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Molecular simulation models have provided immense, often general, insight into the complex behavior of
protein systems. Even for very detailed, e.g., atomistic, models, the generation of quantitatively accurate dy-
namical properties remains a formidable challenge. This lack of consistent dynamics largely hinders simulation
models, especially coarse-grained models, from providing structural interpretations for kinetic experiments.
In this work, we investigate to what extent a simple, native-biased coarse-grained model is capable of repro-
ducing the dynamics, or more specifically kinetic properties, of an underlying helix-coil transition. In order
to accurately represent the underlying structural ensemble, this model employs near-atomistic steric interac-
tions. We investigate structure-kinetic relationships in order to identify the structural constraints necessary
to guarantee consistent kinetics, given the implicit restrictions enforced by the physics of the model. From
each set of simulations, we construct a Markov state model to efficiently and systematically assess the system
kinetics. We demonstrate that the accurate representation of the structural ensemble results in a rather large
restriction in the topology of the resulting kinetic networks. As a consequence, relatively weak structural
constraints are needed in order to nearly quantitatively reproduce many kinetic properties of the underlying
system. Not surprisingly, while structural constraints determine the kinetics at a single temperature, fixing
the structure over multiple temperatures determines the thermodynamics, i.e., cooperativity, of the transition.
Remarkably, topological features of the kinetic networks characterizing the degree of randomness of pathways
traveling between the helix and coil states at a single reference temperature dictate the relative cooperativity
of the resulting transition.

I. INTRODUCTION

In recent years, a significant overlap in the timescales
accessible to experiments and computer simulations
probing the dynamics of individual protein molecules
has been achieved.1,2 This overlap provides an array of
unexplored opportunities for a closer interplay between
these traditionally disparate approaches, with potential
for improving methodologies as well as recovering deeper
insight from specific applications. While atomically-
detailed molecular dynamics simulations have emerged
as the gold standard for the theoretical investigation of
microscopic and chemically-specific driving forces for par-
ticular, e.g., fast-folding, processes, there remains signif-
icant challenges for utilizing these detailed simulations
as a general tool for interpreting both ensemble-averaged
and kinetic experimental observations. While many stud-
ies have aimed at assessing and improving the static prop-
erties of all-atom (AA) force fields,3,4 as well as extend-
ing these models to accurately describe a wider range
of systems, e.g., intrinsically disordered proteins,5 in-
vestigations to systematically assess kinetic properties
have only recently begun.6 Additionally, despite ever-
increasing computational power, an overwhelming gap re-
mains for exclusively applying such detailed models to in-
vestigate the large range of timescales (from ps to hours),
thermodynamic or chemical conditions (e.g., denaturant
concentrations), as well as system variations (e.g., se-
quence mutations) commonly explored in experimental
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studies. Indeed, much simpler models, e.g., ensemble
construction methods7,8 or analytically-solvable polymer
models,9,10 are routinely employed to build structural in-
terpretations of experimental observations.

In between these simple models and AA models,
coarse-grained (CG) simulation models for proteins may
retain specific structural and chemical properties of the
underlying system, while removing extraneous details to
save on the computational cost of exploring configura-
tion space. In particular, simple physics-based11 and
native-biased12 models, have largely shaped the founda-
tion for our current interpretation of the protein fold-
ing process.13 Although these models provide a qual-
itative picture of the dynamical processes sampled by
protein systems, it is typically not expected that such
simplistic models can quantitatively reproduce the cor-
responding kinetic properties. Recent advancements in
CG methodologies allow increased chemical detail and
accuracy, while retaining the sampling efficiency neces-
sary to address problems intractable for AA models.14–16
A number of advanced CG protein models have been de-
veloped,17–20 with varying representations, interactions
and parametrization philosophies, and have been success-
fully employed to investigate a range of specific folding
and aggregation processes.

The beneficial speed-up of CG models, attained
through a combination of reduced molecular friction and
softer interaction potentials, comes at the cost of obscur-
ing the connection to the true dynamical properties of the
underlying system. Unlike many polymer systems, where
a single dynamical rescaling factor is capable of recover-
ing the correct dynamics of the underlying system,21,22
the rescaling of CG dynamical processes may generally
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be a complex function of the system’s configuration. This
lost connection to the true system dynamics represents
a severe limitation for CG models, which may not only
prevent quantitative prediction of kinetic properties, but
may also lead to qualitatively misleading or incorrect in-
terpretations generated from CG simulations. For ex-
ample, Habibi et. al.23 recently demonstrated that three
different CG models provide disparate descriptions of the
forced unfolding process of a 110 residue peptide, despite
the capability of all models to fold the peptide to the
proper native structure. Furthermore, the fidelity of the
folding process, with respect to an AA reference simula-
tion, did not correlate with the complexity of the model.
Perhaps more troubling, Rudzinski et. al.24 recently
demonstrated that even for a tripeptide of alanines, the
hierarchy of local dynamical processes along the peptide
backbone, i.e., transitions between metastable states on
the Ramachandran plot, is qualitatively misrepresented
by a transferable, physics-based CG model.

Although it is possible in principle to rescue the dy-
namics of a CG model via a generalized Langevin formal-
ism, this approach offers a daunting computational and
conceptual challenge for complex biological molecules
that give rise to hierarchical dynamics, i.e., kinetic pro-
cesses coupled over various timescales. As an alternative,
it may be possible to rescue the kinetic properties gener-
ated from a CG simulation via an a posteriori reweight-
ing of simulation data in order to reproduce a set of
provided reference observables, e.g., experimental mea-
surements.24,25 However, the extent to which experimen-
tal data can correct for deficiencies in simulation mod-
els through a reweighting is obviously limited. Thus, a
detailed understanding of the link between given target
observables, e.g., structural properties, and the accurate
reproduction of relative kinetic quantities is required.

In this work we investigate relationships between struc-
tural and kinetic properties in the helix-coil transition
networks generated by various simulation models. As a
fundamental process in protein folding, investigation of
α-helical secondary-structure formation represents a log-
ical step in understanding the kinetic properties gener-
ated by CG protein models. As a primary tool for in-
vestigation, we employ a relatively simple, native-biased
model, whose parameters may be easily tuned to eluci-
date the connection between specific interactions, e.g.,
hydrophobic attraction between side chains, and emer-
gent properties of the resulting kinetic network. How-
ever, in order to sample a physically-realistic ensemble of
structures (likely a necessary condition for the consistent
reproduction of kinetic properties), this model retains
a near-atomistic description of backbone steric interac-
tions. As a complement to this model, we additionally
consider a transferable, physics-based CG peptide model,
which also retains near-atomistic backbone resolution but
employs phenomenological interactions in order to repro-
duce the balance of α/β structural propensities in a num-
ber of distinct peptide systems.19,26

As a model system, we examine an uncapped hep-

tapeptide of alanines, for which reference AA simulations
display a complex, disordered ensemble of pathways be-
tween the helix and coil states, resulting in low helical
content and strong end effects—a challenge for the simple
native-biased model. We demonstrate, using standard
Lifson-Roig models as a structure-characterization tool,
that matching of the Lifson-Roig parameters guarantees
the reproduction of certain relative timescales, given a
weak structural constraint on the system as well as the
implicit constraints provided by the underlying physics
of the model. We then characterize the temperature de-
pendence of the various CG models, further validating
the structure-kinetic relationship, and demonstrate that
constraining simple structural properties at a single tem-
perature is not enough to dictate the cooperativity of the
resulting transition. However, an investigation of the de-
tailed properties of the transition network, afforded by
Markov state models built directly from the CG simula-
tions, reveals connections between the network topology
and the thermodynamic properties of the model. Re-
markably, the average conditional path entropy—a graph
measure quantifying the degree of randomness for trajec-
tories traveling between the helix and coil states through
particular intermediate states—determined at a single
reference temperature, provides sufficient information for
determining the relative cooperativity of each CG model.

II. METHODS

A. Coarse-grained (CG) models

1. Hybrid Gō (Hy-Gō)

To investigate the relationship between structural and
kinetic properties generated from CG simulation mod-
els, we wanted a simple model (i.e., with few, physically-
motivated parameters) which sampled all the relevant
conformational states. For this purpose, we proposed
a flavored-Gō model with three interactions: (i) a native
contact (nc) attraction, Unc, employed between pairs of
Cα atoms which lie within a certain distance in the na-
tive structure, i.e., the α-helix, of the peptide. (ii) a
desolvation barrier (db) interaction, Udb, also employed
between native contacts, and (iii) a hydrophobic (hp) at-
traction, Uhp, employed between all pairs of Cβ atoms of
the amino acid side chains. Unc and Uhp are necessary
for sampling the correct ensemble of conformations (i.e.,
helix, coil, and swollen structures), while Udb assists in
providing cooperativity in the resulting transitions. We
employed the same functional forms as in many previous
studies,27 with a tunable prefactor for each interaction
as described below.

These three Gō-type interactions may be viewed as the
minimum resolution necessary to roughly sample the cor-
rect conformational ensemble for short peptides. How-
ever, because we are interested in characterizing kinetic
properties, it is important that we reproduce the underly-
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ing conformational ensemble more precisely. More specif-
ically, we wanted to ensure that the model (i) does not
sample conformations that are sterically forbidden in the
all-atom (AA) model and (ii) samples the relevant re-
gions of the Ramachandran plot, while retaining barri-
ers between metastable states. Thus, in addition to the
simple interactions described above, the model also par-
tially employs a standard AA force field, AMBER99sb,28
to model both the steric interactions between all non-
hydrogen atoms and also the specific local conformational
preferences along the chain. More specifically, the bond,
angle, dihedral, and 1–4 interactions of the AA force-
field are employed without adjustment. To incorporate
generic steric effects, without including specific attractive
interactions, we constructed Weeks-Chandler-Andersen
potentials (i.e., purely repulsive potentials) directly from
the Lennard-Jones parameters of each pair of atom types
in the AA model. For simplicity of implementation, we
then fit each of these potentials to an r−12 functional
form. The van der Waals attractions and all electrostatic
interactions in the AA force field were not included and
water molecules were not explicitly represented.

The total interaction potential for the model may be
written: Utot = εncUnc + εdbUdb + εhpUhp + εbbUbb,
where the backbone (bb) interaction includes both the
intramolecular and steric interactions determined from
the AA force field. The first three coefficients represent
the only free parameters of the model, while εbb = 1.
The relative impact of of the backbone interactions may
then be characterized by Etot ≡ εnc + εdb + εhp.

2. PLUM

As an alternative CG model, we considered the PLUM
model, which also describes the protein backbone with
near-atomistic resolution, while representing each amino
acid side chain with a single CG site, within an im-
plicit water environment.19 In PLUM, the parametriza-
tion of local interactions (e.g., sterics) aimed at a quali-
tative description of Ramachandran maps, while longer-
range interactions—hydrogen bond and hydrophobic—
aimed at reproducing the folding of a three-helix bundle,
without explicit bias toward the native structure.19 The
model is transferable in that it aims at describing the
essential features of a variety of amino-acid sequences,
rather than an accurate reproduction of any specific
one. After parametrization, it was demonstrated that
the PLUM model folds several helical peptides,19,29–32
stabilizes β-sheet structures,19,26,33–35 and is useful for
probing the conformational variability of intrinsically dis-
ordered proteins.36

B. Simulation Details

1. AA

We employed AA simulations of an uncapped hep-
tamer of alanine residues (Ala7), previously published
by Stock and coworkers.37 In short, these simulations
employed the GROMOS 45A3 force field38 along with
the SPC water model39 to obtain an 800 ns trajectory,
sampled every 1 ps, for Ala7 in the zwitterionic state at
300 K.

2. Hy-Gō

CG molecular dynamics simulations of Ala7 with the
Hy-Gōmodel were performed with the Gromacs 4.5.3
simulation suite40 in the constant NVT ensemble, while
employing the stochastic dynamics algorithm with a fric-
tion coefficient γ = (2.0 T S)−1 and a time step of
1 × 10−3 T S. For each model, ten independent simula-
tions were performed with starting conformations varying
from full helix to full coil. Each simulation was performed
for 100, 000 T S, recording the system every 0.5 T S. The
CG unit of time, T S, can be determined from the funda-
mental units of length, mass, and energy of the simulation
model, but does not provide any meaningful description
of the dynamical processes generated by the model. In
this case, T S = 1 ps.

3. PLUM

CG simulations of Ala7 with the PLUM force
field19,31,41 were run using the ESPResSo simulation
package.42 For details of the force field, implementa-
tion, and simulation parameters, see Bereau and De-
serno.19 A single canonical simulation at temperature
kBT = 1.0 E was performed for 200, 000 T P with at
timestep of 0.01 T P, recording the system every 0.5 T P,
where T P ∼ 0.1 ps. Temperature control was ensured by
means of a Langevin thermostat with friction coefficient
γ = (1.0 T P)−1.

C. Markov State Models

Markov state models (MSMs) are kinetic models that
characterize the probability of transitioning between a fi-
nite set of microstates, chosen to represent the configura-
tion space of the underlying system.43–45 The transition
probabilities may be estimated directly from molecular
dynamics trajectories via a Bayesian scheme to enforce
relevant physical constraints. In the present work, MSMs
are built from the Ala7 helix-coil trajectories generated
from each simulation model. To determine the MSM mi-
crostate representation, Principle Component Analysis
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was performed on the configurational space characterized
by the φ/ψ dihedral angles of each residue along the pep-
tide backbone. A density clustering algorithm was then
applied to the five “most significant” dimensions in order
to determine the number and placement of microstates,
following previous investigation of the AA trajectory.46
This procedure yields 32 states in all cases, corresponding
to the enumeration of all possible helix/coil state com-
binations for each of the 5 peptide bonds. MSM con-
struction and analysis was performed using the pyEmma
package.47 (See Supporting Information for more details
and MSM validation.) We also considered lower res-
olution MSMs, characterized by the number of helical
residues in a conformation, Qh. These MSMs were con-
structed from the “full” MSM via a direct mapping of the
transition probability matrix. Such a construction com-
prises the quantitative description of kinetics. However,
we found that this reduced resolution provides a useful
tool for assessing the differences between various kinetic
descriptions of Ala7.

III. RESULTS AND DISCUSSION

In this study, we investigate the relationship between
structural and kinetic properties of helix-coil transition
networks generated by microscopic simulation models.
The equilibrium statistical mechanics of helix-coil tran-
sitions is well-characterized by a 1D-Ising model, which
represents the state of each residue as being either heli-
cal, h, or coil, c.48 These simple equilibrium models em-
ploy two parameters, w and v, according to the Lifson-
Roig (LR) formulation,49 which are related to the free
energy of helix propagation and nucleation, respectively.
These parameters may be determined directly from simu-
lation data using a Bayesian approach,50 and describe the
overarching structural characteristics of the underlying
ensemble (see Supporting Information for more details).
Perhaps the most important quantity, the average frac-
tion of helical segments, 〈fh〉, i.e., propensity of sequen-
tial triplets of h states along the peptide chain, may be
measured directly from calorimetry experiments. The av-
erage number of helical residues, regardless of the partic-
ular sequence of states along the peptide chain, denoted
〈Nh〉, provides a complimentary observable to 〈fh〉. Al-
though residue- or sequence-specific LR parameters may
be determined in order to more faithfully reproduce the
helix-coil properties generated from a simulation of a par-
ticular peptide system, in this work we determine a sin-
gle set of {w, v} for each simulation model. These simple
models are incapable of describing certain features, e.g.,
end effects, of the underlying systems; however, we uti-
lize the LR parameters only as a characterization tool and
demonstrate that the sequence-independent parameters
are sufficient to effectively distinguish between various
characteristics of the underlying simulations.

The kinetics of helix-coil transitions is often inter-
preted in terms of a kinetic extension of the Ising

FIG. 1. Network representation for the Ala7 helix-coil tran-
sition generated from an atomically-detailed simulation. The
structural ensemble is representation by 32 microstates, cor-
responding to each possible sequence of the 5 peptide bonds
attaining either a helix, h, or coil, c, state. The horizontal
axis characterizes the difference between the sequence of each
state and the native (full helix) state, while the vertical axis
quantifies the extent to which the state corresponds to n- or
c-terminus folding. The thickness of the arrows represents the
fractional probability flux passing through a pair of states for
trajectories which begin in the coil state and end in the he-
lix state. The color of each state denotes the value of the
committor—the probability of reaching the coil state before
returning to the helix state.

model.51,52 These kinetic models typically assume a sim-
ple relationship between the LR parameters and the
on/off rate of helix formation and have been widely suc-
cessful in describing the emergent kinetic properties ob-
served in experiments.52,53 However, the kinetics of the
helix-coil transition may demonstrate drastic divergences
from this behavior, e.g., when misfolded intermediates
complicate the network of transition pathways.54 Even in
simpler cases, the precise impact of the model’s assump-
tions on the fine details of the resulting kinetic network
is not well understood. Here, we construct kinetic mod-
els directly from the simulation trajectories, i.e., Markov
state models, allowing both a more complex relationship
between the LR parameters and the kinetic properties
of the system and also providing a direct assessment of
the assumptions made by the more approximate kinetic
models.

As a model system, we consider an uncapped hep-
tapeptide of alanine residues (Ala7), i.e., 5 peptide bonds.
From the LR point of view, there are 32 states, deter-
mined by enumerating the various sequences of h’s and
c’s. We employ an all-atom (AA) simulation, previously
studied by Stock and coworkers,37,46,55 as a reference in
order to assess to what extent CG models are capable of
reproducing the kinetic properties of this more detailed
model. We note that it is well-known that distinct AA
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force fields yield widely varying results, e.g., in terms of
helical propensities, for short peptide systems.50 The AA
simulation employed in this work serves as an ideal refer-
ence since it samples a largely disordered ensemble with
a diverse collection of pathways from the coil to helix
state, representing a challenge for the CG models con-
sidered. Fig. 1 presents a network representation of the
AA simulation, plotted along simple reaction coordinates
that characterize the helicity of each conformation on the
horizontal axis and the direction (c- or n-terminus) of
folding on the vertical axis. The thickness of the arrows
denote the relative probability flux passing between pairs
of states for trajectories starting from the coil state and
ending at the helix state. The “middle” of the network
appears quite random, with more directed transitions to-
wards the ends of the graph. Interestingly though, the
residue dynamics remain highly coupled (see Fig. S4).
The color of each state denotes its committor value—the
probability of reaching the coil state before returning to
the helix state. Clearly the landscape is largely tilted
toward the unfolded region, as the committor values are
very close to 1 for all but a few states.

A. Identifying structure-kinetic relationships at a single
temperature using the Hy-Gōmodel

The focus of our study is a relatively simple, native-
biased CG model. The hybrid Gō (Hy-Gō) model, is
a flavored-Gō model, with native contact (nc) interac-
tions (i.e., hydrogen-bonding-like interactions between
i/i+ 4 residues) and associated desolvation barriers (db)
between Cα atoms, as well as generic hydrophobic (hp)
attractions between all pairs of Cβ atoms. The relative
strengths of these interactions are determined by the set
of 3 model parameters: {εnc, εdb, εhp}. Fig. 2 presents
a visualization of the model representation and also the
corresponding interaction potentials. The model also em-
ploys physics-based interactions in the form of sterics (see
bottom-right panel of Fig. 2) and torsional preferences
along the backbone. We denote this model “hybrid” since
it employs both traditional Gō-type interactions as well
as detailed physics-based interactions determined from
an AA model. Further details of the model and corre-
sponding simulations are described in the Methods sec-
tion.

In order to assess the capability of the Hy-Gōmodel
to reproduce structural and kinetic properties of the AA
model, we considered various combinations of εnc, εdb,
and εhp and then adjusted the temperature to repro-
duce the average helicity of the AA model, 〈NAA

h 〉. We
found three classes of CG models: (i) those that repro-
duced 〈NAA

h 〉 at some temperature T ∗, (ii) same as (i),
but whose native state was the coil state, and (iii) those
where the helix state was native but the model could not
achieve such a low value of helicity at any temperature.
For each model, we determined the two LR parameters,
{w, v}, and constructed a 32-state Markov state model

(MSM) directly from the simulation data.

FIG. 2. A visualization of the Hy-Gōmodel representa-
tion and interactions for Ala7. (Left) Illustration of a na-
tive contact between Cα atoms and a generic contact be-
tween Cβ atoms, along with the corresponding parameters,
{εnc, εdb, εhp}, associated with these interactions. (Right) The
top two panels present the interaction potentials for the Gō-
type interactions as a function of the model parameters. In
the top panel, εdb = 0.5εnc. The bottom panel presents the
Weeks-Chandler-Andersen-like potentials employed to model
sterics along the peptide backbone.

Fig. 3 presents a “parameter landscape” for the Hy-
Gōmodel, plotted as a ternary diagram with each axis
characterizing the relative importance of the three Gō-
type interactions: εi/Etot, where Etot ≡ εnc + εdb + εhp.
Because the relative impact of the backbone interac-
tions depends on Etot, we discretize along Etot and plot
ternary diagrams for distinct values along this coordi-
nate. Squares indicate models of type (i), circles of type
(ii), and triangles of type (iii). The color of each model
denotes the error with respect to some property of the
AA model (cooler colors represent lower errors). The
first row characterizes the root mean square error (rmse)
with respect to the LR parameters of the AA model,
while the second row quantifies the rmse with respect to
the slowest 2 dynamical processes of the system (as char-
acterized by the corresponding eigenvectors of the MSM
at the Qh level of resolution, see the Methods section for
details) and also the ratio of timescales between these two
processes. There is a clear correspondence between mod-
els that reproduce the structural and kinetic metrics. In
other words, given the constraint of 〈Nh〉, approximately
fixing the LR parameters is enough to also accurately re-
produce the overarching hierarchy of kinetic processes of
the underlying system at T ∗. In particular, 7 “AA-like”
Hy-Gōmodels were identified as reproducing the proper-
ties of the AA transition with the highest accuracy. It is
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FIG. 3. “Parameter landscape” for the Hy-Gōmodel. The axes of the ternary plots characterize the relative importance of each
of the three Gō-type interactions: εi/Etot, where Etot ≡ εnc+εdb+εhp. Because the relative impact of the backbone interactions
depends on Etot, the plot is discretized along Etot. Squares indicate models that reproduced 〈NAA

h 〉 at some temperature T ∗,
circles indicate models similar to squares but whose native state is the coil state, and triangles indicate models with a helix
native state but that could not achieve 〈NAA

h 〉 at any temperature. The color of each marker denotes the error with respect to
some property of the AA model (cooler colors represent lower errors). Note that the filled color grid between points is included
only to guide the eye. (Row 1) Root mean square error (rmse) with respect to the LR parameters of the AA model. (Row 2)
rmse with respect to the slowest 2 dynamical processes of the system (as characterized by the corresponding eigenvectors of
the MSM at the Qh level of resolution) and also the ratio of timescales between these two processes. Because the errors of the
models marked with triangles were considerably larger than the other models, their error values were reduced to the maximum
of the other models for easier visual comparison.

important to note that while previous studies have con-
nected the LR parameters to emergent kinetic properties
of the helix-coil transition,52,53 the generation of consis-
tent helix-coil properties from a microscopic simulation
model is non-trivial. This is perhaps best demonstrated
by the difficulties of AA models to reproduce the melting
curve for relatively simple peptides.5,50

Fig. 4 presents both static and kinetic properties gen-
erated from the AA model (solid, black curves), the 7
AA-like Hy-Gōmodels (colored curves), and for two ad-
ditional Hy-Gōmodels that also reproduce 〈NAA

h 〉 (while
still sampling all 32 states), but do so at the largest and
smallest simulated temperatures (dashed and dashed-
dotted, black curves, respectively). The properties of the
latter 2 models represent the range of attainable values
of each observable, given the weak structural constraint

of 〈NAA
h 〉 and also the implicit constraints enforced by

the details of the model, but allowing for distinct LR
parameters and, thus, 〈fh〉 values. Panel (ai) presents
〈Nh〉 and 〈fh〉 (described above), as well as the aver-
age fraction of neighboring pairs of helical residues, 〈Ns〉,
and the average fraction of isolated helical residues, 〈Nl〉.
Panel (aii) presents the equilibrium distribution along
the number of helical residues in the sequence, Qh. Panel
(aiii) presents the average fraction of helical segments per
residue, 〈h(i)〉. Panels (ai) and (aii) demonstrate that
the AA-like Hy-Gōmodels reproduce the static proper-
ties of the AA model quite well. As expected, panel (aiii)
shows that these models are incapable of perfectly repro-
ducing the strong end effects of the underlying ensemble.

Panel (bi) presents the fractional flux passing through
each state for trajectories that begin in the coil state
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FIG. 4. Static (row a) and kinetic (row b) properties for the Ala7 helix-coil transition generated by an all-atom model (AA; solid,
black curves) and various Hy-Gōmodels. 7 AA-like Hy-Gōmodels (colored curves) were identified as optimally reproducing the
properties of the AA model. The dashed and dashed-dotted black curves denote two Hy-Gōmodels that reproduce 〈NAA

h 〉 at
the highest and lowest temperatures, respectively, of all models considered. (ai) The average propensity of the h state, 〈Nh〉,
average fraction of helical segments, 〈fh〉, average fraction of sequential pairs of helical residues, 〈Ns〉, and average fraction
of isolated helical residues, 〈Nl〉. (aii) The equilibrium distribution along the number of helical residues in the sequence, Qh.
(aiii) The average fraction of helical segments per residue, 〈h(i)〉. (bi) The fractional flux passing through each state when
considering pathways which begin in the coil state and end in the helix state. (bii) Ratios of important timescales. knuc/kel
(kr-nuc/kr-el) is the ratio of (reverse) nucleation to (reverse) elongation rate. ti/t1 denotes the ratio of the ith slowest kinetic
process to the slowest kinetic process according to the MSM. The Qh superscript denotes timescales calculated at the resolution
of the number of h residues in the sequence.

and end in the helix state. Panel (bii) presents ratios
of important timescales in the underlying simulations.
Note that we always consider ratios of timescales, to ac-
count for the overall speed-up of each CG model. knuc
(kr-nuc) and kel (kr-el) characterize the (reverse) rates of
nucleation and elongation, respectively (see Supporting
Information for details about the calculation of these
rates). ti denotes the timescale of the ith slowest ki-
netic process according to the MSM. The Qh superscript
denotes timescales calculated from a reduced MSM with
microstates corresponding the number of h residues in
the sequence. Despite the detailed structural deficiencies
of these models, both the fractional flux per state and the
various timescale ratios are reproduced with surprisingly
high accuracy. Interestingly, the approximate bounds on
the timescale ratios, represented by the black dashed and
dashed-dotted curves, demonstrate that there is a rather
small amount of freedom in these quantities (other than
for knuc/kel). We suggest that this is due to the implicit
constraints on the kinetic network, enforced by the un-
derlying physics of the model.

Fig. 5 presents network representations of the AA
model and a representative AA-like Hy-Gōmodel (top

panel) as well as the low- and high-temperature Hy-
Gōmodels introduced above. The networks are presented
in a different way than Fig. 1, with the horizontal axis
corresponding to the value of the committor for each state
and the vertical axis corresponding to the local graph en-
tropy: Sloc(i) =

∑
j Tij lnTij , where Tij is the transition

probability from state i to state j. Sloc(i) quantifies the
degree of randomness for pair transitions originating in
state i. For visual clarity, we discretized the networks
along these two coordinates and grouped states sharing
the same grid into a single node. The relative size of each
node denotes the number of underlying states. The color
of each node corresponds to the average fractional flux
passing through the node for trajectories starting from
the coil state and ending in the helix state. The networks
in Fig. 5 provide an illustration of the network topologies
which generate the various properties presented in Fig. 4.
The AA-like model appears to mimic the AA network in
many ways, although the spread of states along each axis
is not quite reproduced. On the other hand, the low-
and high-temperature networks display drastically differ-
ent topologies, albeit while retaining the average helicity
of the AA model, 〈NAA

h 〉. Thus, 〈Nh〉 is indeed a weak
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structural constraint for this system.

FIG. 5. Network representations of the Ala7 helix-coil tran-
sition generated by an AA model, several CG models, and
various approximations constructed from the AA simulation.
(See main text for descriptions of the CG models and approx-
imations). Each network is presented along the committor
(i.e., the probability of reaching the coil state before return-
ing to the helical state) on the horizontal axis and the local
graph entropy, Sloc, on the vertical axis. For visual clarity,
we discretized the networks along these two coordinates and
grouped states sharing the same grid into a single node. The
relative size of each node denotes the number of underlying
states. The color of each node corresponds to the average
fractional flux passing through the node for trajectories from
coil to helix.

B. Simple kinetic approximations

As already mentioned above, the emergent kinetics of
the helix-coil transition are well characterized by simple
kinetic models constructed directly from the LR param-
eters.51,52 Here, we briefly assess the resulting properties
of these approximate models for comparison with the CG
simulation models. We consider two models built directly
from the LR parameters, denoted kinzip and kIsing. The
kinzip model corresponds to the kinetic zipper model,52
which assumes that the rate of transition from the c to h
state for each residue is limited by the nucleation param-
eter, v. The kIsing model is based on the formulation
of Schwarz,51 which uses the LR parameters to define
the reaction rates for individual triplets of residues tran-
sitioning between conformational states. We also em-

ployed a different approach for constructing approximate
models for the simulation kinetics, following the n-m ap-
proximation.56 In this procedure, we start with a “local”
kinetic model determined from the simulation data, i.e.,
by ignoring the state of residues which lie beyond some
number of peptide bonds away from a given residue, and
then construct a full MSM, assuming that the residue
dynamics beyond the chosen separation are decoupled.
In this way, a systematic investigation into the coupling
of residue dynamics along the peptide backbone can be
performed. We refer to this procedure as the dynamic
coupling analysis (DCA), and the corresponding models
are denoted DCA-corr-x, where x is the chosen number
of peptide bonds to be correlated in the model. See the
Supporting Information section for details about the con-
struction of each of these models.

Overall, the approximate kinetic models quite accu-
rately reproduce both the static and kinetic properties of
the underlying, AA model (Fig. S4). A full decoupling
of residue dynamics (DCA-corr-0) is required to intro-
duce large errors, yielding a spread of flux throughout
the network and the systematic oversampling of interme-
diate states, as previously reported for bottom-up CG
models for the helix-coil transition.57 Smaller discrepan-
cies in the other models can be understood in terms of the
strong end effects in this short, uncapped peptide. Fig. 5
presents network representations of the kinzip and kIsing
models, and two approximate models constructed by sys-
tematic decoupling of the residue dynamics, assuming
no correlations and i/i+ 3 correlations (DCA-corr-0 and
DCA-corr-3, respectively). The kinzip and kIsing net-
works seem to reproduce the AA properties via a simpli-
fied network topology, while DCA-corr-3 retains a closer
resemblance to the AA network. The DCA-corr-0 net-
work displays drastically different topological features,
as is apparent in the resulting properties of this model.
Decoupling of residue dynamics leads to an increase in
committor values and local entropies, especially for the
largely helical states. Interestingly, many properties of
the underlying network (as demonstrated in Figs. 4 and
S4), may be reproduced by quite distinct network topolo-
gies. Further investigation into the properties generated
from these simple kinetic approximations may provide
insight into how the details of the kinetic network are
affected by the particular approximations made within
the model construction. This is beyond the scope of the
present work.

C. Further validation of structure-kinetic relationships using
a transferable CG model

We also considered the transferable CG PLUM model
with three distinct parametrizations. Results for the
original model are presented in the main text, while
equivalent results for the two reparametrizations are pre-
sented in the Supporting Information. The static and
kinetic properties of the PLUM model for Ala7 are pre-
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FIG. 6. Static (row a) and dynamical (row b) properties for the Ala7 helix-coil transition generated by an all-atom model
(AA; solid, black curves), the original PLUM model (PLUM; solid, violet curves), and a PLUM-like Hy-Gōmodel (PLUM-
like; dashed, magenta curves). (ai) The average propensity of the h state, 〈Nh〉, average fraction of helical segments, 〈fh〉,
average fraction of pairs of helical residues, 〈Ns〉, and average fraction of isolated helical residues, 〈Nl〉. (aii) The equilibrium
distribution along the number of helical residues in the sequence, Qh. (aiii) The average fraction of helical segments per residue,
〈h(i)〉. (bi) The fractional flux passing through each state when considering pathways which begin in the coil state and end
in the helix state. (bii) Ratios of important timescales. knuc/kel (kr-nuc/kr-el) is the ratio of (reverse) nucleation to (reverse)
elongation rate. ti/t1 denotes the ratio of the ith slowest kinetic process to the slowest kinetic process according to the MSM.
The Qh superscript denotes timescales calculated at the resolution of the number of h residues in the sequence.

sented in Fig. 6 as solid violet curves. The PLUM model
strongly stabilizes helical structures for Ala7, and is in-
capable of achieving the low helical content of the AA
model. The significant discrepancies between the AA
(black, dashed-dotted curves) and PLUM model are not
surprising since (i) neither the PLUM nor the AA model
was parametrized to reproduce properties of small pep-
tides and (ii) various AA models yield widely varying
structural properties for peptide systems.50 Rather, in
this study the AA and PLUM models represent two dis-
tinct reference ensembles for investigating the interplay
between structure and kinetics. We extended the search
in Hy-Gō parameter space to find a set of models which
more closely reproduce the structural and kinetic prop-
erties of the PLUM model. Fig. 6 demonstrates that by
approximately matching 〈Nh〉 and 〈fh〉, the “PLUM-like”
Hy-Gōmodel nearly quantitatively reproduces both the
equilibrium and kinetic properties of the PLUM model.
The network topology of the PLUM-like Hy-Gōmodel
also closely resembles that of the PLUM model (Fig. S7).

D. Thermodynamics of Ala7 helix-coil transitions

The temperature dependence of the helicity, in par-
ticular 〈fh〉(T ), is a fundamental quantity for character-

izing secondary structure formation in proteins. Fig. 7
presents the T -dependence of w (top panel) and 〈fh〉
(bottom panel) for the AA-like Hy-Gōmodels (purple,
circle markers), other Hy-Gōmodels which reproduce
〈NAA

h 〉 at some temperature T ∗ (blue, upward triangle
markers), Hy-Gōmodels incapable of reproducing 〈NAA

h 〉
(green, sideways triangle markers), the PLUM-like Hy-
Gōmodels (red, square markers), and the PLUM model
(black, X markers). The energy scales of the different
models were aligned by shifting the temperature such
that all models achieve 〈NAA

h 〉 at T ∗. For models not
simulated at this temperature, a linear extrapolation is
employed.

From the temperature dependence of w, we fit a ther-
modynamic model to quantify the T -independent en-
thalpy and entropy of helix extension. In particular, we
assume kBT lnw(T ) ∼ ∆Hhb − T∆Shb, neglecting the
heat capacity contributions to the free energy and consid-
ering a relatively small range in T . ∆Hhb corresponds to
the slope of the curves in Fig. 7 and is a simple measure of
the cooperativity of the transition. The resulting thermo-
dynamic values for each model are given in Table S1 and
are consistent (in terms of order of magnitude) with those
determined from various AA models for a longer pep-
tide,50 although the entropic values are somewhat larger.
It is straightforward to correlate these thermodynamic
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quantities with the parameters of the Hy-Gōmodel. This
analysis confirms general intuition about their behavior
with changes in the model parameters and provides use-
ful insight for tuning the Hy-Gō parameters to reproduce
particular features of a reference model. For example,
the εnc and εhp interaction nearly exclusively determine
∆Hhb, while ∆Snuc (obtained from building a thermody-
namic model for v) depends strongly on both εdb and the
effective impact of the backbone interactions (Figs. S5
and S6).

Although Fig. 4 demonstrates that the AA-like Hy-
Gōmodels display very similar structural and kinetic
properties at T ∗, Fig. 7 and Table S1 show that their
cooperativities (i.e., ∆Hhb) vary by more than 25% of
the average value for these models. In other words,
not surprisingly, reproducing simple structural properties
at a single temperature is not enough to determine the
thermodynamics of the model. To further validate the
structure-kinetic relationships discussed above, we exam-
ined these relationships for each of the Hy-Gōmodels and
PLUM models considered, regardless of their particular
structural features. There is a 1-to-1 correspondence be-
tween the ratio of nucleation and elongation rates and
the average propensity of helical segments, as well as the
T -dependence of these quantities (Fig. S9). These partic-
ular relationships are unlikely to generally hold for much
longer, heterogeneous sequences, where complex nucle-
ation/elongation kinetics may arise.54 However, these re-
sults indicate that, when Arrhenius behavior holds, there
may be simple relationships between the T -dependence of
structural and kinetic properties. Moreover, these find-
ings suggest that reproducing particular structural fea-
tures over multiple temperatures may be an avenue for
improving structural, thermodynamic and kinetic consis-
tency for CG models.

E. Relationships between thermodynamics and network
topology

The Markov state model characterization of the system
kinetics provides a convenient and powerful framework
for investigating the details of the hierarchy of kinetic
processes sampled by particular helix-coil transitions. In-
deed, graph-theoretic observables have been previously
employed for understanding complex phenomena, e.g.,
kinetic frustration,58 arising within the dynamical pro-
cesses of proteins. We applied discrete transition path
theory59 to investigate the ensemble of pathways between
the helix and coil states and identified simple relation-
ships between the network topology and typical physical
observables, e.g., 〈fh〉. We found that 〈fh〉, at a partic-
ular temperature, is largely determined by the number
of paths needed to account for half of the fractional flux
of probability for trajectories traveling from the coil to
the helix (Fig. S12). This somewhat surprising relation is
likely due to the relatively strong constraints on the net-
work topology enforced implicitly through the underlying

FIG. 7. Temperature dependence of the Lifson-Roig helix
propagation parameter, w (top panel), and the average frac-
tion of helical segments, 〈fh〉 (bottom panel). The curves pre-
sented are a linear fit of the raw data. Purple curves with cir-
cle markers denote the 7 AA-like Hy-Gōmodels. Blue curves
with upward triangle markers denote other Hy-Gōmodels ca-
pable of reproducing 〈NAA

h 〉. Green curves with sideways tri-
angle markers denote Hy-Gōmodels incapable of reproducing
〈NAA

h 〉. Red curves with square markers denote the PLUM-
like Hy-Gōmodels. Black curves with X markers denote the
PLUM models. Note that the models are aligned by shift-
ing the temperature such that all models achieve 〈NAA

h 〉 at
T ∗. For models not simulated at this temperature, a linear
extrapolation is employed.

physics of the models.
As the temperature of each system is decreased, both

the committor value and local entropy of each state tends
to decrease (Fig. S11). Because of these generic changes
in the network as a function of temperature, there may
exist a feature of the network topology, at a particular ref-
erence temperature T ref , which determines the thermo-
dynamics, i.e., cooperativity, of the corresponding tran-
sition. In the following, T ref corresponds to the high-
est temperature at which each model was simulated (see
Fig. 7). We consider the path entropy, i.e., Shannon en-
tropy of the probability distribution of pathways, which
characterizes the degree of randomness of paths traveling
from a starting state, s, to an ending state, d. Similarly,
the conditional path entropy,60 Hsd|u, characterizes the
average degree of randomness for paths from s to d pass-
ing through a particular intermediate state, u.

Naively, one may hypothesize that networks with the
most directed flux from coil to helix at T ref would display
a faster change of population into the helical state as the
temperature is reduced. In other words, in order to max-
imize the cooperativity, the conditional path entropy, av-
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FIG. 8. Relationships between thermodynamic and network
properties. Correlation analysis using (a) 60 features corre-
sponding to the conditional path entropy, Hsd|u, for each state
in either the folding or unfolding direction and (b) a reduced
set of 16 features corresponding Hsd|u, in either direction, for
8 particular states of intermediate helical content. (c) Aver-
age conditional path entropy in the folding direction versus
the slope of a linear fit of 〈fh〉(T ), denoted ∆〈fh〉/∆T , which
represents a simple measure for cooperativity of the transi-
tion. Hy-Gōmodels are denoted by the colored circles, while
the PLUM models are denoted by the empty circles. The gray
box in panel (b) represents the predicted cooperativity of the
AA model, based on the topological features of the network
at T ∗.

eraged over all intermediate states, should be minimized.
To investigate the relationship between directed flux in
the network and cooperativity of the underlying transi-
tion, we performed a correlation analysis by constructing
a linear combination of input features, {f}, to character-
ize the target observable, O: O ≈ F [f ] =

∑
i cifi, where

the coefficients, {ci}, are determined as a best fit over
all models. In this case, O corresponds to the slope of
〈fh〉(T ), denoted ∆〈fh〉/∆T , or equivalently ∆Hhb. The
set of 60 conditional path entropies for each intermedi-
ate state between coil and helix and for both the fold-
ing and unfolding directions were initially considered as
input features. For numerical convenience, we weighted
each of the features by the fractional flux passing through
each state (as introduced above). Panel (a) of Fig. 8
demonstrates the resulting correlation when all 60 fea-
tures are employed. Clearly, there is more than suffi-
cient information in these features to distinguish between
the cooperativities of the different models. However, we
believe that this correlation is non-trivial since (i) the
network topology metric, F [Hsd|u], was determined at
different temperatures and, therefore, for distinct struc-
tural ensembles for each model, (ii) we are considering
two types of models, namely, Hy-Gō and PLUM, with
various parametrizations, and (iii) the reference ensem-
ble for each model corresponds to an unfolded ensemble.
Moreover, the removal of input features corresponding to
the unfolding direction results in significant deviations in
the correlation, indicating the necessity of particular fea-
tures in order to faithfully describe cooperativity.

By systematically disregarding features which played
a minimal role in the resulting correlation, we de-
termined a reduced set of 16 features necessary to
retain a reasonably accurate correlation (panel (b) of
Fig. 8). Interestingly, the most important features
corresponded to the conditional path entropies for
a set of 8 states with intermediate helical content:
{cchhh,hcchh,chhcc,cchhc,hchcc,chcch,hcchc,hhccc}.
This correlation analysis revealed that, unlike our naive
assumption, it is not a simple minimization of the
average conditional path entropies which determines a
maximally cooperative model. Rather, there is a balance
between achieving small conditional path entropies (i.e.,
directed flux) for some intermediate states and higher
conditional path entropies (i.e., nondirected flux) for
others. Additionally, there is a strong anticorrelation
between features corresponding to the folding and
unfolding directions. Apparently, it is a maximization of
directed flux in the folding direction for particular states,
while maintaining sufficient connections in the network
to facilitate a relatively high degree of randomness in
the unfolding direction which yields a network topology
that, upon cooling, results in the most cooperative
transition.

To further demonstrate this concept, panel (c) of Fig. 8
presents the conditional path entropy in the folding di-
rection averaged over all intermediate states (i.e., the
naive picture of cooperativity described above) versus
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∆〈fh〉/∆T . Clearly, the naive interpretation has some
merit, indicated by the weak correlation between these
quantities, with no adjustable parameters. However, the
discrepancies in the correlation, especially for the PLUM
models which are significant outliers to the trend, indi-
cate that an essential feature is missing from this simple
description of cooperativity. Interestingly, if the anticor-
relation between folding and unfolding directions is in-
corporated by subtracting the average conditional path
entropy in the unfolding direction, the correlation for the
Hy-Gōmodels is somewhat improved (see Fig. S13). Fur-
ther analysis is required to better understand the con-
nection between network topology at a single reference
temperature and cooperativity of the model and to test
the applicability of this relationship for distinct systems.

IV. CONCLUSIONS

In this study, we have demonstrated that a relatively
simple coarse-grained model is capable of nearly quanti-
tatively reproducing the detailed kinetic properties of a
complex helix-coil transition. In particular, we verified a
robust relationship between the Lifson-Roig parameters,
or similarly the average fraction of helical segments 〈fh〉,
and the resulting hierarchy of kinetic processes (as deter-
mined by a Markov state model of the transition). Im-
portantly, this relationship is likely dependent upon the
implicit constraints enforced by the physics of the simula-
tion model. Here, we employed near-atomistic steric and
intramolecular backbone interactions, along with simple
Gō-type interactions, in order to accurately sample the
underlying structural ensemble. This Hybrid Gō (Hy-
Gō ) model proved extremely useful for the kinetic inves-
tigation since it (i) employs few, physically-motivated pa-
rameters, allowing an extensive and easily interpretable
search through parameter space, while (ii) allowing a
direct, microscopic comparison with other models em-
ploying similar backbone resolution and (iii) retaining
accurate sampling of metastable states along the Ra-
machandran plot. Similar to other Gō-type models, the
Hy-Gōmodel provides a transparent approach for eluci-
dating the essential interactions necessary to accurately
model kinetic properties and may be particularly useful
for future investigations of kinetic protein experiments.

Analysis of an all-atom simulation of a heptapeptide of
alanines revealed that the seemingly disordered ensemble
of pathways between the helix and coil states does not
preclude significant coupling of residue dynamics. The
Hy-Gōmodels not only produced consistent kinetics by
matching certain structural features of the underlying
model, but also demonstrated rather stringent topolog-
ical constraints on the network, due to the underlying
physics of the model. These constraints supposedly re-
sulted in simple relationships between the network topol-
ogy and standard physical observables. Quite remark-
ably, the degree of randomness of paths traveling between
the coil and helix states through particular intermedi-

ate states (as measured by the conditional path entropy)
at a single reference temperature determines the relative
cooperativity of the transition. Although further anal-
ysis is required to better understand this relationship,
the prediction of structural changes upon environmental
or chemical perturbations from the network topology of
the unfolded ensemble may be an advantageous approach
for understanding the behavior of intrinsically disordered
proteins.

The relationships between structural and kinetic prop-
erties and between thermodynamics and network topol-
ogy found in this work were tested on a large variety of
Hy-Gōmodels with varying interaction parameters and
also for three different parametrizations of the transfer-
able CG PLUM model. While investigation into the va-
lidity of these particular relationships for distinct peptide
systems remains for future work, the results presented
here contain several general take home messages for the
examination of CG kinetic properties. First, the physical
details of a CG model provide constraints on the allow-
able kinetic properties for any particular parametriza-
tion. When the essential physics is accounted for, i.e.,
when the structural ensemble is reproduced with suf-
ficient accuracy, simple relationships between structure
and kinetics may emerge. These relationships may then
be exploited to ensure kinetic consistency through the re-
production of structural properties. Therefore, our work
motivates further investigation into the structure-kinetic
relationships for CG models and suggests that the match-
ing of particular structural properties over multiple tem-
peratures (or other thermodynamic state points) may
provide a general scheme for simultaneous inclusion of
structural, thermodynamic, and kinetic consistency into
CG models.

SUPPLEMENTARY MATERIAL

An online supplement to this article with further
methodological details as well as additional results can
be found at http://biorxiv.org.

DATA

An online database consisting of vari-
ous analysis scripts and input files for the
coarse-grained simulations can be found at
https://github.com/JFRudzinski/Scripts_and_models_
for_Structure-kinetic-thermodynamic_relationships.git.
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