms across all participants.
(B) Grand average waveforms across the subgroup of participants whose choices were best
fit by the Consistent Bayesian (CB) model in a two-model comparison (n = 10). (C) Grand
average waveforms across the subgroup of participants whose choices were best fit by the
Incentive-Compatible Switching (ICS) model in a two-model comparison (n = 9).

FRN. A 5×2×2 repeated-measures ANOVA with within-groups factors of electrode
(AFz, Fz, FCz, Cz, CPz), condition (instructive, monetary) and between-groups factor of
model subgroup (CB, ICS) revealed a significant main effect of feedback condition on FRN
amplitude (F (1,17) = 5.92, p = .03, η2

p =.26), with larger FRNs elicited by instructive than
rewarding feedback. There was a non-significant trend toward an effect of model subgroup
on FRN amplitude (F (1,17) = 4.20, p = 0.06), with numerically larger FRN amplitudes for
the ICS than the CB subgroup (see Figure 5B). There was no interaction between feedback
condition and model subgroup, and no other main effects or interactions were significant,
all p > .10.

LPP. A 3×2×2 repeated measures ANOVA with within-groups factors of electrode
(CPz, Pz, Cz) and feedback condition (instructive, monetary) and between-groups factor
of model subgroup (CB, ICS) revealed a significant main effect of feedback condition on
LPP amplitude (F (1,17) = 21.38, p = .0002, η2

p = .56), as well as a significant interaction
between feedback condition and model subgroup (F (1,17) = 4.85, p = .04, η2

p =.22; see
Figure 5C). Follow-up paired-samples t-tests marginalised across electrodes indicated that
this interaction was driven by a significantly larger LPP amplitudes for monetary than
instructive feedback in the ICS subgroup (t(8) = -8.25, p = .00002), but not for the CB
subgroup (t(9) = -1.39, p = .20). This indicates that LPP amplitudes differed between feed-
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Figure 4 . Scalp map of mean voltage difference between monetary and instructive feedback
(in µV) for different model subgroups and analysis windows. Group-level voltage differences
were largely driven by differences among participants in the Incentive-Compatible Switch-
ing (ICS) model subgroup, whereas voltage differences were small among participants in
the Consistent Bayesian (CB) subgroup. Top row (A-C): P3 analysis window (250-550ms
post-feedback). Bottom row (D-F): LPP analysis window (550-900ms post-feedback). Left
column (A and D): Mean voltage difference pooled across all participants. Centre column
(B and E): Mean voltage difference pooled across participants in the CB model subgroup.
Right column (C and F): Mean voltage difference across participants in the ICS subgroup.
For all scalp maps, voltages at missing electrodes have been reconstructed using spline
interpolation for display purposes only.

back conditions only among participants who switched between a Bayesian strategy in the
monetary feedback condition and a heuristic strategy in the instructive feedback condition;
by contrast, there was no difference in LPP amplitudes for participants who employed a
Bayesian strategy in both feedback conditions. No other main effects or interactions were
significant, all p > .10.

Discussion

The present study assessed the effect of performance incentives on use of Bayesian versus
heuristic strategies in a perceptual learning task. We found that, at a group level, partic-
ipants’ choices were more accurate when feedback was delivered in the form of monetary
reinforcement than when it was delivered as instructive directives. Similarly, group-level
results suggested differences between monetary and instructive feedback conditions in neu-
ral encoding of feedback in three ERP components: the P3, FRN, and the LPP. Critically,
however, subsequent analyses informed by computational model comparison revealed that
group-level behavioural and neural differences were, in fact, driven almost entirely by par-
ticipants who switched between a Bayesian and a heuristic strategy according to feedback
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Figure 5 . ERP component amplitudes as a function of feedback condition and behavioural
subgroup (red: monetary feedback; black: instructive feedback). Error bars represent the
standard error of the mean. * indicates p <.05. (A) P3 amplitude marginalised across elec-
trodes AFz, Fz, FCz, Cz, and CPz. We observed a significant interaction between feedback
condition and model subgroup, such that monetary feedback was associated with larger P3
components than instructive feedback for the ICS subgroup, but not for the CB subgroup.
(B) FRN amplitude marginalised across electrodes AFz, Fz, FCz, Cz, and CPz. FRNs were
significantly larger in the instructive feedback condition than the monetary feedback condi-
tion across both model subgroups. (C) LPP amplitude marginalised across electrodes Cz,
CP, and Pz. We observed a significant interaction between feedback condition and model
subgroup, such that monetary feedback was associated with larger LPP components than
instructive feedback for the ICS subgroup, but not for the CB subgroup.

condition. In participants who consistently applied a Bayesian strategy in both feedback
conditions, we observed no behavioural differences between monetary and instructive feed-
back.

Using a model-based cluster analysis based on formal comparison of computational cog-
nitive models, we identified two distinct participant subgroups: a Consistent Bayesian (CB)
subgroup, and an Incentive-Compatible Switching (ICS) subgroup. These two subgroups
were associated with two models corresponding to qualitatively distinct behavioural strate-
gies. The CB subgroup comprised participants best fit by a model assuming a Bayesian infer-
ence strategy in both the monetary and the instructive feedback condition. Conversely, par-
ticipants in the ICS subgroup made choices more consistent with strategic switching between
Bayesian inference in the monetary feedback condition and a WSLS heuristic strategy in
the instructive feedback condition. This behaviour was consistent with incentive-compatible
deployment of cognitive resources, at the cost of poorer performance in the instructive feed-
back condition. By contrast, participants in the CB subgroup used a Bayesian inference
strategy in both feedback conditions, including when there was no monetary reward at
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stake. Behavioural performance for the CB subgroup therefore did not differ between feed-
back conditions, and was consistently of a high standard overall. A control analysis revealed
that model subgroup was unrelated to the order of feedback conditions, thereby ruling out
a purely temporal switching effect.

ERP analyses revealed that, like behaviour, neural encoding of feedback also differed
between CB and ICS subgroups. We assessed the effect of feedback condition and participant
subgroup on the P3, FRN, and LPP: three ERP components associated with learning and
processing of rewarding stimuli (Achtziger et al., 2015; Bennett et al., 2015; Frank et al.,
2005; Yeung & Sanfey, 2004; Keil et al., 2002; Hajcak et al., 2009; Ito et al., 1998; Polich,
2007). This analysis showed an interaction of feedback condition and participant subgroup
for the amplitudes of two components: the P3 and the LPP. This interaction was driven
by differences between feedback conditions in the ICS subgroup only, such that monetary
feedback elicited larger P3 and LPPs than instructive feedback. This was not the case for
participants in the CB subgroup, who showed P3 and LPP components of similar amplitude
in both feedback conditions, without any reduction for instructive feedback. Since only
the ICS subgroup was associated with strategy-switching, this implicates the P3 and LPP
as components which differentially encoded feedback depending on whether participants
employed a Bayesian or a heuristic strategy. We also found a significant main effect of
feedback condition for the FRN, indicating that across both participant subgroups, FRN
amplitudes were larger for instructive than monetary feedback.

This differential neural encoding of feedback affords insight into the nature of feedback
processing in Bayesian and heuristic strategies. In particular, the P3 has been linked in
past research to the process of Bayesian belief updating (Bennett et al., 2015; Kolossa et
al., 2015). It has been proposed that P3 amplitude indexes the magnitude of belief updates,
possibly reflecting the deployment of working memory in the revision of prior beliefs (Kopp,
2008). Differences in feedback encoding between CB and ICS subgroups might therefore be
interpreted as reflecting the differential engagement of a belief updating mechanism, since
only Bayesian inference involves updating a full belief distribution. This is also in line with
the proposal by Kok (1997) that P3 amplitude may reflect general cognitive effort, since
Bayesian belief updating requires a greater expenditure of cognitive resources than a simple
win-stay lose-switch heuristic.

Differential encoding of feedback in the LPP, by contrast, may reflect sensitivity to the
reward valence of feedback. In tasks assessing encoding of affective stimuli, LPP amplitude
has been associated with the affective salience of stimuli, such that both positively and
negatively valenced stimuli elicited larger LPPs than neutral stimuli (Keil et al., 2002;
Schupp et al., 2000). As such, one possible interpretation of LPP encoding differences in the
present study is that the strategy-switching ICS group, but not the CB subgroup, perceived
a difference in the emotional valence of monetary and instructive feedback. This may reflect
a greater degree of reward sensitivity in the ICS subgroup than the CB subgroup, since it has
previously been shown that reward processing may recruit different neural regions according
to participants’ reward sensitivity (Fröber & Dreisbach, 2014; Jimura et al., 2010).

Finally, we observed an overall effect of feedback condition on FRN amplitude, with a
larger FRN for instructive compared to monetary feedback, but found that this effect did
not interact with participant subgroup. This finding is in line with the hypothesis that
FRN amplitude reflects a relatively automatic binary evaluation of stimulus valence (Yeung
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& Sanfey, 2004), and may provide an electrophysiological index of affective components of
feedback processing (Wiswede, Münte, Goschke, & Rüsseler, 2009). Our findings suggest
that feedback value evaluation, as indexed by the FRN, was likely to have been equivalent in
extent across all participants, independent of differences between participants in Bayesian
versus heuristic task strategies. The smaller FRN elicited by monetary feedback in the
present study may therefore reflect the greater overall hedonic value of monetary feedback
relative to instructive feedback.

More broadly, it is important to note that the method of Bayesian model selection em-
ployed by the present study identifies which of a given set of computational models provides
the most parsimonious account of behavioural data. Notably, therefore, this method does
not provide information as to whether the best-fitting model within this set is also the best
out of any possible model that might have been considered. For a task such as the percep-
tual learning task used in the present study, the space of possible models that might have
been fit to the data is extremely large, and it was beyond the scope of the present study
to exhaustively compare the fit of all possible learning models to participants’ behaviour.
Rather, the goal of model comparison in the present study was to assess the relative per-
formance of two particular task strategies–Bayesian inference and a WSLS heuristic–that
have been found to provide a good account of behaviour in our perceptual learning task
by previous research (Bennett et al., 2015). The relative performance of different models
was then used as a tool to make inferences regarding the effect of the feedback incentive
manipulation on both behaviour and neural encoding of feedback.

More broadly, our results have bearing on the hypothesis that Bayesian inference repre-
sents a unifying principle of neural computation (the ’Bayesian brain’ hypothesis; Knill &
Pouget, 2004). This hypothesis has been applied successfully to domains including sensory
coding and motor planning (Kording & Wolpert, 2004; Yuille & Kersten, 2006). However,
one issue with applying Bayesian inference to higher-level judgement and decision making
is that Bayesian inference is resource-intensive, and therefore computationally intractable
for most real-world tasks(see e.g., Payzan-LeNestour & Bossaerts, 2011). Indeed, a wealth
of evidence demonstrates that in many decision settings, humans fail to employ Bayesian
strategies (e.g., Cassey, Hawkins, Donkin, & Brown, 2016; Gigerenzer & Goldstein, 1996).
Moreover, even in cases where Bayesian inference is tenable, many individuals instead ap-
pear to rely on heuristic strategies (Bennett et al., 2015; Steyvers et al., 2009). Such evidence
appears to challenge the suitability of simplistic Bayesian models to judgement and decision
making. However, the results of the present study show that this impasse might be resolved
by considering Bayesian models within a resource-rational framework that also takes cog-
nitive resource limitations into account. Such an approach has been termed procedural
rationality (Simon, 1976), or Type II rationality (Good, 1983). Our findings suggest that
participants may select among Bayesian and heuristic behavioural strategies according to
both associated outcomes and each strategy’s processing costs (cf. Ortega & Braun, 2013).
In computational terms these processing costs comprise both the computational expense of
computing action policies, and the difficulty of learning (computational complexity versus
sample complexity). This situates Bayesian models of cognition within an ecologically valid
framework in which inference is constrained by the cognitive resource limitations of the
human brain. From this perspective, we might conclude that ICS participants found the
marginal value of employing a Bayesian over a heuristic strategy to be outweighed by the
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cognitive costs of Bayesian inference in the instructive feedback condition.
In summary, using a model-based clustering analysis, we identified distinct subgroups of

participants who appeared to use different combinations of Bayesian and heuristic strategies
in a perceptual learning task. Incentive-compatible switching between Bayesian and heuris-
tic strategies was associated with differences in performance between feedback conditions, as
well as pronounced amplitude differences in ERP components linked to belief updating and
affective salience processing. Overall, results suggest that motivational state may critically
affect the use of Bayesian versus heuristic task strategies. This demonstrates the impor-
tance of embedding Bayesian models of cognition within a framework constrained by the
cognitive resource limitations of biological agents. In addition, results suggest that individ-
ual differences in motivational state and reward sensitivity mediate the effect of incentives
on task performance; as such, a one-size-fits-all approach to performance incentivisation in
educational psychology or personnel economics is likely to be an oversimplification.
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