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Abstract 

Building arborisations of the right size and shape is fundamental for neural network 

function. Live imaging studies in vertebrate brains strongly suggest that nascent synapses are 

critical for branch growth during the development of axonal and dendritic arborisations. The 

molecular mechanisms underlying such ‘synaptotropic’ events are largely unknown.  

 Here we present a novel system in Drosophila for studying the development of complex 

axonal arborisations live, in vivo during metamorphosis. In these growing axonal arborisations 

we see a relationship between the punctate localisations of presynaptic components and 

branch dynamics that is very similar to synaptotropic growth described in fish and frogs. These 

presynaptic components however do not appear to represent functional presynaptic release 

sites and are not paired with clusters of neurotransmitter receptors. Pharmacological and 

genetic knockdowns of evoked and spontaneous neurotransmission do not impact the 

outgrowth of these neurons. Instead, we find that axonal branch growth is regulated by the 

dynamic focal localisations of synaptic adhesion proteins Neurexin and Neuroligin. These 

adhesion complexes provide selective stability for filopodia by a ‘stick and grow’- based 

mechanism wholly independent of synaptic activity. 

 

 

 

 

 

 

 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 31, 2017. ; https://doi.org/10.1101/182808doi: bioRxiv preprint 

https://doi.org/10.1101/182808


	
   3	
  

Introduction 

Neurons are the most structurally diverse and complex cell type we know of (Bullock and 

Horridge, 1965). Their tree-like arborisations are critical for collecting, integrating and 

disseminating information between different synaptic partners. During development, 

arborisations grow dynamically and this morphogenesis sets limits on their final location, 

possible synaptic partners and core electrophysiological properties (Chagnac-Amatai et al., 

1990; Roberts et al., 2014). Although there are recognisable cell-type specific shapes, each 

individual neuron has its own unique pattern of branching and connectivity. The ‘generative 

rules’ for constructing complex arborisations are believed to be encoded by genetic algorithms 

that play out in different developmental contexts to produce distinct morphological types (Cuntz 

at al., 2010; Teeter & Stevens., 2011; Chen & Haas, 2011; Hassan & Heisinger, 2015). Which 

molecules and mechanisms underlie this remains a major unanswered question within 

neuroscience. 

From observations on the earliest phases of motoneuron dendrite growth in the spinal 

cord Vaughn and colleagues forwarded the synaptotropic hypothesis (Vaughn et al., 1974 & 

1988). The synaptotropic hypothesis posits that the stability of growing axonal and dendritic 

branches is controlled by the selective stabilisation of processes by nascent synapses, 

encouraging growth into territories rich in potential synaptic partners. Berry and colleagues, 

working on Purkinje cells, forwarded the same idea, calling it the synaptogenic filopodial theory 

(Berry & Bradley, 1976). Since then, live imaging in vertebrate brains has revealed dynamic 

axonal and dendritic growth (Kaethner & Stuermer, 1992; Wu et al., 1999; Jontes et al., 2000; 
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Hossain et al., 2012) where the arrival and localisation of synaptic machineries is correlated 

with branch stabilisation (Alsina et al., 2001; Niell et al., 2004; Meyer & Smith, 2006; Ruthazer 

et al., 2006). Data on Xenopus tectal neuron dendritic growth revealed a role for Neurexin (Nrx) 

and Neuroligin (Nlg) in branch dynamics, where Nrx-Nlg interactions are believed to direct the 

genesis and maturation of opposing hemisynapses, after which neurotransmission stabilises 

branches (Chen et al., 2010). The idea that synaptic transmission stabilises nascent contacts 

during elaboration is supported by a number of studies (Rajan et al 1999; Sin et al., 2002; 

Ruthazer et al., 2003; Haas et al., 2006; Ruthazer et al., 2006). In contrast, other work has 

suggested that activity has little impact on large-scale features of tree growth but plays a more 

nuanced role in refining structural connectivity during activity dependent plasticity (Verhage et 

al., 2000; Varoquoaeux et al., 2002; Hua et al., 2005; Fredj et al., 2010). 

 Two key questions arise from this work: firstly, are growing branches stabilised by local 

‘synaptogenic’ events? Secondly, are such nascent synapses being ‘use-tested’ by 

conventional neurotransmission? Here we describe a new system that we have pioneered in 

Drosophila to explore these questions. Unlike in the fly embryo where arborisations are very 

small and built very rapidly (<4 hours), our system takes advantage of the large axonal 

arborisations of the pleural muscle motoneurons (PM-Mns) that are built over an extended 

period, during metamorphosis. Also, unlike the growth of larval motoneuron terminals, which 

grow incrementally to scale with the changes in muscle size during larval life, the PM-Mn axonal 

arborisations grow exuberantly, by trial-and-error, very much like complex neurons found in 

vertebrate central nervous systems.  
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 During development we see a consistent relationship between the distribution of 

presynaptic machineries and branch dynamics similar to that found in the retinal ganglion cell 

axons in fish and frogs. Importantly, we find that branch growth is driven by dynamic complexes 

in synaptic partners that we term neuritic adhesion complexes (NACs). These NACs contain 

Nlg1 (postsynaptically), along with Nrx, Syd1 and Liprin-α (presynaptically), and act locally to 

stabilise filopodia by a ‘stick and grow’ mechanism without the need of synaptic vesicle release 

machinery or functional synapses. 

 

Results 

Establishing a new model for exploring complex arborisation growth  

In a search for a system to study complex arbor growth live, in vivo we identified the 

axonal arborisations of the motoneurons that innervate the abdominal pleural muscles of the 

adult fly. We refer to these as the pleural muscle motoneurons (PM-Mns), the axonal 

arborisations of which are large, complex and easily accessible throughout metamorphosis. 

Importantly, the PM-Mn system allows one to genetically manipulate either synaptic partner 

whilst independently imaging the other. 

 Each adult abdominal hemisegment (from A1-A7) contains a pair of motoneurons that 

exit the nerve onto the lateral body wall. In the adult, each motoneuron forms an arborisation 

that innervates between 15 and 18 parallel muscle fibres that span dorso-ventrally, from the 

tergites to sternites (Figures 1A&B). In contrast to the rigid, target-specificity found in the larval 
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neuromuscular system, the innervation of the pleural muscles shows variation between 

segments and between animals. Although no one-to-one neuron/muscle targeting is found, 

arborisations achieve a consistent spatial organisation with regularly sized, non-overlapping 

projection fields.  

To gain insight into the global development of the PM-Mn axon terminals, we imaged 

hemi-segment A3 from 24h to 84h after puparium formation (APF) (Figure 1C). By 24h APF the 

majority of larval muscles and neurons that innervate them are removed by programmed cell 

death and phagocytosis (Currie & Bate, 1991). The dorsally projecting peripheral nerve 

maintains four contacts with the epidermis during pupariation and allows the continued 

innervation of the persistent larval muscles. At around 24h APF axonal regrowth commences 

with the emergence of filopodia-rich growth cones from the nerve. By 34h APF primary 

branches are established and festooned with filopodia. The two PM-Mns within each 

hemisegment segregate into anterior and posterior domains and increase in size and 

complexity until approximately 72h APF. Following this, there is a period of maturation during 

which varicosities form along all but the most proximal branches. By 84h APF the morphology 

of the arborisations is indistinguishable from that observed at eclosion. 

Live imaging at 2-minute intervals revealed that branch growth is highly dynamic, 

involving large numbers of filopodia which continually explore the local environment (Figure 1D). 

This exploration takes place almost exclusively within the plane of the developing muscles. 

Throughout this article, we define and refer to filopodia and branches as follows. According to 

anatomical and molecular criteria, filopodia are considered to be thin (<0.3µm), motile 
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protrusions with cytoskeletons comprised of parallel F-actin filaments (Mattila & Lappalainen, 

2008). In contrast, branches are more voluminous, of higher calibre and less dynamic, with 

cores containing parallel microtubules and noticeably less F-actin. Using Lifeact, a fluorescently 

tagged cytoskeletal probe that reveals F-actin (Riedl et al., 2008), we see an enrichment in thin 

‘filopodia-like’ structures (Figure 1E). In contrast, the plus-end microtubule binding protein CLIP-

170 (Stramer et al., 2010), that reveals microtubules, is found in what we refer to as branches 

but is mostly excluded from filopodia. Growing neurites are dynamic and constantly changing, 

but every effort has been made to be consistent with our classification. 

Longer imaging intervals revealed the more substantial structural changes to 

arborisations during early phases of growth (Figure 1F). This showed us that the majority of 

filopodia are transient since large numbers are generated and lost between frames. Despite 

this, a small number of filopodia persist, pioneering individual branches (white arrowheads). In 

addition to construction, branches also collapse back into single filopodia (yellow arrowhead), 

highlighting the instability and continuous remodelling of the arborisations at this early stage 

(see movie 1). 

 

The distribution of presynaptic components during axonal branch growth 

To explore the growth of PM-Mn axonal arborisations and their muscle targets we 

imaged both the neuron and muscle progenitors (myoblasts) during the earliest phases of 

outgrowth. At 35h APF neurons and myoblasts are directly apposed to one another (Figure 2A 
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and movie 2). Growing axons are enveloped by clusters of myoblasts, while the more distal 

growth cones and filopodia extend over sheets of immature myotubes. 

 In light of this very close association between the synaptic partners, we asked whether 

presynaptic components are present in the distal branches at this early stage, since previous 

work in vertebrates has forwarded that nascent synapses play a key role in branch stabilisation. 

Using an RFP tagged version of Bruchpilot (BRP), a homolog of ELKS/CAST, expressed with 

OK371-GAL4 (Mahr & Aberle., 2006), we see distinct, punctate distributions in axon branches, 

with accumulations at branch nodes and at the base of filopodia (Figure 2B). An analysis of 

BRP::RFP puncta in axon terminals of 5 animals staged from 30h to 35h APF revealed that 85.1 

± 6.4% (SD) of total BRP puncta localised at branch points and the base of filopodia, and 81.6 ± 

4.6% of branch points/bases had a punctum (Figure 2C).  

To look at the dynamics of BRP::RFP and branching we imaged PM-Mn arborisations at 

2-minute intervals. This showed that BRP::RFP puncta are rapidly recruited to the tips of 

growing branches where they mark the sites of new filopodia growth (Figure 2D). Successive 

rounds of filopodia extension and stabilisation in this manner produce branches studded with 

BRP::RFP puncta. Filopodia which are generated from these puncta can give rise to new 

branches (Figure 2E). 

The dynamics of BRP::RFP puncta in these time-lapse sequences speaks to a 

relationship between arbor growth and the distribution of presynaptic proteins (Figure 2F). To 

quantify this we analysed 83 filopodia generation events from 3 time-lapse movies of 

arborisations staged between 30h and 33h APF. Our analysis showed that 36.0 ± 12.6% of 
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filopodia emerged from existing BRP puncta, 48.1 ± 10.7% recruited a punctum within 20 

minutes of their formation and 16.0 ± 11.9% failed to recruit an obvious punctum at all (Figure 

2G).  The frequency of filopodia emerging from or recruiting a BRP::RFP punctum 71.4 ± 11.0% 

was significantly greater than a conservative expected frequency of 50% (X2 = 36.4, p < 

0.0001). In addition, we found that 100% of filopodia that failed to recruit puncta to their bases 

were eliminated within 20 minutes of their emergence (n = 24) (Figure 2H). In contrast, although 

54.2% of filopodia that originate from, or recruited BRP::RFP puncta were also lost within 20 

minutes, 33.3% survived between 20 and 60 minutes and a further 12.5% persisted for over an 

hour (n = 24). Thus, the lifetimes of filopodia associated with puncta at their bases were 

significantly longer than those without (Mann- two-tailed Whitney U = 73, p < 0.0001) (See 

movie 3).  

To verify the accuracy of GAL4 driven BRP::RFP, we imaged endogenous BRP protein 

tagged with GFP (Figure 2I) as immunohistochemistry is particularly difficult on fragile, early 

pupal body walls. The BRP∷GFP protein trap revealed a punctate distribution at branch points 

and base of filopodia, as we had seen with the BRP::RFP reporter. Other GFP tagged protein 

trap lines that label synaptic vesicle (SV) associated proteins Syt1 and VGlut showed less 

punctate localisations, yet were still clearly concentrated in axon branches at the base of 

filopodia (Fig 2I). Interestingly we never saw these proteins within filopodia. 

We wondered whether this node localisation of pre-synaptic machinery in the growing 

branches was specific to PM-Mns or is more widespread in the fly nervous system. To test this 

we imaged the output terminals of Eve (Even-skipped) positive interneurons in the thoracic 
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neuromeres during metamorphosis (24h APF) (Roy et al., 2007). In these we found very similar 

distributions to those of the PM-Mns, with 79.5 ± 3.7% of puncta found at branch points or the 

base of filopodia  (n = 8 output fields from 4 individuals) (Figures 2J&K). 

 

PM-Mns elaborate their axonal arborisations without synaptic activity 

The localisation and dynamics of presynaptic machineries described above mirrors that 

seen in Xenopus and zebrafish tecta and suggested to us a possible role for synapses and 

synaptic activity in branch growth during PM-Mn elaboration (Alsina et al., 2001; Niell et al., 

2004; Meyer & Smith, 2006; Ruthazer et al., 2006).  

To explore the role of neural activity in arborisation growth we mapped the electrical 

development of the PM-Mns using the genetically encoded calcium indicator GCaMP6m as a 

proxy (Movies 4-6). Calcium activity, recorded as changes in fluorescence, is shown as heat-

registered kymographs at different stages of development (Figure 3A). The absence of any 

overt changes in fluorescence at 32h APF indicates that at this stage the motoneurons are 

electrically inactive. It was not until 42h APF that we saw the first calcium events indicative of 

membrane depolarisations. These events were isolated and infrequent. The frequency of 

calcium events increased sharply and by 48h APF activity was characterised by episodes of 

transients in quick succession lasting around 8 minutes, interspersed with longer periods of 

quiescence. Approaching the final stages of arbor growth, at 74h APF activity continued to be 

defined by similar periods of activity and quiescence, but at these stages bouts contained far 

greater numbers of events. 
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To address directly whether arbor growth can take place independently of activity-

evoked neurotransmission we silenced neurons by intravital injection of the sodium channel 

blocker tetrodotoxin (0.05mM TTX). Of the 8 animals injected between 24h and 32h APF, 6 

showed no detectable calcium activity at 78h APF (Figure 3B) and 2 showed very weak 

transients restricted to small parts of branches. In contrast, buffer injected controls gave 

expected levels of presynaptic activity (n = 5). At 79h APF we found the arborisations of animals 

injected with TTX to be morphologically indistinguishable from those injected with buffer 

(Figures 3C&D). 

In addition to evoked neurotransmission, spontaneous neurotransmitter release, which 

is responsible for miniature postsynaptic potentials (mEPSPs), has been shown to play a key 

role in the growth and development of neurons (Choi et al., 2014; Andreae & Burrone, 2015). To 

determine if spontaneous neurotransmission is important for the growth of PM-Mn axonal 

arborisations we generated PM-Mn clones homozygous mutant for the vesicular glutamate 

transporter (VGlut) using the null allele Df(2L)VGlut2. This allele has been previously shown to 

completely block both evoked and spontaneous glutamatergic neurotransmission (Daniels et al., 

2006). Antibody staining confirmed that Df(2L)VGlut2 MARCM clones have a complete loss of 

VGlut protein in motoneurons (Figure 3E). To assess the effect of removing VGlut on arbor 

growth we performed morphometric analysis on clones of the anterior-most motoneurons of 

segment A3 (A3-A) in females staged between 80h and 90h APF (Figures 3F&G). No 

significant difference was found between the area of coverage of VGlut null A3-A arborisations 
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and controls (Figure 3H), although VGlut nulls were marginally greater in total arborisation 

length (Figure 3I). 

The timeline of neural activity and the VGlut null data strongly suggests that synaptic 

transmission does not play a role during the ‘elaborative phase’ of growth of the pleural 

neuromuscular system. To determine when synaptic transmission is ‘physiologically’ possible 

we artificially stimulated neurons using the warmth-gated ion channel TRPA1 (Hamada et al., 

2008), and measured postsynaptic calcium responses in the pleural muscles with GCaMP6m. 

Before 49h APF no calcium events were recorded in the muscles (n = 2) (Figure 3J). Between 

50h and 59h APF a few large calcium events were recorded in the muscles but in each case 

these occurred either during the final seconds of stimulation or just after ramping down the 

temperature (n = 2). In contrast, when stimulating at stages between 68h and 72h APF we 

found robust, rapid and sustained postsynaptic calcium activity (Figures 3J&K). Between 68-

72h APF calcium events occurred at a significantly greater rate at the permissive temperature 

(30oC) than at the restrictive temperature (22oC) (6.15 ± 5.60 minute-1 vs 0.93 ± 0.81 minute-1, 

Mann-Whitney U = 6.0, n = 7, p = 0.02, two-tailed). These data indicate that synaptic 

transmission does not take place within this system before 60h APF. 

 The lack of impact on growth from removing synaptic transmission made us look more 

closely at the organization of presynaptic machineries at different times during development. To 

do this we measured the distribution of BRP::RFP puncta in the same arborisation at 12 hour 

intervals from 34 to 58h APF (Figure 3L). As described previously, at 34h APF BRP::RFP 

puncta are found almost exclusively at branch points and at the bases of filopodia (white 
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arrowheads). By 48h APF, in addition to the puncta at branch points, many puncta are also 

found along the lengths of branches, between branch nodes (yellow arrowheads). By 58h APF 

all but the most proximal branches are lined with large numbers of BRP∷RFP puncta. Finally, 

an analysis of the distribution of puncta at stages 72-77h APF found that just 12.6 ± 5.8%, n = 5 

arborisations of individuals) of puncta are at branch points, the rest being distributed along 

branch lengths (Figure 3M). The majority, 89.4 ± 6.7%), of branch points were still found to 

have puncta.  

In addition to distribution, we used the BRP::GFP protein trap line to measure changes 

to BRP puncta size (Figures 3N&O). At early stages, BRP::GFP puncta diameters were found to 

be far more heterogenous, shown by the difference in standard deviation between the groups, 

found to be significant by an F-test of equality of variances (F143,176 = 4.092, p < 0.0001). We 

also found that BRP∷GFP puncta became significantly smaller over the course of development 

(Figure 3O). 

 These smaller and more homogenously sized BRP puncta in later development 

highlighted that the puncta we see in early PM-Mn arborisations may not actually be synapses. 

To explore this idea we asked when glutamate receptors appear in the muscles. No detectable 

GluRIIE was evident at 48h APF (Figure 3P) yet by 85h APF clear clusters of GluRIIE were 

found apposed to the branches (Figure 3Q). Thus, the changes in the organisation of synaptic 

machineries over the course of development suggest that the early accumulations of 

presynaptic components do not represent differentiated synapses.  
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A role for Neuroligin1-Neurexin in PM-Mn arborisation growth 

 Neurexin-Neuroligin signalling is capable of driving synapse formation in many contexts 

and in the Xenopus tectum regulates arbor growth in an activity dependent manner (Haas et al, 

2010). Though our data ruled out activity playing a key role in PM-Mn axonal arbor growth, we 

next sought to test whether these synaptic adhesion proteins are important.  

We generated homozygous mutants using the null alleles, Nlg1ex2.3, Nlg11960 (Banovic et 

al., 2010) and Nrx241 (Li et al., 2007) in combination with chromosomal deficiencies. These 

combinations are viable into adulthood. The arborisations of both Nlg1 and Nrx mutants showed 

comparable defects with large reductions in coverage relative to wild-type controls (Figures 

4A&B). 

Morphometric analysis showed areas of coverage of Nlg1 and Nrx null arborisations 

were significantly lower than wild-type controls (Figure 4C), as were total arbor lengths (Figure 

4D). Interestingly however, there was no difference in the total branch numbers (Figure 4E). Nrx 

and Nlg1 null arborisations were not significantly different from each other in any of these 

measurements. To determine if arbor complexity was different in the nulls we used the Strahler 

method of branch ordering (Figure 4F). Firstly, the groups showed no differences in their 

number of branch orders. Secondly, the total number of lowest order (terminal) branches was 

not significantly different between conditions; a trend which continued for subsequent orders, 

with each group showing remarkably similar numbers of branches at every level. 

The morphology of late stage Nlg1 and Nrx nulls points toward a requirement for these 

proteins but does not tell us when they are required. To address the timing of requirement, we 
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compared Nlg1 null arborisations with those of wild-type controls at 30-36h APF. PM-Mns in 

Nlg1 nulls at this stage generate similar numbers of very dynamic filopodia compared to 

controls. A clear difference however was the far greater ‘bendiness’ or the tortuosity of Nlg1 null 

branches (Figure 4G). To evaluate this, we scored primary and secondary branches of Nlg1 null 

and control arborisations staged between 30h and 36h APF using an index of bendiness 

(Figure 4H). This was calculated from the percentage difference between the actual length of 

branches and the straight-line distance between their nodes. Nlg1 null branches were found to 

be significantly less straight than those of the controls (Mann-Whitney U = 441, p < 0.0001, two-

tailed). This early phenotype indicates a requirement for Nlg1 signalling during the very initial 

phases of pleural neuromuscular development. 

 Although the full mutants showed robust and consistent phenotypes, there is limitation 

on what these can tell us. For example, they cannot reveal to us whether the phenotype is due 

to a failure of ‘local interactions’ between the developing synaptic partners. To address this we 

generated FLEX-based, FlpStop tools (Fisher et al, 2017) that allow conditional disruption of 

endogenous Nlg1 expression in a clonal fashion (Figures 5A&B). 

 Using a MiMIC insertion within the 3rd coding intron of Nlg1 we generated lines capable 

of either rescuing Nlg1 in a mutant background or mosaically disrupting Nlg1 in a wild-type 

background. For complete gene disruption, FlpStop lines were used in a heterozygous condition 

with a deficiency covering Nlg1. To test the ability of the non-disrupting orientation (ND) to 

disrupt Nlg1 expression upon cassette inversion, hsFlp122 was used to induce large numbers of 

D-lock clones. At 90h APF, a very similar phenotype was observed to Nlg1 nulls (Figure 5D). To 
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test the ability of the disrupting orientation (D) to be converted into a non-disrupting allele (ND-

lock), a germ-line inverted stock was generated. In this case, arbor growth was rescued to a 

near wild-type phenotype (Figure 5E).  

To test the local requirement of Nlg1 we induced small numbers of FlpStop muscle 

precursor clones that generated fibres containing varying numbers of Nlg1+ nuclei (Figures 

5F&H). Looking at stages between 70h and 85h APF, the organisation of arborisations, relative 

to the pattern of clonal muscle fibres, suggest a local role for Nlg1 mediated adhesion in branch 

growth. In the initially non-disrupting orientation, terminals growing on non-clonal/low level 

clonal muscle appear to be phenotypically closer to wild-type (Figure 5G). In contrast, branches 

belonging to neurons which had grown on muscle with more clones, displayed phenotypes 

comparable to complete Nlg1 nulls (see Figure 4B). Using the disrupting orientation allele the 

reverse situation was observed (Figure 5I). Branches growing across clones in which Nlg1 

expression was rescued displayed more wild-type morphologies than those growing on non-

clonal fibres (n = 8 muscle mosaics). This is demonstrated in Figure 5I by the two arborisations 

spanning clonal and non-clonal muscles; segments on the wild-type clonal regions show 

extensive growth, whereas branches on the non-clonal regions show a reduction in growth 

comparable to complete nulls (n = 7 muscle mosaics). 

 

 

 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 31, 2017. ; https://doi.org/10.1101/182808doi: bioRxiv preprint 

https://doi.org/10.1101/182808


	
   17	
  

Dynamic complexes of ‘synaptic’ adhesion proteins stabilise filopodia and drive branch 

growth 

One prediction from these mutant data is that Nlg1 could ‘prepattern’ PM neuromuscular 

junctions, as is seen with acetylcholine receptors in zebrafish somatic muscles (Panzer et al., 

2006). To test this idea we looked at the location of postsynaptic Nlg1 with a GFP tagged 

version of Nlg1 (Banovic et al., 2010). At 35h APF we found that Nlg1::GFP faintly labels the 

entire postsynaptic membrane, but forms strong puncta only at sites that directly appose the 

axon terminals (Figure 6A). To understand what was happening we simultaneously looked at 

the dynamics of the growing neurons and the localisation of Nlg1. Higher magnification imaging 

showed Nlg1 puncta were found concentrated on growing branches, particularly at sites of 

filopodia growth, along the lengths and also at the very tips of filopodia (Figure 6B and movie 7). 

To look at the timing of Nlg1 recruitment with regards to branch growth we imaged at 5-

minute intervals from 35h APF (Figure 6C). From these time lapses we found that Nlg1::GFP 

puncta are recruited directly onto filopodia and the tips of growing branches. As a result, branch 

growth occurs as a highly coordinated sequence whereby the arrival of Nlg1::GFP on 

exploratory processes precedes their stabilisation and maturation into stable branches in an 

iterative manner.  

The dynamic recruitment of Nlg1::GFP puncta to growing branches and filopodia 

suggests a significant role for Nlg1 during the earliest phases of arbor construction. To look for 

a possible relationship between Nlg1::GFP puncta and filopodia/branch dynamics, we took 

faster time-lapses with 1-minute intervals of arborisations between 30 and 35h APF. Shown in 
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the series in Figure 6D, we found that Nlg1::GFP puncta in apposition to growth cones and 

filopodia are often stable for many minutes. What is more, these puncta at the tips of filopodia 

(white arrowheads) appeared to correlate with filopodia longevity. In addition, we found that 

puncta mark the limits of filopodial retraction (yellow arrowhead). To assess this relationship, we 

compared the lifetimes of filopodia with and without Nlg1::puncta in time-lapses of 7 individuals. 

Due to photobleaching, these sequences were limited to ~ 20 minutes. Very few incidents were 

observed in which newly generated filopodia recruit an Nlg1::GFP punctum. Therefore, instead 

of analysing newly generated filopodia, only filopodia in existence at the beginning of recording 

were considered in the analysis. The graph in Figure 6E shows that 55.1% of filopodia not 

apposed to puncta (n = 49 filopodia) were lost within 10 minutes, 22.5% were lost within 20 

minutes and a further 22.5% lasted longer than the duration of the movies. On the other hand, 

only 4.4% (2 filopodia) of the population apposed to puncta (n = 45 filopodia) were lost within 10 

minutes, 2.2% (1 filopodium) were lost within 20 minutes and 93.3% survived for longer than the 

duration of the recordings. Statistical analysis found that filopodia tipped by Nlg1::GFP puncta 

are significantly longer lived than filopodia not bearing puncta (figure 6E). 

The major trans-synaptic binding partners of Neuroligins are the Neurexins. Thus, a 

natural prediction would be that presynaptic Nrx should mirror the postsynaptic distribution of 

Nlg1::GFP. We expressed GFP tagged Nrx1 (hereon termed Nrx) in the PM-Mns and found that 

Nrx::GFP (Banovic et al., 2010) forms puncta during early arbor growth that localise to points of 

filopodial growth and along filopodial lengths, including tips of filopodia (Figure 6F and movie 8). 
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The low signal and rapid bleaching of Nrx::GFP made it difficult to follow Nrx dynamics in vivo 

over longer periods.  

 Alongside Nrx we also looked at two key players in presynaptic development; Syd-1 and 

Liprin-α. Liprin-α (Lar interacting protein) is a scaffolding protein that is one of the first 

components recruited to trans-synaptic Nrx-Nlg complexes (Owald et al, 2012). Liprin-α::GFP 

(Fouquet et al., 2009) was expressed in motoneurons with OK371-GAL4. Much like our 

Nrx::GFP data, Liprin-α::GFP forms distinct puncta at branch terminals and within filopodia 

(Figure 6G). Similarly to postsynaptic Nlg1::GFP, we found that presynaptic Liprin-α::GFP 

puncta regularly marked the limits of filopodial retraction (Figure 6H) and appeared to correlate 

with filopodial stability (see movie 9). Indeed, filopodia bearing Liprinα::GFP puncta were 

significantly longer lived than those not (Figure 6I). It appears that Liprin-α::GFP coalesces into 

puncta directly on filopodia (Figure 6J). To ask if Liprin-α::GFP puncta mark adhesion 

complexes we looked at the localisation of another known interactor, Syd1. Syd1::GFP (Owald 

et al., 2010), like Liprin-α::GFP, forms puncta which localise within growing branch terminals, 

including at the tips of filopodia (data not shown). To see if these 2 proteins colocalise to the 

same sites we expressed Liprin-α::GFP together with Strawberry tagged Syd1 (Syd1::Straw) 

(Owald et al., 2010). The large majority of puncta of each protein were coincident, including 

those at the tips of filopodia (Figure 6K). In contrast, when Liprin-α::GFP and BRP::RFP were 

expressed together there was very little co-localisation at branch points and never at filopodia 

tips (Figure 6L). 
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Finally, to determine the subcellular distribution of Liprin-α::GFP in the central nervous 

system we looked at Eve+ interneurons. Like in growing axon terminals of PM-Mn neurons, 

Liprin-α::GFP is localised to the tips and along the lengths of filopodia on the growing axonal 

output arborisations (Figure 6M).  

 

Nlg1-based adhesion complexes can direct a tropic mode of growth 

The relationship between Nlg1::GFP puncta and filopodial dynamics suggests that it 

plays a role in the growth of axonal arborisations by providing adhesive stability to branches 

and filopodia during the early stages of growth. A direct prediction from this would be that if we 

manipulated the postsynaptic levels of Nlg1 at early stages we would see changes in PM-Mn 

growth. To explore this, we used UAS-Nlguntagged which is known to be expressed at high levels 

and cause a strong phenotype in larvae (Banovic et al., 2010).  

At 33-35h APF, elevated postsynaptic Nlg1 levels resulted in compacted axon terminals 

with distal branches transformed into flattened growth cones with many filopodia (Figures 

7A&B). This irrevocable effect on growth led to late stage arborisations with reduced branch 

length, territory and complexity (Figures 7C&D). These branches also maintained greater than 

usual numbers of filopodia into the later stages of development. 

 Although full postsynaptic overexpression of Nlg1untagged revealed that axon terminals are 

sensitive to Nlg1 levels from very early stages of growth, to explore how different levels of Nlg1 

signalling impacts branch growth at a local level we developed a clonal technique that 
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generates patterns of expression much like a ‘Bonhoeffer stripe’ assay (Walter et al., 1987). 

With this ‘stripe assay’ we can present growing motoneurons with different levels of Nlg1untagged 

to grow upon (Figure 7E). At early stages (35h APF), PM-Mn growth was directed onto 

myoblast clusters/developing myotubes that strongly expressed the Nlg1untagged (Figure 7F). By 

later stages (70h APF), branches in contact with these strongly expressing clonal fibres 

displayed the same hyper-stabilisation phenotype seen with full muscle expression. In contrast, 

branches from the neuron in contact with low to non-expressing fibres grew as normal, 

demonstrating unequivocally that Nlg1 impacts branch growth via local mechanisms (Figure 

7G). Although branches contacting highly expressing fibres had reduced growth and branching, 

they could sometimes be seen to elaborate along a clonal fibre, suggesting a ‘tropic’ mode of 

growth is at play.  

 To further investigate Nlg1 signalling on branch growth we took advantage of the 

organisation of the peripheral nervous system in the abdominal body wall. As shown in Figure 

7H, the class IV dendritic arborisation sensory neuron v’ada elaborates on the internal side of 

the epidermal cells. The peripheral neurites of v’ada are separated from the motor axon 

branches by the pleural muscles, which in turn receive innervation from the PM-Mns onto their 

internal surface. During early pupal development, motor and sensory arborisations are in very 

close proximity. We predicted that if we expressed Nlg1 in these usually ‘asynaptic’ sensory 

neurites the signalling would direct the growth of the PM-Mn arborisations into a novel territory.  

We expressed Nlg1untagged in v’ada neurons and then visualised the anatomy of the 

motoneurons. In controls branch growth was restricted exclusively to the inner surface of the 
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muscle (Figures 7I&J). As highlighted by the transverse projection there is a relatively uniform 

layer of motoneuron terminals (Figure 7K). In contrast, when v’ada was made to misexpress 

Nlg1untagged, PM-Mn axon branches grow perpendicular to the normal arborisation between 

muscle fibres to contact v’ada sensory neurites (Figures 7L-N). In several cases further 

branching from these contacts increased the complexity of these ectopic PM-Mn branches.  

 One postulate of Vaughn’s tropic model of arborisation growth was that the stabilisation 

of contacts between synaptic partners would ultimately lead to functional connectivity (Vaughn, 

1989). For this to be satisfied it would be expected that branches generated by such a 

mechanism would harbour mature synaptic terminals later in development. To test this in 

branches sculpted by ectopic Nlg1untagged, abdominal fillets were stained for the active zone 

marker BRP using the antibody NC82 and with the neural marker, anti-HRP. As shown in Figure 

7O, conspicuous concentrations of BRP were found at each contact. Alongside this, we also 

found strong VGlut immunoreactivity at these ectopic synaptic contacts (data not shown). 

 

Physiological consequences of Nlg1 disruption  

We have shown a very early requirement for Nlg1 for establishing branch structure. The 

ectopic contacts that PM-Mns make on v’ada neurites appear to mature into hemisynapses. 

These data show that following contact and stabilization there is a hierarchy of events that 

ultimately leads to synapse formation. To explore if Nlg1-Nrx disruptions impact synapse 

formation we stained against BRP to assess the density of active zones within the branches of 

Nlg1 nulls, Nrx nulls and animals expressing Nlguntagged in muscles at pupal stages close to 
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eclosion (Figure 8A). Boutons in all these animals were considered as engorgements containing 

concentrations of synaptic puncta. We found that the density of synapses was not significantly 

different between Nlg1 nulls or Nrx nulls and wild-type controls, although it was slightly higher in 

Nlg1 gain-of-function animals (Figure 8B). This suggests that global aspects of active zone 

development may be largely unaffected by loss of Nlg1 or Nrx. One might expect that functional 

deficits arising from a failure in appropriate Nlg1 signalling could be due to either defective 

morphology and to changes in the transmission or both. To explore this, we looked at 

GCaMP6m expressed in the muscles as a proxy for measuring muscle depolarisation at late 

pupal/pharate stages just prior to eclosion. In wild-type controls, muscle calcium events at this 

stage usually occur in synchrony across the muscle field (Figures 8C&D and movie 10). In 

contrast, in Nlg1 gain-of-function pupae, calcium events were more common in some groups of 

fibres than others, resulting in far less synchronicity (Figures 8E&F and movie 11). 

 To determine the functional consequence of disruption to Nlg1-Nrx signalling, we also 

assessed locomotor ability of Nlg1 null flies in a climbing assay (Figure 8G). Using videography 

and an automated tracking software we found that the climbing speed of Nlg1 nulls (n = 11) was 

significantly lower than controls (n = 10) (Figure 8H) (t(8.15) = 19, p < 0.0001, t-test, two-tailed). 

We found the leg motoneurons disrupted in Nlg1 nulls, suggesting that some of this deficit may 

be the result of either disrupted growth of leg motoneurons arborisations or in central circuits 

(Figure 8I). 
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Discussion 

PM-Mn axonal arborisations use a dynamic ‘synaptotropic-like’ mode of growth  

Building arborisations of the right size and shape is critical for proper neural circuit 

development and function. Live imaging studies in vertebrate brains show that neuronal growth 

is highly dynamic and that structures which appear to be nascent synapses play a key role in 

the development of axonal and dendritic arborisations. These nascent contacts are believed to 

act like bolts during construction, yet a detailed understanding of their molecular composition 

and assembly is not known.  

 To explore this biology, we searched the fly for neurons that grow similarly to those in 

the fish and frog visual systems. Although fly embryos have been an excellent tool for studying 

connectivity, the small size and rapid development of their axonal arborisations makes it very 

challenging to image their growth live.  

 The axonal arborisations of the pleural muscle motoneurons (PM-Mns) are superficial 

and can be imaged in vivo throughout metamorphosis. Unlike the da sensory neuron input 

arborisations, which have been useful for studying neurite branch growth (Williams & Truman, 

2004), PM-Mn axons form synapses; a trait in common with the majority of neuronal 

arborisations. 

 PM-Mn growth is very dynamic with a high turnover of exploratory filopodia, only a few of 

which ultimately become branches. Arborisations develop in close association with the pleural 

muscles and we find that axonal filopodia are stabilised upon contact with myoblasts or 
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immature myotubes (see movie 2). A number of in vitro and in vivo studies have previously 

highlighted that filopodial stability is conferred by the contacts made between potential synaptic 

partners (Cooper & Smith, 1992; Ziv & Smith, 1996; Jontes et al., 2000).  

To determine whether PM-Mn axonal arborisations could be growing using nascent 

synapses we imaged the active zone marker Bruchpilot (BRP) (Chen et al., 2014; Urwyler et al., 

2015) and vesicular machinery (VGlut and Syt1) and found similar localisations of synaptic 

proteins, as well as relationships with branch lifetimes as have been described in zebrafish and 

Xenopus (Alsina et al., 2001; Niell et al., 2004; Meyer & Smith, 2006; Ruthazer et al., 2006). 

BRP puncta appear to chart the progression of branch stabilisation events. To our surprise we 

also found Bruchpilot at similar localisations in the branches of developing eve+ interneurons in 

the CNS, indicating that this type of growth may be common within the fly nervous system.  

 

 Growing arborisation do not require functional synapses 

The exact contributions of synaptogenesis, neural activity and synaptic transmission to 

the formation of neural networks are unclear. Indeed, there is a rich history regarding the 

question of whether nervous systems develop in “forward reference” to, but without benefit from, 

functional activity (Harrison, 1904, Weiss,1941; see Haverkamp, 1986 for review).  

 Interestingly, we find that a great deal of PM-Mn outgrowth takes place prior to robust 

presynaptic calcium transients (action potentials, <42h APF). Furthermore, not until 60h APF 

could we evoke activity in muscles by stimulating the motoneurons. Finally, neither TTX or 
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removing all vesicular neurotransmission, by making VGlut null clones, had an overt impact on 

mature arbor morphology. It may be that different systems are intrinsically different; Cline and 

colleagues showed a correlation between the stabilisation of growing retinal ganglion cell axon 

branches bearing synaptic puncta and visual activity, pointing to use-testing of nascent contacts 

by activity in a synaptotropic-like mode of growth (Ruthazer et al., 2006). In contrast however, a 

number of studies have shown that blocking activity has little impact on morphology, or plays 

only a role in the refinement of arbor growth (Haverkamp, 1986, Verhage et al., 2000; 

Varoquoaeux et al., 2002; Hua et al., 2005; Fredj et al., 2010). 

 The detailed imaging possible with our system reveals that BRP puncta very rarely enter 

filopodia and are never stabilised within them. We found the same to be true for the synaptic 

vesicle associated proteins Syt1 and VGlut. Since BRP is an important structural component of 

the cytomatrix at the active zone, these data seemed at odds with the notion that synapses 

drive branch stabilisation and led us to question if puncta previously reported at branch nodes in 

growing retinal ganglion cells really represent genuine synapses. Alongside this, we found it 

was not until late stages of development that the size and distribution of BRP puncta became 

more akin to synapses at the larval NMJ (Fouquet et al., 2009). In parallel, we saw conspicuous 

clusters of glutamate receptors only at late stages, long after arbor shape has been established. 

Taken together these data suggest that it is only at the later stages of arbor development that 

synaptic elements pair to form bona fide synapses. The accumulations of presynaptic proteins 

seen in early arborisations (i.e. 30-40h APF) may instead mark stable sites or ‘transport hubs’ 

that help store/sort synaptic proteins for a later role in synapse formation. 
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Neuritic adhesion complexes (NACs) drive a tropic mode of arborisation growth 

If synaptic transmission does not play a role in this type of dynamic arbor growth, what 

mechanisms are responsible? We find a role for a class of proteins (synaptic cell adhesion 

molecules), pre-synaptic Neurexins (Nrxs), and their postsynaptic binding partners, Neuroligins 

(Nlgs).  

 The Nlg1 mutants and the clonal FlpStop data suggest that Nlg1 in the muscle targets is 

crucial for normal growth. Clonal analysis reveals that branches growing onto muscles with 

lower levels of Nlg1 expression are phenotypically similar to those in Nlg1 nulls. The growth of 

branches onto territories with more wild-type levels of Nlg1 expression is reminiscent of the 

tropic aspect suggested in Vaughn’s original hypothesis. 

 Work in Xenopus has previously implicated Nrx-Nlg interactions in arbor growth and 

posited that synapse formation and subsequent levels of synaptic transmission translates 

directly into branch stability (Chen et al., 2010). Here we propose that these molecules provide 

adhesion during elaborative phases independent of synapse formation. We describe for the first 

time that Nlg1::GFP puncta emerge on muscles in vivo following contact with a presynaptic 

filopodia. Nlg1 localises onto the tips and shafts of filopodia and regulates stability. Filopodia 

that ‘capture’ such puncta are significantly longer lived than those that do not. Furthermore, 

time-lapse imaging revealed that Nlg1∷GFP act like anchor points by marking the limits of 

filopodial retraction. This is very different to the growth of zebrafish and mouse neuromuscular 

junctions, where motoneurons grow between pre-patterned plaques of acetylcholine receptors, 
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as if hopping between stepping stones ((Yang et al., 2001). Panzer et al., 2006; Jing et al., 

2009). 

 Presynaptically we found Nrx puncta on the tips of filopodia and along their lengths i.e. 

at sites that mirror those of Nlg1. The two other proteins we also find at such sites are the 

presynaptic membrane associated proteins Syd-1 and Liprin-α, both of which are known to 

complex with Nrx. Liprin-α and Syd-1 are found on the membrane and coalesce into dynamic 

puncta that localise to filopodia tips. Liprin-α puncta, appear to limit filopodial retraction, 

indicating that sites marked by this protein represent the presynaptic counterparts to the 

structural anchor points marked by Nlg1.   

 Previously, Syd-1 and Liprin-α have been found to play a key role in orchestrating 

synapse assembly by recruiting and retaining other synaptic proteins. Liprin-α, Syd-1 and Nrx 

puncta at these stages of exuberant growth are transient and do not appear to become ‘future 

synapses’. Their fluidity speaks to a role in branch morphogenesis rather than in a stepwise, 

clockwork assembly of synaptic machinery at a particular place. 

  Based on our observations, we propose that these dynamic complexes are composed 

of a subset of proteins that have been previously called ‘synaptic cell adhesion proteins’ or 

drivers of synapse formation. As a placeholder we suggest calling these puncta neuritic 

adhesion complexes or NACs to highlight their role in axon growth prior to synapse formation. 

That we see direct evidence for the formation of these NACs on filopodia themselves suggests 

that dynamic interactions between filopodia and the postsynaptic target are fundamental 

determinants of tree construction.  
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 This early role for Nlg1/Nrx based NACs in arbor growth is supported by strong evidence 

that exploratory filopodia and branch tips are highly sensitive to changes in the early expression 

of postsynaptic Nlg1. Our gain-of-function myoblast/myotube stripes of clones seem to have a 

‘hyper-stabilising’ effect on wild-type neurons and ultimately constrain growth. Moreover there is 

some indication of preferential growth into regions with elevated postsynaptic Nlg1 expression. 

Remarkably, we were very surprised to see wildtype PM-Mns grow past muscles, into novel 

territories and make contacts with class IV da sensory neurons ectopically expressing Nlg1.  

 

Physiological consequences of Nlg1 disruption  

The precise role that Nrxs and Nlgs play in nervous system development has been 

broadly disputed. Previous work has shown the strong synaptogenic potential of these proteins 

by expressing them in HEK cells or on micropatterned substrates revealing them to be potent 

regulators of hemisynapse formation (Scheiffele et al., 2000; Dean et al., 2003; Graf et al., 

2004; Chih et al., 2005; Lee et al., 2010; Czöndör et al., 2013). Others show that mice lacking 

three Nlg homologues or all three α-Nrxs build brains with grossly normal cytoarchitectures and 

synapse densities (Missler et al., 2003; Varoqueaux et al., 2006) and posit that their role is 

solely to modulate synapse function. Roles for Nlg and Nrx in synapse formation have 

previously been described in the fly (Li et al., 2007; Banovic et al., 2010; Chen et al., 2012). 

 Teasing apart the function of such gene families in vertebrates can been difficult due to 

the multiple copies of these genes and their degeneracy with other proteins (Sugita et al., 2001; 

Ko et al., 2009; Siddiqui et al., 2010; Xu et al., 2010; Ko et al., 2011; Soler-Llavina et al., 2011). 
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Here in this simpler system we show that Nlg1/Nrx based adhesion complexes play a key role 

in the early growth of axonal arborisations prior to the formation of functional synapses. In 

addition, we find that disrupting Nlg1/Nrx signalling has little effect on the timing of development 

and size of active zones, indicating that tree morphogenesis is uncoupled from the formation of 

synapses. One prediction from this is that disruption in functional connectivity would largely be 

due to disruptions in growth and morphology of the arborisation. An important observation that 

frames this is the outcome from ectopically expressing Nlg1 in class IV da sensory neurons. 

There we see the generation of a ‘synthetic connectivity’ on the normally ‘asynaptic’ da sensory 

neurites with the development of mature, differentiated presynaptic structures in later pupal 

stages i.e. synaptic vesicles and BRP labelled synapses. 

 In support of this, our calcium imaging reveals that the normal patterns of muscle activity 

are disrupted when Nlg1 is overexpressed, with changes in the frequency and spatial 

heterogeneity of calcium. Since elevated postsynaptic Nlg1 expression results in condensed 

arborisations, we propose that this is a result of irregular innervation. Additionally, the 

behavioural analysis shows that Nlg1 null adults had significant motor deficits. Taken together 

these data provide a link between an adhesion-based mechanism of arbor growth and synaptic 

connectivity which ultimately effects function. 
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Conclusions 

In this study we have demonstrated, for the first time outside of vertebrates, a dynamic 

‘synaptotropic-like’ mode of arbor. In contrast to the mechanisms that have previously been 

proposed, we find no evidence that functional synapses drive this type of growth. Instead, our 

data point to dynamic NACs, composed of Neurexin, Neuroligin, Liprin-α and Syd-1, being 

important for stabilising filopodia during arborisation growth. Alongside this, our evidence 

showing the same subcellular localisations in Drosophila central neurons points toward this 

mode growth being a universal mechanism for building complex trees. It may be that Berry and 

colleagues’ emphasis on filopodia in their ‘synaptogenic filopodial theory’ was correct. It is an 

appealing idea that such mechanisms could construct axonal and dendritic arborisations of a 

broad spectrum of shapes and sizes by making only subtle changes to a ‘stick and grow’ 

algorithm. Exactly which proteins constitute these adhesion complexes and how they interact 

with the machinery for regulating cytoskeletal remodelling will be a focus of future investigation. 
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Materials and Methods 

Fly stocks 

Flies were reared on a standard yeast-cornmeal-molasses diet. For time-sensitive 

experiments flies were raised at 25°C, or at room temperature if precise staging was not 

required. 

OK371-GAL4; UAS-myr::GFP 

OK371-GAL4; UAS-myr::GFP, UAS-BRP::RFP 

OK371-GAL4; UAS-Lifeact::Ruby / UAS-CLIP170::GFP 

VGlut(Trojan)-T2A-LexA, LexAop-myrGFP 

VGlut(Trojan)-T2A-LexA, LexAop-myrGFP; Mef2-GAL4, UAS-mCD8::Cherry 

VGlut(Trojan)-T2A-LexA, LexAop-myrGFP; Mef2-GAL4, UAS-myr::tdTomato 

OK371-GAL4, UAS-mCD8∷Cherry / BRP::GFP 

OK371-GAL4, UAS-mCD8:Cherry / VGlut::GFP 

OK371-GAL4, UAS-mCD8:Cherry / Syt1::GFP 

RN2-Flp, Tub-FRT-CD2-FRTGal4, UAS-mCD8GFP / UAS-BRP::RFP 

OK371-GAL4, UAS-mCD8:Cherry / GluRIIE::GFP 

OK371-GAL4, UAS-GCaMP6m 

VGlut(Trojan)-T2A-LexA; Mef2-GAL4, UAS-GCaMP6M / LexAop-TRPA1 

VGlutNMJX-Gal4, UAS-mCD8::GFP, hsFlp122; FRT40A, Df(2L)VGlut2; UAS-myr::GFP 

VGlutNMJX-Gal4, UAS-mCD8::GFP, hsFlp122; FRT40A, Df(2L)VGlut2 / FRT40A; UAS-myr::GFP 

Elav-GAL4, hsFlp122; FRT40A, Df(2L)vglut2 / FRT40A; UAS-cytoplasmicGFP 

VGlut(Trojan)-T2A-LexA, LexAop-myr::tdTomato; Mef2-GAL4, UAS-Nlg1::GFP 

UAS-Nrx::GFP; OK371-GAL4, UAS-mCD8::Cherry 

OK371-GAL4, UAS-mCD8::Cherry / UAS-Liprin-α::GFP 

OK371-GAL4, UAS-Liprin-α::GFP / UAS-Syd1::Straw 

OK371-GAL4, UAS-Liprin-α::GFP; UAS-BRP::RFP 
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RN2-Flp, Tub-FRT-CD2-FRT-GAL4, UAS-mCD8::GFP / UAS-Liprin-α::GFP 

VGlut(Trojan)-T2A-LexA, LexAop-myrGFP; Df(3R)BSC747 / Nlg1ex2.3 

VGlut(Trojan)-T2A-LexA, LexAop-myrGFP; Df(3R)BSC747 / Nlg1I960 

VGlut(Trojan)-T2A-LexA, LexAop-myrGFP; Df(3R)Exel6191 / Nrx241 

VGlut(Trojan)-T2A-LexA, LexAop-myrGFP; Mef2-GAL4 / UAS-Nlg1untagged 

hsFlp122; VGlut(Trojan)-T2A-LexA, LexAop-myrGFP, αTub84B-FRT.GAL80; Mef2-GAL4, UAS-

myr::tdTomato / UAS- Nlg1untagged 

PPK-GAL4, UAS-dsRed / VGlut-LexA, LexAop-myr::GFP 

PPK-GAL4, UAS-dsRed /VGlut-LexA, LexAop-myr::GFP; UAS-Nlg1Untagged 

PPK-GAL4, UAS-mCD8::GFP; UAS-Nlg1untagged 

VGlut(Trojan)-T2A-LexA, LexAop-myrGFP; Nlg1FlpStop D / Df(3R)BSC747 

VGlut(Trojan)-T2A-LexA, LexAop-myrGFP; Nlg1FlpStop ND / Df(3R)BSC747 

hsFlp122; VGlut(Trojan)-T2A-LexA, LexAop-myrGFP / Mef2-GAL4; Nlg1FlpStop ND / Df(3R)BSC747 

hsFlp122; VGlut(Trojan)-T2A-LexA, LexAop-myrGFP / Mef2-GAL4; Nlg1FlpStop D / Df(3R)BSC747 

Mef2-Gal4, UAS-GCaMP6m; UAS-Nlg1Untagged 

Mef2-Gal4, UAS-GCaMP6m 

Imaging 

Imaging was performed at room temperature using Zeiss LSM 510 or 800 series confocal 

microscopes with EC Plan-Neofluar 20x/0.50 or Plan-Apochromat 40x/1.3 objectives, except the 

laser ablation experiments, which were performed using a Nikon A1R with an Apochromat 

40x/1.25 objective. 

Mounting and live imaging 

For consistent developmental staging, pupae were collected at 0h APF (white prepupal stage) 

and incubated on moist tissue paper at 25°C in parafilm sealed petri dishes. In preparation for 

mounting, pupae were dried on tissue paper, immobilised on strips of double sided sticky tape 

and carefully removed from their puparial cases using forceps. Pupae were mounted using 

22x22mm cover slips beneath a thin coating of halocarbon oil. For imaging sessions of greater 

than 1-hour pupae were mounted in humidity maintained chambers consisting of a platform of 
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semi-permeable membrane suspended above a hole in a specialised steel slide and sealed 

with a watertight ring of petroleum jelly. 

For experiments requiring temperature manipulation, a specialised temperature adjustable 

stage was built consisting of a glass slide fastened to a 5x5cm thermoelectric Peltier device 

(Maplin Electronics Ltd., UK) which was mounted on a regular microscope slide-holder. Before 

each experiment the temperature of the stage was calibrated using a thermocouple probe 

attached to a multi-meter device (Rapid Electronics Ltd., UK) and controlled from a 0-30v power 

supply unit. 

Mosaic analysis 

The MARCM method was used to generate and label VGlut null motoneuron clones. A 

preliminary MARCM screen using OK371-GAL4 found that the pleural muscle motoneurons are 

born during the embryonic wave of neurogenesis. To generate clones during this wave of 

mitosis, breeding adults were allowed to lay on grape jelly plates with yeast for 2 hours at 25°C. 

Eggs were incubated for 3 hours at 25°C and heat shocked by incubation in a water bath at 

37°C for 45 minutes, followed by resting at room temperature for 30 minutes, followed by a 

further 30 minutes at 37°C. Upon hatching, larvae were transferred to standard food and raised 

at 25°C. 

To generate small numbers of GAL80 ‘flip-out’ or FlpStop Mef2-GAL4 positive muscle clones L3 

wandering larvae were heat shocked for 20 minutes by incubation in a water bath at 37°C. 

Dissections and immunocytochemistry 

Dissections were made in Sylgard silicone elastomer (Dow Corning, USA) lined petri dishes in 

1x phosphate buffered saline (PBS) (pH 7.3, Thermo Fisher Scientific, USA).  

For dissections of pupal abdominal body walls, pupae were removed from their puparial cases 

and pinned via the head using electrolytically sharpened 0.1mm tungsten pins. The posterior tip 

of each abdomen was removed (from approximately segment 6) and an incision made along 

the dorsal midline until reaching the thorax. Abdomens were separated from the thorax by 

cutting along the joint and laid flat using additional tungsten pins. Viscera were removed by a 

combination of gentle pipetting and forceps. Larval body wall dissections were performed as 

described previously (Broadie & Bate,1993) 

Dissected samples were fixed in buffered 3.6% formaldehyde for 45 minutes at room 

temperature and washed three times in PBS containing 0.3 Triton-X100 (Sigma, USA) (PBST). 

Following fixation, samples were blocked in PBST containing 4% goat serum (Sigma, USA) for 

45 minutes and incubated in solutions of primary antibodies made up with PBST overnight at 
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4°C. After rinsing 3 times with PBST over the course of a day, samples were incubated in 

solutions of secondary antibodies made up with PBST overnight at 4°C. After 3 rinses with 

PBST and a final rinse with PBS, samples were mounted on poly-L-lysine coated coverslips, 

dehydrated through a series of alcohol, cleared with xylene and mounted in DePeX (BDH 

Chemicals, UK). 

Primary antibodies were used at the following concentrations: mouse anti-NC82 (DSHB, USA) 

1:5, rabbit anti-VGlut-C term (Gift from Hermann Aberle (Mahr & Aberle, 2006)) 1:10,000, 

chicken anti-GFP (Invitrogen, USA) 1:1000. Secondary antibodies were used at the following 

concentrations: Cy3 goat anti-HRP (Jackson Immunoresearch, USA) 1:5000, AlexaFluor 488 

goat anti-Chicken (Invitrogen, USA) 1:500, Cy5 donkey anti-mouse 1:500, Cy5 donkey anti-

rabbit 1:500. 

For dissections of CNSs, white pre-pupae were collected and incubated at 25°C. Pupae were 

dissected from their puparial cases as described above. CNSs were dissected out in 1x PBS in 

Sylgard lined Petri-dishes. These were then immediately fixed in 3.6% formaldehyde for 20 

minutes. Fixative was washed off thoroughly using 1x PBS. CNSs were mounted on glass 

slides in Slow-Fade Antifade reagent (Thermo Fisher Scientific) and sealed beneath coverslips 

using nail-varnish. 

Microinjections 

To prepare for injection, pupae were dried on tissue paper and secured to glass slides using 

double sided sticky tape. Needles, pulled from glass capillaries, were loaded with 0.5mM TTX 

made up in PBS or a control solution of PBS. Injections were made into the abdominal cavities 

through small access holes made in the puparial cases, using a Transjector-5246 micro-injector 

(Eppendorf, Germany). Following injection, animals were removed from the sticky tape with a 

damp paintbrush and incubated at 25°C. 

Climbing assay 

Adult females were used two days post-eclosion. To assess climb speed, each fly was placed in 

a square plastic tube with 1 cm edges and transparent walls. The narrow calibre prevented flies 

from jumping or flying. Each fly was tapped to the bottom and its climb recorded with an S-PRI 

high-speed camera (AOS Technologies AG, Switzerland) at 700 fps, frame size of 900x700 

pixels, under red light illumination. Automated body tracking was performed using 

FlyLimbTracker (Uhlmann et al., 2017) in Icy (de Chaumont et al., 2012) over a distance of 0.27 

to 0.8 cm. Only recordings in which the climbing path had a linearity over 90%, as determined 

with the Motion Profiler processor in Icy, were considered for analysis. The average climb 
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speed of each fly was determined by calculating the displacement of the centroid of the body 

between each frame over 3 repeats. 

Image Analysis 

Raw image stacks were imported into the image processing software Fiji (http://imagej.net/Fiji) 

for enhancement of brightness and contrast. For clarity, the freehand select tool was used to 

remove obscuring objects created by degenerating larval tissues and macrophages on a slice 

by slice basis. Collapsed z-projections were imported into Photoshop (Adobe, USA) for figure 

assembly. Schematic cartoons were made in Photoshop or Illustrator (Adobe, USA). To 

generate kymographs the re-slice tool in FIJI was used to reconfigure the axis of image 

sequences. 

Statistical analysis 

Statistical analyses were performed using the software package GraphPad Prism (GraphPad 

Software Inc., USA). Significances correspond to the following p values: ≤0.05 = *, ≤0.01 = **, 

≤0.001 = ***, ≤0.0001 = ****. For selecting between parametric and non-parametric tests, the 

residuals of each data set were tested for normality. Results are reported with standard 

deviations (SDs). 

Quantification of synaptic puncta 

Relationships between BRP::RFP, Nlg1::GFP and Liprin-α::GFP puncta dynamics and branch 

growth were calculated by manually counting and tracking puncta in FIJI. Puncta were identified 

by accumulations of fluorescent protein measuring 3 or more pixels in diameter at the native 

resolution. The diameters of BRP::RFP puncta were measured by intersection with the line tool 

in FIJI at their widest point and calculation of the full width at half maximum of the peak in 

fluorescence. 

Morphometric analysis  

Arbor reconstructions were generated using the semi-automated plugin for FIJI, Simple Neurite 

Tracer. Reconstructed skeletons were imported into a bespoke analysis software in which total 

arbor length, total branch number, Strahler order and total arbor were computed. Arbor area 

was calculated by giving branch coordinates a hypothetical ‘contact distance’ which represented 

its area of coverage. This value was set to 20µm. In addition, this software could be used to add 

and delete vertices and nodes, allowing corrections to me made to tracing errors.  

Straightness Index 
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To calculate branch bendiness, the ‘actual’ length of primary, secondary and tertiary axon 

branches was measured using the freehand line tool in FIJI as the distance between their 

nodes (or in the case of primary branches, between nodes and tips). These values were divided 

by the direct distances between these nodes, measured using the straight-line tool, giving an 

index of bendiness. 

Active zone density 

Active zone densities in axon terminals were calculated manually in FIJI using the multi-point 

tool. Bouton areas were calculated by tracing around boutons using the freehand selection tool. 
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Figures 
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Figure 1. The pleural motoneurons show dynamic growth during development. (A) Tiled 

confocal stacks show a dorso-lateral view of a pupa at 90h APF expressing UAS-myr::GFP in 

the pattern of the glutamatergic driver OK371-GAL4. Dashed lines demarcate arborisation 

innervating segments A3&4 (B) Muscles labelled with mCD8::Cherry (Mef2-GAL4) (magenta) 

and glutamatergic neurons labelled with myr::GFP (VGlut-LexA (Diao et al., 2015)) (green) 

show the innervation of the pleural muscles in segments A3&4 at 90h APF. Dashed lines 

demarcate the anterior arborisation in 4A (A4A). (C) A time series follows the growth of the 

same arborisations in segment A3 from 24h to 84h APF in 10-14h intervals (VGlut-

LexA>myr::GFP). (D) A temporally colour coded projection of a 10 minute time-lapse with 2 

minute intervals demonstrates the dynamics of a pair of arborisations in segment A3 at 32h 

APF. (E) Subcellular localisations of cytoskeletal components offer a molecular basis for 

delineating arbor features. Microtubules, revealed by CLIP-170, are concentrated in branches 

and dynamically invade nascent branchlets (white arrowheads). Filopodia (yellow arrowheads), 

are rich with actin, revealed by Lifeact::Ruby, but largely devoid of microtubules. (F) A time 

series with 40-minute intervals shows the growth of a branch at 29h APF. White arrowheads 

indicate filopodia which are stabilised and mature into branches. The yellow arrowhead 

indicates a branch which regresses into a filopodium. Scale bars: 250µm (A), 50µm (B,C,D), 

10µm (E), 20µm (F). 
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Figure 2. Arrival and localisation of presynaptic components is tightly linked with arbor 

growth. (A) Muscles labelled with myr::tdTomato (Mef2-GAL4 (Ranganayakulu et al., 
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1996)) and motoneurons labelled with myr::GFP (VGlut-LexA) at 35h APF show the intimate 

development of the pleural arborisations and their postsynaptic targets. (B) BRP::RFP 

expressed in motoneurons (OK371-GAL4) (green) decorates a pair of axon terminals (labelled 

also with myr::GFP) (magenta) at 35h APF, particularly at branch points (arrowheads). (C) At 

stages 30-35h APF 85.05 ± 6.42% of BRP::RFP puncta are localised at branch points or the 

bases of filopodia and 81.62 ± 4.64% of branch points/bases of filopodia host a punctum (n = 

5). (D) BRP::RFP puncta form in the wake of growing axon branches. Time series shows the 

rapid arrival of BRP::RFP puncta, indicated by arrowheads, in the growth cone of an extending 

branch, producing a new segment studded with BRP::RFP puncta, most of which mark sites of 

filopodia growth. (E) Time series shows the maturation of a filopodium which originates from a 

BRP::RFP punctum (indicated by the arrowhead in the first frame) into a branch. Additional 

BRP::RFP puncta, indicated by arrowheads, are rapidly recruited to new branch nodes (F) Time 

series shows the emergence of a filopodium from a site marked by a BRP::RFP punctum 

(arrowheads). (G) The proportions of filopodia which (i) emerge from existing puncta, (ii) recruit 

a punctum to their base within 20 minutes and (iii) do not recruit puncta to their bases (83 

filopodia from 3 time-lapse movies at stages 30-33h APF). (H) Lifetimes of filopodia which 

originate from/recruit puncta within 20 minutes of emergence (21.67 ± 20.30 mins, n = 24) or do 

not recruit puncta (3.83 ± 2.76 mins, n = 24) in a histogram with 20 minute bins. Filopodia which 

originate from puncta/recruit puncta are significantly longer lived than those that do not recruit 

puncta (Mann-Whitney U = 73, p < 0.0001, two-tailed). (I) Protein trap lines reveal the 

localisations of endogenous BRP (MiMIC collection (Venken et al., 2011)), Syt1 and VGlut 

(CPTI collection (Lye et al., 2014)) (arrowheads) in arborisations staged between 30h and 33h 
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APF. (J&K) Like in motoneurons, BRP::RFP expressed in a central, eve+ interneuron (Rn2-

FLPout) has a punctate distribution in the growing output arborisations at points of branch and 

filopodia growth, shown by arrowheads, at 24h APF. The region marked by dashed lines in J is 

expanded in K. Bars represent SDs. Scale bars: 20µm (A,D,I,J), 50µm (B), 10µm (E,K), 5µm 

(F). 
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Figure 3. Arbor growth takes place without the formation of functional synapses.  
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(A) Heat registered kymographs show calcium activity in motoneuron axon terminals at 32, 42, 

48 and 74h APF, measured by changes in GCaMP6m fluorescence (Δf) (OK371-GAL4). 

Sequential images show examples of Δfs. (B) Kymographs display GCaMP6m Δfs in 

motoneuron axons at 78h APF in a pupa injected with a control solution of PBS (top) and a 

solution of 0.5mM TTX in PBS (bottom) into the abdomen as indicated in the image of a pupa. 

(C) Arborisations in segment A3 (OK371-GAL4>UAS-myr::GFP) at 79h APF following injection 

at 32h APF with a control solution and, (D), a solution containing TTX. (E) An axon terminal of a 

VGlut null motoneuron MARCM clone (green) alongside a VGlut heterozygous terminal in a 

filleted L3 larva stained with an antibody against VGlut (magenta). (F) The anterior-most 

arborisation in segment A3 (A3-A) of a heterozygous VGlut control expressing myr::GFP and 

mCD8::GFP (VGlutNMJX-GAL4) at 85h APF (adjacent arborisations have been removed on a 

slice by slice basis for clarity) alongside (G), an equivalent VGlut null MARCM clone at 80h APF  

(H&I) Arborisations of VGlut null A3-A MARCM clones did not differ significantly from controls in 

arbor area (controls: 44643 ± 2982µm2, VGlut:  46518 ± 3083µm2, n1,2 = 10, t(18) = 1.38, p = 

0.18, t-test, two-tailed), but had marginally greater total arbor lengths (controls: 1812 ± 134µm, 

VGlut: 2024 ± 216µm, n1,2 = 10,  t(18) = 2.64, p = 0.02, t-test, two-tailed). (J) Kymographs show 

changes in muscle GCaMP6m (Mef2-GAL4) Δf in response to motoneuron activation using the 

warmth-gated ion channel TRPA1 (VGlut-LexA) at 49h, 54h, 68h and 71h APF. Red bars 

indicate time at the restrictive temperature (22oC), green bars indicate time at the permissive 

temperature (30oC). (K) Images show muscle GCaMP6m Δfs before and after activation of 

motoneurons with dTRPA1 at 71h APF. (L) Time series showing the same arbor segment at 

34h, 48h and 56h APF shows the shift in the organisation of BRP::RFP puncta from a 
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predominance at branch points (white arrowheads) to a distribution along branch lengths 

(yellow arrowheads) (M) At stages between 72h and 77h APF, 12.55 ± 5.79% of total BRP::RFP 

puncta are found at branch points/bases of filopodia, although the majority (89.38 ± 6.73%) of 

branch points/bases of filopodia host puncta (n = 5). (N) Puncta of endogenous, GFP labelled 

BRP (indicated by arrowheads) are larger and more homogenous in diameter during early arbor 

growth (32h APF) than at later stages (70hAPF), when outgrowth has ceased (OK371-

GAL4>UAS-mCD8::Cherry).  (O) Diameters of endogenous BRP::GFP puncta measured as the 

full width at half maximum of peaks in fluorescence are significantly greater at 32h APF (435.8 ± 

177.8nm, n = 144) than at 72h APF (319.6 ± 87.9nm, n = 177) (Mann-Whitney U = 6935, p < 

0.0001, two-tailed). (P) GFP tagged GluRIIE (FlyFos (Sarov et al., 2016)) driven under the 

control of the native transcriptional machinery shows an absence of Glutamate receptors from 

the postsynaptic membrane as late as 48h APF. (OK371-GAL4>UAS-mCD8::Cherry). (Q) At 

85h APF, conspicuous GluRIIE::GFP clusters (arrowheads) adorn the axon terminals. Bars 

represent SDs. Scale bars: 50µm (A,C,D,F,G), 10µm (E), 100µm (K), 25µm (L), 5µm (N,P,Q). 
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Figure 4. Neurexin and Neuroligin 1 are required during early arbor growth. (A) 

Arborisations in segments A3-A5 in a wild-type control, an Nlg1 null and an Nrx null staged 

between 76h and 78h APF (VGlut-LexA>myr::GFP). (B) Anterior-most arborisations in segment 

A3 (A3-A) at stages between 75h and 85h APF. Arborisations belonging to other motoneurons 

have been removed using image processing. (C-F) Morphometric analysis of A3-A arborisations 

of Nlg1 nulls (n = 11), Nrx nulls (n = 8) and wild-type controls (n = 13) staged from 75h to 85h 

APF. Nlg1 and Nrx nulls had significantly lower (C), arbor areas (controls: 47445 ± 2298µm2, 

Nlg1: 29616 ± 3259µm2, Nrx: 32696 ± 4565µm2.  Nlg1 vs controls: t(22) = 15.67, p < 0.0001. 

Nrx vs controls: t(19) = 9.89, p < 0.0001. t-tests, two-tailed) and (D), total arbor lengths 

(controls: 2251 ± 140µm,, Nlg1: 1785 ± 265µm, Nrx: 1758 ± 306µm. Nlg1 vs controls: t(22) = 

5.51, p < 0.0001. Nrx vs controls: t(19) = 5.07, p < 0.0001. t-tests, two-tailed), but not (E), total 
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branch numbers (controls: 84.38 ± 10.97, Nlg1: 86.00 ± 14.74, Nrx: 91.88 ± 23.27. Nlg1 vs 

controls: t(22) = 0.31, p = 0.76. Nrx vs controls: t(19) = 1.00, p = 0.33. t-tests, two-tailed). (F) 

Nlg1 nulls, Nrx nulls and controls were no different in their topological organisation. Nulls did not 

differ from controls in their total number of highest order (terminal) branches (controls: 43.31 ± 

5.59, Nlg1: 44.27 ± 7.56, Nrx: 47.00 ± 11.50. Nlg1 vs controls: t(22) = 0.36, p = 0.72. Nrx vs 

controls: t(19) = 0.99, p = 0.33. t-tests, two-tailed) or in their total number of orders (controls: 

11.62 ± 1.94, Nlg1: 11.27 ± 2.15, Nrx: 11.88 ± 2.36. Nlg1 vs controls: t(22) = 0.41, p = 0.67. Nrx 

vs controls: t(19) = 0.27, p = 0.79. t-tests, two-tailed). (G) At early stages of growth Nlg1 null 

arborisations bear branches which are precociously long, yet more tortuous and with fewer side 

branches than wild-types. (H) Branch Bendiness measured as the percentage difference 

between the actual length and the straight-line length of primary (terminal) and secondary 

branches. Branches of Nlg1 nulls are significantly less straight (4.13 ± 3.57%, n = 48) than 

controls (1.89 ± 2.41%, n = 38) at stages between 32h and 36h APF (Mann-Whitney U = 441, p 

< 0.0001, two-tailed). Bars represent SDs. Scale bars: 100µm (A), 50µm (B,G). 

 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 31, 2017. ; https://doi.org/10.1101/182808doi: bioRxiv preprint 

https://doi.org/10.1101/182808


	
   48	
  

 

Figure 5. Mosaic analysis shows a local role for endogenous Neuroligin 1 during arbor 

growth. (A) A schematic shows the directed insertion of the FlpStop construct into the 3rd 

coding intron of the Nlg1 genomic locus by recombinase mediated cassette exchange (RMCE) 

with a MiMIC integration site. (B) A schematic shows the mechanism of FlpStop action for the 

conditional disruption of endogenous Nlg1. In the initial non-disrupting (ND) orientation the 

splice acceptor and stop codons are on the non-coding strand and thus do not effect gene 
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function. Upon inversion by Flp recombinase the splice acceptor and stop codons are brought 

into frame on the coding strand, resulting in disrupted gene expression. The cassette is locked 

into this disrupting (D-lock) orientation by a FLEx switch (Schnütgen et al., 2003). In addition, 

inversion brings the coding sequence for tdTomato into proximity with a UAS sequence, 

enabling GAL4 driven expression. FlpStop lines were also generated in the initially disrupting 

(D) orientation, which allows rescue of Nlg1 (ND-lock clones) and ‘turns on’ tdTomato 

(Schematic not shown). (C) Arborisations at 80h APF in a wild-type control (VGlut-

LexA>myr::GFP). (D) Complete induction of Nlg1 D-lock (disrupting) clones using hsFlp122 and 

a long heat-shock produces arbor growth defects comparable to Nlg1 mutants. (E) Germline 

ND-lock rescues arbor growth to a near wild-type phenotype. (F) Model shows the formation of 

Nlg1 deficient fibres from the fusion of D-lock clonal myoblasts induced using hsFlp122 and a 

short heat shock at larval L3 stage. (G) Arbor growth (VGlut-LexA) onto regions of D-lock 

muscle clones (Mef2-GAL4) is disrupted, whereas arbor growth on non-clonal regions is close 

to wild-type. (H) Model shows the rescue of Nlg1 expression in clonal fibres formed from the 

fusion of ND-lock clonal myoblasts induced using hsFlp122 and a short heat shock at larval L3 

stage. (I) Arbor growth onto ND-lock muscle clones is close to wild-type, whereas growth on 

non-clonal regions is disrupted. Scale bars: 100µm (C,D,E,G,I). 
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 Figure 6. Neuritic Adhesion Complexes (NACs) incorporating Neurexin and Neuroligin 1 

stabilise filopodia during arbor growth. (A) At 35h APF Nlg1::GFP expressed in muscles 

(Mef2-GAL4) (green) formed puncta which arranged exclusively in apposition with the axon 

terminals on the postsynaptic membrane (VGlut-LexA>myr::tdTomato) (magenta). (B) Higher 
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magnifications show the concentration of Nlg1::GFP puncta at sites of branch growth and their 

apposition to filopodial tips. (C) Time series shows the extension of a branch across a muscle 

field at 35h APF. Muscles are numbered from anterior to posterior. Rounds of filopodia 

extension and stabilisation are concomitant with the recruitment of Nlg1::GFP puncta (indicated 

by white arrowheads) to their tips.  (D) Time series shows the relationship between the 

dynamics of filopodia and Nlg1::GFP puncta. Puncta indicated by white arrowheads mark the 

tips of filopodia which persist. Yellow arrowhead indicates a punctum which marks the limit of 

filopodial retraction (E) Histogram showing lifetimes of filopodia with Nlg1::GFP puncta at their 

tips (n = 45) and without puncta at their tips (n = 49). Filopodia bearing Nlg1::GFP puncta were 

significantly longer lived than those without puncta (with puncta: 19.36 ± 2.82 mins, without 

puncta: 10.73 ± 6.88 mins, Mann-Whitney U = 305.5, p < 0.0001, two-tailed). (F) Nrx::GFP 

(green) expressed in an arborisation with mCD8::Cherry (magenta) at 35h APF (OK371-GAL4). 

Arrowheads indicate puncta positioned on filopodia. (G) Liprin-α::GFP (green) expressed in an 

arborisation with mCD8::Cherry (magenta) at 35h APF (OK371-GAL4). Cutaway images show 

Liprin-α::GFP puncta in branches and at the tips of filopodia (arrowheads). (H) Time series 

shows the extension of a filopodium and its retraction back only as far as a Liprin-α::GFP 

punctum (arrowheads). (I) Histogram showing lifetimes of filopodia with Liprin-α::GFP puncta at 

their tips (n = 36) and without puncta at their tips (n = 21). Filopodia bearing Liprin-α::GFP 

puncta were significantly longer lived than those without puncta (with puncta: 19.44 ± 1.96 mins, 

without puncta: 8.81 ± 5.88 mins, Mann-Whitney U = 51.5, p < 0.0001, two-tailed).  (J) Time 

series shows the rapid precipitation of new Liprin-α::GFP puncta (indicated by arrowheads) 

within a filopodium. (K) Liprin-α::GFP and Syd-1::Straw co-expressed with OK371-GAL4 form 
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puncta in growing axon terminals which are highly coincident, including at filopodia tips, as 

indicated by arrowheads. The slight misalignment of some puncta is a result of the latency in 

imaging channels sequentially. (L) In contrast, Liprin-α::GFP and BRP::RFP puncta are 

coincident only at a few sites along branch lengths and at branch points. Unlike Liprin-α::GFP 

puncta (arrowheads), BRP::RFP puncta never stabilise within filopodia. (M) Liprin-α::GFP 

expressed in a central interneuron (Rn2-FLPout) forms puncta in growing axon terminals, 

including on filopodia at 24h APF. Bars represent SDs. Scale bars: 50µm (A), 10µm (B,F,G), 

20µm (C,M), 5µm (D,H,J). 
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Figure 7. Neuroligin 1 acts locally to drive early arbor growth. (A-D) Postsynaptic Nlg1 

overexpression severely impacts axon arbor growth. (A) A pair of arborisations at 33h APF 

expressing myr::GFP (VGlut-LexA) in a background of postsynaptic Nlg1untagged expression 

(Mef2-GAL4). (B) Pair of control arborisations at 35h APF. (C) Arborisations at 70h APF in a 
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background of postsynaptic Nlg1untagged expression. (D) Control arborisations at 76h APF. (E) 

Model of ‘flip-out’ Nlg1untagged and myr::tdTomato expressing muscle clone induction using 

αTub84B-FRT.GAL80. Muscle precursor clones induced with hsFlp122 at larval L3 stages 

produce clusters of GAL80 negative myoblasts which fuse to form ‘stripes’ of clonal muscle 

fibres. (F) At 35h APF motoneuron branches (magenta) show preferential elaboration onto 

clonal Nlg1untagged expressing myotubes and myoblast clusters (green). (G) At 70h APF only 

axon branches in contact with clonal, Nlg1untagged expressing muscle fibres show a hyper-

stabilisation phenotype. Growth of these branches appears to have been directed preferentially 

along these fibres. (H-O) Ectopic expression of Nlg1 in class IV da sensory neurons drives 

changes in motoneuron axon arbor morphology. (H) A model of the pleural body wall shows the 

relative positions of class IV v’ada sensory input arborisations (green), pleural muscles (grey 

tubes) and motor axon arborisations (magenta). (I) Motoneuron axon terminals expressing 

myr::GFP (VGlut-LexA) at 80h APF in a wild-type control (J) the v’ada input arborisations in the 

same region expressing dsRed (PPK-Gal4 (Grueber et al., 2003)) (K) a transverse projection 

shows the restriction of the motor axon arborisations to a single plane. This is represented in a 

transverse view of the pleural region which shows the separation of the v’ada arborisation 

(green) from the motor axon terminals (magenta) by the pleural muscles (red). (L-N) Nlg1untagged 

expression in class IV da sensory neurons causes motor axon branches to penetrate gaps 

between the muscle fibres to make contacts with the sensory arborisations. These aberrant 

branches are shown in the transverse view and run perpendicularly to the rest of the 

arborisation. (O) Abdominal fillet of a newly eclosed adult expressing Nlg1untagged and CD8::GFP 

in the class IV da sensory neurons. Anti-HRP reveals the motor axon terminals. BRP 
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immunoreactivity reveals presynaptic specialisations at contacts between motor axons and the 

sensory arborisation (arrowheads). Scale bars: 50µm (A,B,C,D,F,G), 25µm (I,J,L,M), 5µm (O). 

 

 

Figure 8. The roles of Nlg and Nrx in NAC dependent arbor construction are decoupled 

from synapse formation and neurotransmission. (A-B) Synapse formation is unaffected by 

disruptions to Nrx-Nlg signalling. (A) Antibody staining against BRP reveals active zones at the 

pleural neuromuscular junctions in adult abdominal fillets from a wild-type control, an Nlg1 null, 
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an Nrx null and an Nlg1 gain-of-function (Mef2-GAL4>Nlg1-untagged). (B) Active zone densities 

calculated from BRP puncta in synaptic terminals. No significant differences were found 

between the densities of active zones in controls (0.98 ± 0.23µm-2, n = 5) and Nlg1 nulls (0.88 ± 

0.13µm-2, n = 5) or controls and Nrx nulls (0.98 ± 0.15µm-2, n = 5) (Nlg1 vs controls: Mann-

Whitney U = 9, p = 0.53, two-tailed. Nrx vs controls: Mann-Whitney U = 12, p = 0.94, two-tailed). 

A small, but significant difference was found between active zone densities in Nlg1 gain-of-

function terminals (1.29 ± 0.13µm-2, n = 5) and controls (Mann-Whitney U = 1, p = 0.0159, two-

tailed). (C-F) Nlg1 overexpression causes changes to arbor morphology which result in altered 

connectivity and transmission. Kymographs show muscle GCaMP6m Δf in a control, (C), and in 

a pupa also expressing Nlg1untagged in muscles (Mef2-GAL4) staged within 10 hours of eclosion, 

(D). In controls, calcium events are largely synchronous across the entire muscle field whereas 

in gain-of-function pupae events are often restricted to muscle subsets. This is demonstrated by 

the breaks in the light-coloured bars on the gain-of-function kymograph as well as in the 

sequential images (D&F). (G-I) Loss of Nlg1 has a pronounced impact on motor ability (G) 

Automated body tracking performed using FlyLimbTracker (Uhlmann et al., 2017) in Icy (de 

Chaumont et al., 2012) of a control and an Nlg1 null, 2-days post-eclosion (H) Control flies have 

a significantly faster climb speed than Nlg1 nulls (controls: 2.25 ± 0.19 cm.s-1, n = 10. Nlg1: 1.60 

± 0.18 cm.s-1, n = 11. t(8.15) = 19, p < 0.0001, t-test, two-tailed). (I) Motoneuron axon terminals 

(VGlut-LexA>myr::GFP) innervating the femur 1-day post-eclosion of an Nlg1 null and of a 

control. Bars represent SDs. Scale bars: 20µm (A), 100µm (D,F,I), 0.2cm (G). 
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