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Abstract

Evolutionary dynamics driven out of equilibrium by growth, expansion or adaptation often gener-

ate a characteristically skewed distribution of descendant numbers: The earliest, the most advanced

or the fittest ancestors have exceptionally large number of descendants, which Luria and Delbrück

called “jackpot” events. Here, we show that recurrent jackpot events generate a deterministic bias

favoring majority alleles, which is equivalent to an effective frequency-dependent selection (pro-

portional to the log ratio of the frequencies of mutant and wild-type alleles). This “fictitious”

selection force results from the fact that majority alleles tend to sample deeper into the tail of

the descendant distribution. The flipside of this sampling effect is the rare occurrence of large fre-

quency hikes in favor of minority alleles, which ensures that the allele frequency dynamics remains

neutral overall unless genuine selection is present. The limiting allele frequency process is dual to

the Bolthausen-Sznitman coalescent and has a particularly simple representation in terms of the

logarithm of the mutant frequency. The resulting picture of a selection-like bias compensated by

rare big jumps allows for an intuitive understanding of allele frequency trajectories and enables the

exact calculation of transition densities for a range of important scenarios, including population

size changes and different forms of selection. The fixation of unconditionally beneficial mutations

is shown to be exponentially suppressed and balancing selection can maintain diversity only if the

population size is large enough. We briefly discuss analogous effects in disordered complex systems,

where sampling-induced biases can be viewed as ergodicity breaking driving forces.
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One of the virtues of mathematizing Darwin’s theory of evolution is that one obtains

quantitative predictions about the dynamics of allele frequencies that can be tested with

increasing rigor as experimental techniques, sequencing methods and computational power

advance. The Wright-Fisher model is arguably the simplest null model of how allele fre-

quencies change across time [17]. Although, for modeling neutral genetic diversity, it is

often replaced by equivalent backward-in-time models of the ensuing tree structures [23],

forward-in-time approaches are still unrivaled in their ability to include the effects of nat-

ural selection. As such, the Wright-Fisher model has been instrumental for shaping the

intuition of generations of population genetics about the basic dynamics of neutral and se-

lected variants. But transition densities derived from the Wright-Fisher model also find

tangible application in scans for selection in time series data [4, 9, 22].

The Wright-Fisher model is remarkably versatile as it can be adjusted to many scenarios

by the use of effective model parameters: An effective population size, an effective mutation

rate and effective selection coefficients. But, crucially, these re-parameterizations cannot

account for extremely skewed family size distributions. While remarkably skewed family

distributions occur in some natural populations [15], they routinely arise in microbial popu-

lations that combine exponential growth with recurrent mutations. This was first highlighted

by Luria and Delbrück [26], who noticed that mutations that occur early in an exponential

growth process will produce an exceptionally large number of descendants. The distribution

of such mutational “jackpot” events has a particular power law tail in well-mixed popu-

lation, as is briefly explained in Fig. 1A. Simplest models of continual evolution [28] and

related models of traveling waves [36] can be viewed, on a coarse-grained level, as repeat-

edly sampling from this jackpot distribution. (The number of draws and the characteristic

resampling time scale varies with the model.) It is by now well-established that the ensuing

genealogies are described by a particular multiple-merger coalescent [7, 8, 13, 29, 33–35] first

identified by Bolthausen and Sznitman [5].

While extensions of the Wright-Fisher diffusion process to capture skewed offspring

numbers have been formally constructed [2, 3, 14, 20], also including selection and mu-

tations [1, 10, 11, 16, 18], we still lack explicit finite time predictions for the probability

distribution of allele frequency trajectories. Our goal here is to fill this gap for the partic-

ular case of the Luria-Delbrück jackpot distribution, by characterizing the allele frequency

process in such a way that it can be easily generalized, intuitively understood and integrated
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in time.

I. SAMPLING ALLELE FREQUENCIES ACROSS GENERATIONS

Our starting point is a simple model for the dynamics of a subpopulation at frequency

X(t), the mutants, within a population of total size N(t) passing through discrete gener-

ations t = 1, 2, . . . Note that the population size is allowed to change from generation to

generation. The mutant frequency X(t+ 1) in the generation t+ 1 is produced from gener-

ation t in two steps: First, each individual gets to draw a statistical weight U from a given

probability density function p(u) (nonzero only for u > 0 and the same for both mutants and

wild-types). This generates NX(t) random variables U
(m)
i for the mutants and N(1−X(t))

random variables U
(w)
i for the wild-types. The new discrete mutant number NX(t + 1) is

obtained in a second step by binomially sampling N times with the success probability

X̂(t+ 1) =
M

W +M
, (1)

which depends on the sums M =
∑NX(t)

i=1 U
(m)
i and W =

∑N(1−X(t))
i=1 U

(w)
i . One can think of

the statistical weights M and W as representing the total number of mutant and wild-type

”seeds” in a large seed pool, from which only a finite number N (sampled with replacement)

go on to survive to adulthood.

Note that the deviation of the new mutant frequency X(t+ 1) from X̂(t+ 1), the simple

fraction Eq. 1, is of order

√
X̂(1− X̂)/N . For most of this work, we are interested in large

enoughN and a broad enough descendant distribution such that the binomial sampling error,

which represents classical random genetic drift, is negligible compared to the fluctuations

induced by sampling from the descendant distribution. Also note that because all random

variables are independently drawn from the same distribution, there is no expected bias in

the mutant frequency: The expected allele frequency in generation t is constant and equal

to the starting allele frequency (X(t) is a “martingale”).

If p(u) has finite mean and variance, binomial sampling does matter and the above popu-

lation model leads to Wright-Fisher diffusion in the large N limit [30], which has genealogies

described by the Kingman coalescent [33].

But what are the characteristic features of the forward allele frequency process X(t) for

descendant distributions so broad that even the mean diverges? As I show heuristically in
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the next section, this leads to a sampling-induced bias for alleles that are in the majority, an

apparent rich-get-richer effect. I will then describe and illustrate phenomena driven by this

effect, including biased time series, a high-frequency uptick in site frequency spectra and a

low probability of fixation of beneficial mutations. In the technical section of this paper, I

discuss a suitable large–N scaling limit of X(t), in which the stochastic dynamics can be

fully predicted.

II. TYPICAL OFFSPRING NUMBERS FAVOR THE MAJORITY TYPE

It is useful to first consider purely heuristic arguments to see that, for broad enough

descendant number distributions, population resampling typically favors the majority type.

These arguments provide an intuitive basis for the phenomena I discuss and derive further

below.

Suppose an allele is currently at frequency X, and we would like to estimate the frequency

X ′ after resampling. According to our reproduction rules stated above, we need to estimate

the total number of descendants of both mutants, M , and wild-types, W , which represent

sums of many random family sizes (if N is large). Such estimates are challenging for skewed

family size distributions, especially when the mean depends on the largest families that

occur in a sample. Yet, a mean family size 〈U〉n of a typical sample of n offspring numbers

{Ui}i=1...n can be estimated by the truncated expectation [31]

〈U〉typ ≡
∫ umax(n)

0

up(u)du , (2)

The cutoff umax(n) of the integral represents the largest family size in a typical n-sample,

illustrated in Fig. 1B, which can be estimated by the extremal criterion[25]

nPr[U > umax(n)] = n

∫ ∞
umax(n)

p(u)du ≈ 1. (3)

Note that the typical value 〈U〉typ becomes essentially equal to the expectation 〈U〉 if the

integral in Eq. 2 is not sensitive to the upper bound. The key phenomena discussed in the

paper, however, rely on p(u) being sufficiently broad-tailed so that 〈U〉typ is dependent on

the sample size n. This occurs when p(u) decays like u−2 or more slowly, so that the mean

family size diverges. Throughout most of this paper, I will in fact focus on the particularly

interesting marginal case p(u) ∼ u−2, which as mentioned arises in population models that
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FIG. 1: A) Illustration of mutational jackpot events, first studied by Luria and Delbrück.

Consider the growth of a well-mixed population of microbes starting from a single cell

(ignore death). A mutation that occurs in the jth cell division will have a final frequency of

about ≈ 1/j (j = 4 in the illustration) and thus a “family size” of u = N/j. Hence, the

probability Pr[U > u] to reach an even larger family size U is equal to the probability

≈ j/N = 1/u that the mutation occurs prior to the nth cell division. The probability

density to acquire a family size u therefore exhibits a power law tail p(u) ∝ u−2. (Our

argument ignores the stochasticity in cell division events, which however does not change

the power law exponent.) B) The blue line indicates the probability Pr[U > u] that the

family size U of a mutation is larger than u. The largest family size u∗ in a sample of n

jackpot events should typically be of order n because the probability of sampling an even

larger event is 1/n (dashed lines). A typical n–sample, therefore, has a mean family size of

order log(n), which is obtained upon truncating the family size distribution at u∗. It turns

out that this effect generates a selection-like bias favoring majority alleles, which is

compensated by rare sampling events that favor minority alleles.
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combine stochastic jumps with exponential growth. In this case,

p(u) ∼ u−2 (4)

umax(n) ∼ n (5)

〈U〉typ ∼ ln (n) . (6)

Hence, the family size of a typical sampled from a mutant population currently at frequency

X can be estimated by

〈U (m)〉typ ∼ ln(XN) = ln(N)

(
1 +

lnX

lnN

)
, (7)

and likewise for the wild-type population. The frequency-dependence of this expression is

the crux of our study, as it implies that more abundant mutants (larger X) typically behave

as if they have higher fitness (larger family sizes).

Assuming an initial allele frequency X, the typical frequency 〈X ′〉typ after resampling can

then be estimated by

〈X ′〉typ =
X 〈U (m)〉typ

X 〈U (m)〉typ + (1−X) 〈U (w)〉typ

=
1

1 + (1−X) 〈U(w)〉typ
X 〈U(m)〉typ

=
1

1 + (1−X) ln[(1−X)N ]
X ln[XN ]

. (8)

The typical discrepancy between the resampled frequency 〈X ′〉typ from the original frequency

X simplifies in the limit | lnN | � | lnX| to a deterministic advection velocity

v(X) ≡ 〈X ′〉typ −X ∼ X(1−X)sfic(X) , (9)

which has the form as a traditional selection term with a frequency-dependent selection

coefficient

sfic(X) ≡ 1

lnN
logit(X) =

1

lnN
log

(
X

1−X

)
. (10)

The selection-like advection velocity tends to increase the frequency of the majority type

and results from the fact that the majority type is able to sample deeper into the tail of the

offspring number distribution. I will call this effect fictitious selection because it acts like

selection, yet is of purely probabilistic origin. Both the advection velocity and the fictitious

selection coefficient are plotted in Fig. 2.

One naturally wonders how the fictitious selection force can be consistent with the overall

neutrality of the process: The average mutant frequency has to stay constant in time. But,

so far, we have only considered the typical behavior of the allele frequency dynamics, and
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FIG. 2: Scaled advection velocity v(x) and fictitious selective difference sfic(x) as a

function of mutant fraction x. The advection tends to push the frequencies of polymorphic

sites towards fixation and extinction, depending on what boundary is closer. The bias

slows down near the boundaries, which leads to an accumulation of high and low frequency

variants in site frequency spectra.

it turns out that the ignored atypical events ensure neutrality: A detailed analysis of the

resampling distribution (SI Sec. X) shows that neutrality holds overall because rare big

events rescue the minority type. Both effects, a nearly deterministic advection towards the

majority type and compensating rare jumps in favor of the minority type, can be appreciated

from histograms that show resampled frequencies conditional on an initial frequency X0 � 1.

For large N , a pronounced peak appears below X0, at a scale consistent with the selection

coefficient determined above, see Fig. 3. Yet, the histogram still has some support at very

large frequencies, which correspond to the just-mentioned compensating jumps.

III. CONSEQUENCES

I will now describe tangible phenomena driven by fictitious selection and the compensat-

ing rare jumps. The mathematical description of these phenomena follows from an analyti-

cally solvable mathematical framework described in Sec. IV below.

A. Trajectories

If we ignore the effect of rare jumps, one would expect a characteristic allele frequencies

trajectories to move towards fixation or extinction, following the fictitious selection force.

The resulting deterministic trajectory is most easily described in terms of the logit, Ψ(t) =
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FIG. 3: Histogram obtained from resampling 800 times a new allele frequency X(t+ 1)

given that X(t) = X0 = 0.01. The population size is N = 106. Left: Notice the apparent

shift to lower frequencies of the bulk of the histogram compared to the initial frequency

(green line). The blue line shows the asymptotic resampling distribution (Eq. 79). Inset:

Rare big events rescue neutrality. The top five events are {0.71, 0.24, 0.24, 0.18, 0.11}.

logit[X(t)] ≡ log[X/(1−X)], which obeys

∂tΨ = sfic =
Ψ

lnN
⇒ Ψ(t) = Ψ(0) exp

(
t

lnN

)
(deterministic approximation) . (11)

It turns out that the expectation of the logit indeed follows these dynamics,

∂t〈Ψ〉 = sfic =
〈Ψ〉
lnN

⇒ 〈Ψ(t)〉 = 〈Ψ(0)〉 exp

(
t

lnN

)
(exact) . (12)

as the simulations in Fig. 6 demonstrate. Thus, while neutrality requires the expectation

of allele frequencies to remain constant, one finds that the expectation of the log ratio of

frequencies moves away from 0 and, more over, exponentially fast. This peculiar behavior

reflects the fact that a log-transformed stochastic variable is much less sensitive to rare, big

jumps, which are needed to compensate for the fictitious selection force. In frequency-space,

the trajectories resemble deterministic trajectory pieces glued together by rare compensating

jumps, as can be seen in the trajectories in Fig. 6.

The dynamics of the logit expectation in Eq. 12 implies that it typically takes a time of

order lnN generations to change the allele frequency by order 1 and lnN ln lnN generations
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FIG. 4: Sample paths for the log ratio of mutant frequency and wild-type frequency. The

population size was N = 109, which sets the coalescence time Tc = ln(N), and trajectories

were chosen to start at X0 = 0.5 in the left panel and X0 = 0.01 in the middle panel,

respectively. The panel on the right shows the behavior of the log ratio (solid lines) for

different starting frequencies (averaged over 100 sample paths). The dashed lines are the

theoretical expectation, which is an exponential in logit space (Eq. 12). Also show

trajectories in frequency space.

to reach one of the absorbing boundaries, which have a logit frequency of order O(ln(N)).

Both time scales are known from the associated Bolthausen-Sznitman coalescent: Tc ≡ lnN

is the time to coalesce a random sample of two lineages and Tc ln lnN is the time scale to

coalesce all lineages in the population [2].

Fictitious selection can be most easily detected at the high-frequency end of the site

frequency spectrum (SFS). As with regular selection, the SFS near fixation solely depends

on the advection term, SFS(x) ∼ 1/v(x) as x→ 1, as if allele frequencies are only advected

and jumps are negligible. This leads to an uptick at high frequencies [29] that has the same

form as the SFS of a selected allele with frequency-dependent selection coefficient sfic(x).

The excess of common alleles relative to intermediate frequencies results from the advection

term slowing down as allele frequencies increase towards fixation.

It turns out that the joint action of fictitious selection and compensating jumps can be

best represented in logit space. The logit of the frequency, Ψ(t) ≡ logit(X(t)), continuously

switches between exponentially diverging deterministic trajectories via jumps drawn from a

jump kernel, which is a power law for small jump distances but exponentially decaying for

large jumps. The ensuing stochastic process is illustrated in Fig. 5.

Interestingly, the jump rate between two positions in logit space only depends on their
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FIG. 5: Illustration of the limiting allele frequency process, which is most easily described

for the log-ratio of the frequency of mutants and wild-types,

Ψ(t) = logit[X(t)] ≡ log(X/(1−X)). Trajectories in this logit space on average follow

exponentially diverging paths (gray lines). Switching between these paths occurs at a rate

ŵ(∆ψ), which depends (only) on the distance ∆ψ in logit space. Small jumps happen

frequently, in fact ŵ(ψ)→∞ as ψ → 0, but impactful jumps of order 1 or larger roughly

take a coalescence time Tc = lnN to occur. The advection force drives the ultimate

fixation or extinction of alleles, which takes a time of order Tc ln lnN .

distance (the kernel is stationary). This makes it possible to compute exactly for a general

time-dependent population size the probability density Ĝt(ψ|ψ0) that a trajectory will move

from logit position ψ0 to ψ in a time period t. This transition density is given by

Ĝt(ψ|ψ0) =
sin(e−τ(t)π)

2π [cos(e−τ(t)π) + cosh (e−τ(t)ψ − ψ0)]
, (13)

in terms of a rescaled time variable τ(t) =
∫ t

0
dt′ ln[N(t′)]−1, which simplifies to τ = t ln(N)−1

in the case of a constant population size. The scale factor ln[N(t)]−1 appearing in this time

conversion represents the coalescence rate of two lineages at time t. For a constant population

size, the time conversion simplifies to τ = t/Tc where Tc is the mean coalescence time of two

lineages. Using the transition probability in Eq. 33 it is possible to characterize a number

of interesting statistics, such as sojourn times or the site frequency spectrum, and directly

confirm a duality with the Bolthausen-Sznitman coalescent.
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FIG. 6: Sample paths for positive (left) and balancing selection (middle, right) for

N = 10−9. The positive selection coefficient was chosen to be s = 0.1. In the middle and

right panels, balancing selection coefficient was chosen below (a = 0.5/ log(N)) and above

threshold (a = 1.5/ log(N)), respectively.

B. Selection

Selection modifies the above dynamics by introducing a true bias (no jumps to leading

order). A mutation with frequency-independent fitness effect s leads to

∂t〈Ψ〉 = sfic + s =
〈Ψ〉
Tc

+ s⇒ 〈Ψ(t)〉 = [〈Ψ(0)〉+ sTc] exp

(
t

Tc

)
− sTc , (14)

where a constant coalescence rate T−1
c ≡ ln(N)−1 is assumed. From this expression, we

can see that genuine selection indeed competes with fictitious selection: The logit will on

average increase with time only if 〈Ψ(0)〉+ sTc is larger than 0, otherwise it will decay over

time. Mean sample paths are shown in

In fact, our detailed analysis below will show that the stochastic dynamics of a selected

allele starting at frequency ψ(0) is identical to the dynamics of a neutral allele properly

shifted in logit space. The exact statement is

G
(s)
t (ψ|ψ0) = G

(0)
t (ψ + sTc|ψ0 + sTc) (15)

in terms of a transition density G
(s)
t (ψ|ψ0) of a selected allele with selective advantage s.

Since the fixation probability of a neutral allele at frequency X simply is X, this mapping

implies

pfix(x0, s) =
x0e

sTc

1 + x0(esTc − 1)
(16)
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If the selected allele is initially rare, x0 � 1, we have pfix(x0, σ) ≈ x0e
sTc . So, a selective

advantage does increase the odds of fixation exponentially. But, because x0 = O(N−1) for

a single mutant, the fixation probability of newly arising beneficial mutations is very small,

unless sTc = O(lnN).

Finally, since the effective bias tries to push allele frequencies towards fixation, one may

ask what happens in presence of balancing selection opposing fictitious selection. So, let us

consider an allele under balancing selection modeled by a s(ψ) = −a(ψ − ψc) in the sense

of a Taylor expansion in logit space. The first moment in logit space now satisfies

∂t〈Ψ〉 = sfic − a(〈Ψ〉 − ψc) = aψc + (T−1
c − a)〈ψ〉 . (17)

The most important feature of this expression is a threshold phenomenon at ac = T−1
c . For

a < ac, balancing selection will not be able to maintain diversity. For a > ac both alleles

will be maintained in a balancing selection-draft equilibrium, with a wide variance if a is

close to ac.

IV. LIMITING STOCHASTIC PROCESS

I now show how the above phenomena follow from a detailed mathematical analysis

of the asymptotic allele frequency dynamics as the population size tends to infinity. The

resulting process belongs to the class of Lambda-Fleming-Viot processes, which are dual

to multiple merger coalescents in a similar way as Wright-Fisher diffusion is dual to the

Kingman coalescent. Although Lambda-Fleming-Viot processes [2, 3, 14] and extensions

involving selection and mutations [1, 10, 16, 18] have been extensively studied, closed-form

predictions for the transition density of allele frequency trajectories are still lacking. It turns

out that, upon formulating the process in terms of a jump-drift process, such closed-form

predictions can be obtained for the particular case of the Luria-Delbrück family size distri-

bution, which generates a Lambda-Fleming-Viot process dual to the Bolthausen-Sznitman

coalescent. Although somewhat technical in nature, the analysis will elucidate how fluctu-

ations, the sampling-induced bias and an actual bias combine to control the fate of alleles,

pointing to further theoretical directions that could be explored. Yet, readers not interested

in mathematical details may jump right to the Discussion section.

The larger the population size N the more deterministic is the resampling of allele fre-
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quencies, and the slower the ensuing stochastic process. Hence, to obtain an interesting

time-continuous stochastic process, it is natural to slow down the progression of time. It

turns out that a well-behaved, time-continuous, Markov process X(τ) is obtained in terms

of the time variable τ with differential dτ = dt/ log[N(t)] upon sending log(N)→∞. Since

1/ log[N(t)] proves to be the coalescence rate for two lineages, one can say that we measure

time in units of the inverse coalescence rate. For a constant population size, one simply has

τ = t/ log(N) = t/Tc, where Tc is the mean coalescence time of two lineages.

Any such time-continuous (sufficiently well-behaved) Markov process is defined by an

advection velocity, diffusion coefficient and jump kernel [19]. To state this triplet, we define

wN(x2|x1) to be the probability density to sample a frequency x2 if we start with a frequency

x1. In our new units of time, the rate w(x2|x1) of jumps from x1 to x2 follows from a scaling

limit of wN ,

w(x2|x1) ≡ lim
N→∞

ln(N)wN(x2|x1) . (18)

Advection velocity and diffusion coefficient are defined by rate of change in mean and vari-

ance,

V (x) ≡ lim
ε→0

lim
N→∞

ln(N)

∫
|x′−x|<ε

(x′ − x)wN(x′|x)dx′ (19)

D(x) ≡ lim
ε→0

lim
N→∞

ln(N)

∫
|x′−x|<ε

(x′ − x)2wN(x′|x)dx′ . (20)

In the SI, we determine these limits from an asymptotic analysis of wN and obtain

w(x2|x1) =
x1(1− x1)

(x1 − x2)2
(21)

V (x) = x(1− x) log

(
x

1− x

)
(22)

D(x) = 0 . (23)

The jump kernel may not be surprising as it can be obtained by just thinking about the

effect of individual jackpot events drawn from the descendant distribution: The denomina-

tor comes from the descendant distribution and the numerator represents the probability

that the jackpot occurs on one allele times a normalizing factor [32]. The advection term,

however, is perhaps unusual, as I have argued in the heuristic part of this study: It emerges

from the fact that mutants can typically sample deeper in the tail of the offspring number

distribution if they are in the majority (and vice versa). The advection term consequently

13

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 30, 2017. ; https://doi.org/10.1101/182519doi: bioRxiv preprint 

https://doi.org/10.1101/182519
http://creativecommons.org/licenses/by/4.0/


biases frequencies away from 50% and, consequently, “looks” like frequency-dependent se-

lection, with an effective selective coefficient σfic = lnNsfic(x) = log[x/(1− x)] in our scaled

units of time.

All aspects of the ensuing stochastic process are encoded in the probability density

Gτ (x|x0) that a neutral allele evolves from initial frequency x0 to a frequency x within

the time period τ . This transition density satisfies the differential equation

∂τGτ (x|x0) = −∂x [V (x)Gτ (x|x0)] + PV

∫ 1

0

dx′ [w(x|x′)Gτ (x
′|x0)− w(x′|x)Gτ (x|x0)] (24)

in terms of the frequency-dependent advection velocity v(x) and jump kernel w(x′|x) given

in Eq. 21. (PV denotes the Cauchy Principle Value). Equations of the type Eq. 24 are

some-times called differential Chapman-Kolmogorov equation [19], which we will adopt in

the following.

We have the important consistency check that the entire dynamics is neutral (X(τ) is

a martingale): Multiplying Eq. (24) with x and integrating yields an equation for the first

moment

∂τ 〈X〉 =

∫ 1

0

dx′V (x′)Gτ (x
′|x0) +PV

∫ 1

0

dx x

∫ 1

0

dx′ [w(x|x′)Gτ (x
′|x0)− w(x′|x)Gτ (x|x0)] .

(25)

The integrals on the right hand side can be performed easily in the limit τ → 0, so that the

propagator becomes a delta function Gτ (x|x0)→ δ(x− x0),

∂τ 〈X〉 = V (x0) + PV

∫ 1

0

dx′(x′ − x0)w(x′|x0) , (26)

= V (x0) + PV

∫ 1

0

dx′
x0 (1− x0)

x0 − x′
, (27)

= V (x0)− x0(1− x0) log

(
x0

1− x0

)
= 0 , (28)

So, we see that the advection term is necessary to balance the fact that the symmetric jump

kernel has a different extent for lowering the frequency than for increasing the frequency

unless the starting frequency is precisely at 1/2. Neutrality can be used a way to rationalizing

the advection term in Eq. 21 if one happens to know the jump kernel.

The analysis of moments can be pushed further. The initial rates of change of higher

moments directly yield the coalescence rates associated with the genealogical process. As

shown in the Appendix, these rates are precisely the ones of the Bolthausen-Sznitman co-

14

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 30, 2017. ; https://doi.org/10.1101/182519doi: bioRxiv preprint 

https://doi.org/10.1101/182519
http://creativecommons.org/licenses/by/4.0/


alescent, confirming the duality between the process X(τ) and the Bolthausen-Sznitman

coalescent.

But as with many processes that involve broad-tailed jump distributions, moments say

little about the typical behavior of frequencies, which depends on all moments. Fortunately,

the analysis massively simplifies if we describe the dynamics in terms of the log ratio of

the frequency of both alleles, ψ = log[x/(1 − x)] ≡ logit(x), also called the logit of x. The

corresponding propagator Ĝτ (ψ|ψ0) ≡ Gτ (x(ψ)|x(ψ0)) dx/dψ again satisfies a differential

Chapman-Kolmogorov equation

∂τ Ĝτ (ψ|ψ0) = −∂ψ
[
V̂ (ψ)Ĝτ (ψ|ψ0)

]
+PV

∫ ∞
−∞

dψ′ŵ (ψ′ − ψ)
[
Ĝτ (ψ

′|ψ0)− Ĝτ (ψ|ψ0)
]

(29)

in terms of a transformed advection velocity V̂ (ψ) ≡ ψ, being simply linear in ψ, and the

transformed jump kernel

ŵ (∆ψ) ≡ 1/2

cosh (∆ψ)− 1
=

1

4
sinh−2

(
∆ψ

2

)
, (30)

which depends on the jump distance ∆ψ = ψ′ − ψ.

Thus, the stochastic process has a simple description in logit space,

dΨ(τ) = Ψ(τ)dτ + dJ(τ) (31)

where it consists of linear deterministic advection combined with a pure jump process J(τ),

as illustrated in Fig. 5. The jumps are drawn from a stationary kernel (Eq. 30), which has

the property that small jumps ∆ψ � 1 occur at a power law rate ŵ(∆ψ) ∼ ∆ψ−2, diverging

as ∆ψ → 0, and big jumps ψ � 1 are exponentially suppressed ŵ(∆ψ) ∼ exp(−|∆ψ|)/2.

Because the logit ψ runs from −∞ to∞ and the jump kernel is symmetric with respect to

the jump displacement ψ−ψ′, the jump displacement has to vanish on average, 〈dJ(τ)〉 = 0.

This implies that the expectation of the random variable Ψ(t) is controlled just by the

fictitious selection force,

∂τ 〈Ψ〉 = 〈Ψ〉 ⇒ 〈Ψ(τ)〉 = 〈Ψ(0)〉 exp(τ) (32)

as was anticipated in Eq. 17.

Moreover, because the jump kernel only depends on the jump distance, and not the jump

start or end point separately, we can use a Fourier transform to solve Eq. 29: This converts
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the integral on the right-hand-side into a simple product, as shown in the SI Sec. VII. The

final result for the transition density is

Ĝτ (ψ|ψ0) =
sin(e−τπ)

2π [cos(e−τπ) + cosh (e−τψ − ψ0)]
(33)

in logit space, and

Gτ (x|x0) =
sin(e−τπ)

2πx(1− x) [cos(e−τπ) + cosh (e−τ logit(x)− logit(x0)]]
(34)

in frequency space. Note that the form of the propagator in Eq. 34 is the same as the one

found for a particular model of microbial adaptation [13, 24] if one replaces e−τ by αk, where

integer k denotes a discrete fitness class and the quantity α ≡ 1−1/q is related to the largest

fitness class q typically occupied. With this substitution, all findings for the dynamics of

neutral mutations from these studies carry over to the present population model, including

the site frequency spectrum and sojourn times.

A. Genuine selection

The allele frequency process admits a number of natural extensions. For instance, the

differential Chapman-Kolmogorov equation can be modified to include fluctuations in the

offspring number distribution, mutations and classical genetic drift, or it can be turned into

a backward equation, which allows the discussion of (certain) first-hitting-time problems.

Most importantly, we can now include selection which is notoriously hard to include in

coalescence processes.

The most obvious example for a non-neutral scenario is the rise of unconditionally benefi-

cial or deleterious mutations in a populations with skewed offspring number distributions. In

traveling wave models, this scenario arises effectively when a mutation occurs that (slightly)

changes the wave speed. Range expansions, for instance, are accelerated by the fixation

of mutations that increase the linear growth rate, the dispersal rate or by mutations that

broaden the dispersal kernel [21]. In models of adaptation, the rate of adaptation can be

increased through mutations that increase the mutation rate (by mutator alleles) or the

frequency of beneficial mutations (potentiating mutations). The analysis below also lends

itself to a discussion of balancing selection, which could model ecological interactions or

some generic fitness landscape roughness.
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A selective difference between mutants and wild-types modifies (to leading order) the

allele frequency dynamics in the same way as it affects Wright-Fisher diffusion, namely as a

part of the advection velocity[16, 20]

V (x) = x(1− x) [σ + σfic(x)] (35)

Here, I have introduced the selective difference σ = s lnN , which is not necessarily a small

quantity as it represents the action of selection accumulated over lnN generations, or the

coalescence time of two lineages.

In logit-space, including selection leads to the simple change

V̂ (ψ) = σ + ψ , (36)

showing that positive/negative selection is competing with the fictious selection term, σ̂fic =

ψ, if the mutant is in the minority/majority.

First, consider the case where selection is not frequency-dependent, σ =constant. In this

case, we can perform a simple shift in logit position to map the propagator Ĝ
(σ)
τ (ψ|ψ0) for

the non-neutral dynamics onto the neutral one,

Ĝ(σ)
τ (ψ|ψ0) = Ĝ(0)

τ (ψ + σ|ψ0 + σ) . (37)

In frequency space, we have

G(σ)
τ (x|x0) = G(0)

τ

(
xeσ

1 + x(eσ − 1)

∣∣∣∣ x0e
σ

1 + x0(eσ − 1)

)
. (38)

Equivalently, we can say that the stochastic variable

X(σ) ≡ Xeσ

1 +X (eσ − 1)
(39)

is a martingale. This implies that the fixation probability pfix(x0, σ) of a selected allele at

frequency x0 is the same as the neutral fixation probability of the corresponding X(σ),

pfix(x0, σ) =
x0e

σ

1 + x0(eσ − 1)
, (40)

as quoted in Eq. 16 using unscaled parameters.

We can further account for a simple form of balancing selection,

V̂ (ψ) = −α(ψ − ψc) + ψ , (41)
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where the term −α(ψ − ψc) acts as a restoring force trying to push the frequency to the

frequency value ψc (In the Results section, I used the unscaled variable a = α/Tc). The

terms αψc and −αψ can be viewed as the first two terms of a Taylor expansion of the

selection term in logit space.

The mean logit of the allele frequency now obeys

〈Ψ(τ)〉 =

(
ψ0 −

α

1− α
ψc

)
e

τ
1−α (42)

The deterministic dynamics of the mean has the fixed point ψ∗ = ψcα/(1 − α) but it is

repelling if α < 1 and attractive for α > 1. Thus, unless balancing selection is strong enough,

we still have a run-away effect: Diversity cannot be maintained in our model, although the

gradual loss of diversity now proceeds at a slower pace (fixation times are amplified by a

factor 1/(1− α)).

The Fourier transform of the associated propagator can be obtained as above via the

method of characteristics, yielding

φ(k, τ) =

[
sinh (πk)

sinh (πke(1−α)τ )

] 1
1−α

eτ−ike
(1−α)τ (ψ0−ψ∗) , (43)

but no simple analytical form of the Fourier back transform seems to exist for general α.

The stationary distribution for the attractive case, δ ≡ α− 1 > 0, is given by

Ĝ(α>1)(∆ψ) =

∫ ∞
0

(
sinh(πk)

πk

)− 1
δ cos [k∆ψ]

π
dk , (44)

where I used the short hand ∆ψ = ψ − ψ∗. The Fourier back integral can be evaluated

numerically. While a closed form does not seem to exist, one can show that the distribution

approaches a normal distribution with standard deviation
√
π/δ as δ → 0.

V. DISCUSSION

I described a number of phenomena driven by an apparent bias for majority alleles in

populations with a strongly skewed family size distribution (with a cutoff-dependent mean

family size). The majority allele is typically at an advantage compared to the minority allele

because it samples more often, and thus deeper, into the tail of the descendant distribution.

This leads to a larger apparent fitness of the majority type if the offspring number distribu-

tion has a diverging mean. The word typical is important here because the neutrality of the
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process is restored by untypical events by which the minority type hikes up in frequency –

while typically the rich get richer, the poor can occasionally turn the tide. A typical bias in

favor of the majority compensated by rare but large jumps in favor of the minority to be a

general signature of family size distributions with diverging means.

I have focused on the marginal case where the mean of the descendant distribution

diverges logarithmically, which emerges in population models that combine exponential

growth and stochastic mutations, or more generally jumps, as first highlighted by Luria

and Delbrück seminal work on spontaneous mutations [27]. Strikingly, the corresponding

sampling-induced bias for the majority type was found to take the exact form of a selection

term, with a strength proportional to the log ratio of the frequencies of both alleles and

inversely proportional to the logarithm of the population size. Since this term looks and

acts like selection but does not result from phenotypic differences, I have termed this force

“fictitious selection”.

Despite overall neutrality, allele frequency trajectories typically look biased (Fig. 6) es-

pecially if only short time series are available that do not sample the compensating jumps.

Hence, the possibility of a sampling-induced bias should be considered in attempts to infer

selection from allele frequency trajectories.

The bias towards the majority type shows up most clearly in logit-transformed frequency

variables, see Fig. 6, which tend to flow away 50% frequency as a result of fictitious selection.

The gradual loss of diversity results from a spontaneous symmetry breaking of theX → 1−X

symmetry. This is contrast to Wright-Fisher diffusion, where diversity loss results from

lineages colliding with the absorbing boundaries at X = 0 and X = 1.

In logit space, allele frequencies on follow exponentially diverging paths except for jumps

drawn from a symmetrical and stationary jump kernel, as illustrated in Fig. 5. The ensuing

stochastic process can be described mathematically by a jump-advection process (dual to

the Bolthausen–Sznitman coalescent) and, via a Fourier transform, integrated in time to

obtain exact expressions for the neutral transition density.

I have shown that genuine selection has to compete with fictitious selection to drive an

allele to fixation, which causes a low probability of fixation (compared to a Wright-Fisher

model with the same population size). I have also considered balancing selection opposing

the fictitious selection force. In this case, one finds an interesting threshold phenomenon:

Only if balancing selection is strong enough will the two types be able to coexist, thereby
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reaching an equilibrium frequency distribution. Since fictitious selection scales as ln(N)−1,

one can also say that polymorphisms are stably maintained at a given strength of balancing

selection if the population size is large enough.

Even though our initially discrete population model was characterized by two parameters,

an effective population size Ne and an effective generation time τg, we found that the time-

continuous allele frequency obtained for large Ne only depends on the product ln(Ne)τg = Tc,

which sets the coalescence time Tc of two lineages. This is true at least when the effective

population size is time-independent. In general, the allele frequency process depends on the

coalescence rate of two lineages, which can be a time-dependent quantity. So, if one wants to

study the likelihood of some observed allele frequency trajectories under the neutral allele

frequency process I have described, one needs merely needs to scale time by the correct

coalescence rate. Conversely, through fitting the model to data one could in principle infer

a time-dependent coalescence rate [37].

Mapping to models of adaptation and other types of noisy traveling waves: Even though

some marine species have a surprisingly skewed offspring number distribution [15], it is

unlikely to be of the type p(u) ∼ u−2 with logarithmically diverging mean, on which I

have focused in the present paper. But our analysis serves as a coarse-grained picture

of population models from which such an effective offspring number distribution emerge.

Large effective offspring numbers arise in populations driven out of equilibrium by growth,

adaptation or expansion: The earliest, the most advanced or the fittest ancestors have an

anomalously large number of descendants, following p(u) ∼ u−2, when integrated over an

appropriately chosen intermediate time scale. For instance, in traveling waves of the Fisher-

Kolmogorov type, this characteristic time is of the order lnN2
e microscopic generations,

which represents the time lineages need to diffusively mix within the wave tip consisting of

roughly Ne = K
√
D/r individuals (K, r and D are the carrying capacity, growth rate and

diffusivity). Hence, resampling from the offspring number distribution occurs once every

τg ∼ lnN2
e microscopic generations, setting the effective generation time τg in our discrete

population model. This implies that the coalescence time of Fisher-Kolomogorov waves

should scale as Tc ∼ τg lnNe ∼ lnN3
e , which indeed is by now well established [8].

The mapping to traveling waves provides another intuitive interpretation of the ficti-

tious selection force, as illustrated in Fig. 7. A sub-population of a neutral mutation at

low frequency X typically behaves like a traveling wave with lower population size and,
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hence, with a correspondingly lower speed. In all known “pulled” waves (those that pro-

duce genealogies in the Bolthausen-Sznitman class), the speed differential asymptotically

approaches [V (XN)− V ((1−X)N)] /V (N) → C(N) logit(X) as the population size is in-

creased, where C(N) is a population-size dependent function. This speed differential between

sub-population and the entire population will lead to a continual reduction in the frequency

of the subpopulation in the tip of the wave, described by a fictitious selection term of the

type identified in this study. Neutrality is preserved only by rare jumps whereby individuals

in the tip of the subpopulation move anomalously far ahead. These rare jumps also control

the diffusion constant of noisy traveling waves [6] and presumably in other types of pulled

waves as well.

In this traveling wave picture, it becomes also clear how genuine selection for mutants

arises: Suppose a population entirely consisting of mutants has a wave speed relation

V∗(N) = (1 + s)V (N) compared to the wave speed V (N) of the wild-type. In a situa-

tion where mutants are at frequency X, and wild-type at frequency 1 − X, one will then

have the speed differential [V∗(XN)− V ((1−X)N)] /V (N) → C(N) logit(X) + s. Range

expansions, for instance, are accelerated by the fixation of mutations that increase the lin-

ear growth rate, the dispersal rate or by mutations that broaden the dispersal kernel [21].

In models of adaptation, the rate of adaptation can be increased through mutations that

increase the mutation rate (by mutator alleles) or the frequency of beneficial mutations

(potentiating mutations).

Potential significance of our results on balancing selection: The results on balancing

selection may be useful to get some intuition on the coexistence of two eco-types in an

overall adapting population, as has been repeatedly found in evolution experiments even with

deliberately simple environments. We found that the stable maintenance of a polymorphism

requires balancing selection to be strong enough to overcome the fictitious selection force.

A balancing selection term may also serve as simple way to model some generic roughness

of the fitness landscape. Imagine, for instance, a high-dimensional fitness landscape where

continual adaptation requires to move along fitness plateaus, or even valleys, rather than

always following the steepest uphill direction. In such a landscape, following the steepest

uphill direction will generate large frequencies on the short run. On longer time scales,

however, these lineages will have a harder time to extend their uphill paths, which slows

their speed of adaptation. This leads to a negative frequency dependent term, which in a
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FIG. 7: The combination of a typical bias against the minority allele and rare

compensating jumps can be appreciated directly in models of adaptation. A subpopulation

of mutants at frequency X < 0.5 will typically fall behind the wild-type population

because of a speed differential ∆V between wild-type and mutants resulting from the

population-size dependence of the speed V (N) of adaptation. Neutrality is restored by

rare leap-frog events by which highly fit mutants overtake the most fit wild-types.

Taylor expansion sense could be captured by the term in Eq. 41. This, of course, is just

a hypothesis and should be backed up by evolution simulations in high-dimensional fitness

landscape.

Mapping to simple models of spin glasses: Since the Bolthausen-Sznitman process was

first identified in spin glass models, one may wonder what the above forward-in-time process

implies for these statistical mechanics problems. The significance can be appreciated at least

in very simple mean-field models of spin glasses or polymers in a random media, which can be

mapped onto traveling waves [12]. The increase in time corresponds to increasing the length

of the spin chains and of the polymer, respectively. The finite population size accounts for

some degree of correlations [6]. In the absence of such correlations, or in the transient phase

of short chains before correlations matter, the population of accessible chain conformations

is exponentially growing with chain length. This case of a changing population size also

follows the above analysis if one uses the time variable τ(t) =
∫ t

0
dt′ log[N(t′)]−1 ∼ log(t).

Importantly, the average of the logit variable, 〈Ψ〉, maps onto the difference in disorder-

averaged free energy between two parts of phase space. The run-away of this average,

〈Ψ(τ)〉 ∼ 〈Ψ(0)〉 exp(τ) (Eq. 17), then represents the phenomenon of ergodicity breaking:

an ever-increasing free energy barrier between phase space regions as the system tends to
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the thermodynamic limit.
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VII. APPENDIX: THE TRANSITION DENSITY

As I have pointed in the Main Text, the jump kernel for an offspring number distribution

p(u) ∼ u−2 is stationary in logit space, such that the jump rate from ψ to ψ′ only depends

on their difference ψ − ψ′. This pleasant feature enables the use of a Fourier transform

to convert convolutions involving the jump kernel into a simple product. I will use this

strategy here to solve the differential Chapman-Kolmogorov equation Eq. 29 to obtain the

probability density Gτ (ψ|ψ0) that a trajectory moves from ψ0 to ψ in the time period τ .

In terms of the Fourier transform

φ(k, t) =

∫ ∞
−∞

exp(−ikψ)Ĝ (ψ|ψ0) dψ (45)

Eq. 29 takes the form

∂tφ(k, t) = k∂kφ(k, t) + κ(k)φ(k, t) , (46)

where I have introduced

κ(k) =

∫ ∞
0

dψ 2ŵ(ψ) [cos(kψ)− 1] = 1− πk coth (πk) . (47)

We apply the method of characteristics to solve this linear partial differential equation:

Introduce k̂0(t) = k0e
−t and φ̂k0(t) ≡ φ(k̂0(t), t) and rewrite Eq. 46 as

dφ̂k0
dt

= κ
[
k̂0(t)

]
φk0(t) , (48)
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which is easily solved by

log

(
φ̂k0(t)

φ̂k0(0)

)
=

∫ t

0

κ
[
k̂0(t′)

]
dt′ (49)

= −
∫ k0(t)

k0

κ (k)
dk

k
(50)

= log

[
sinh [πk0(t)] k0

sinh [πk0] k0(t)

]
(51)

= log

[
sinh [πk0e

−t]

sinh [πk0] e−t

]
, (52)

Since G(ψ|ψ0) = δ(ψ − ψ0), we need to choose the initial condition φ̂k0(0) = φ(k0, 0) =

exp(−ik0ψ0), and obtain

φ(k, t) = φ̂ket(t) (53)

=
sinh [πk]

sinh [πket]
et−ike

tψ0 , (54)

A Fourier back transform yields the propagator in Eq. 33.

VIII. APPENDIX: DUALITY

In the main text, we have seen that the rate ∂τ 〈X〉 of change of the first moment of the

frequency X(τ) of a neutral mutation vanishes for the forwards-in-time process defined by

Eq.s 21, 24, as required by the neutrality of the process. I will now analyze the rate of change

of the higher moments: They are characteristic of the ensuing genealogical process, allowing

us to confirm the duality of the process X(τ) and the Bolthausen-Sznitman coalescent.

Multiplying Eq. (24) with xn and integrating yields

∂τ 〈Xn〉 = −
∫ 1

0

dxxn∂x [V (x)Gτ (x|x0)] + PV

∫ 1

0

dx xn
∫ 1

0

dx′ [w(x|x′)Gτ (x
′|x0)− w(x′|x)Gτ (x|x0)] .(55)

= nxn−1
0 v(x0) + PV

∫ 1

0

dx′(x′n − xn0 )w(x|x0) . (56)

In going from the first to the second line, I used limτ→0 Gτ (x
′|x0) = δ(x′ − x0) and, in the

first term, integration by parts. The remaining integral has an expression in terms of a

power series in x0,

∂τ 〈Xn〉 =
n∑
k=2

(
n

k

)
λn,k(x

n−k+1
0 − xn0 ) = −(n− 1)xn0 +

n∑
k=2

(
n

k

)
λn,kx

n−k+1
0 . (57)
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where the coefficients λn,k are given by

λn,k =
(k − 2)!(n− k)!

(n− 1)!
, (58)

Non incidentally, λn,k represents precisely the rate at which a given set of k ≥ 2 lineages in

a sample of n ≥ k lineages coalesce in the Bolthausen-Sznitman coalescent.

In fact, relation Eq. 57 shows directly that our process X(τ) describes the evolution

of a sub-population forward in time, whose ancestral lineages coalesce according to the

Bolthausen-Sznitman coalescent backward in time. This remarkable duality relation can

be intuitively understood as follows. Suppose we sample at random n individuals at time

τ +dτ . The probability that all sampled individuals are mutants is given by 〈Xn(τ +dτ)〉 =

xn0 + dτ ∂τ 〈Xn(τ)〉. On the other hand, we can imagine tracing the lineages by dτ backward

in time. We then have Xn(τ+dτ) = xn0 in the likely case that no coalescence occurred in dτ ,

Xn(τ+dτ) = xn−1
0 if two lineages coalesced, Xn(τ+dτ) = xn−2

0 if three lineages coalesced and

so on. (Multiple coalescence events can be ignored as dτ → 0 in the Bolthausen-Sznitman

coalescent). Using the probability dτ
(
n
k

)
λn,k that k lineages coalesce, the expected rate

∂τ 〈Xn(τ)〉 of change can thus be represented as a power series in x0, which yields Eq. 57.

IX. APPENDIX: BACKWARD EQUATION AND LINK TO LAMBDA-FLEMING-

VIOT GENERATOR

The generator of the differential Chapman-Kolmogorov equation Eq. 24 for the transition

density acts on the variables characterizing the allele frequencies in the final state. An

equivalent “backward”-equation can be obtained using the adjoined generator. In terms of

the kernel w (x′|x0) ≡ x0(1− x0)(x′ − x0)−2, this backward equation reads

∂τGτ (x|x0) = V (x0)∂x0Gτ (x|x0) + PV

∫ ∞
−∞

w (x′|x0) [Gτ (x|x′)−Gτ (x|x0)] dx′ ≡ LGτ

(59)

This backward equation can be derived from the identity Gτ+ε(x|x0) =
∫ 1

0
Gτ (x|z)Gε(z|x0)dz

in the limit ε→ 0. The operator L appearing on the right-hand-side is the adjoined operator

to the one on the right-hand-side of the forward equation Eq. 24 .

Our process Xt is dual to the Bolthausen-Sznitman coalescent and, as such, belongs to

the larger class of so-called Λ-Fleming-Viot processes. The generator LGτ of the above

backward equation is in the literature on Lambda-Fleming-Viot processes usually presented
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in a somewhat different form, in which the drift term is less evident. In our notation, the

standard formulation reads (see, e.g., [16, 20])

∂τGτ (x|x0) =

∫ 1

0

x0Gτ (x|x0 + (1− x0)λ)−Gτ (x|x0) + (1− x0)Gτ (x|x0 − x0λ)

λ2
dλ ≡ L̃Gτ

(60)

It is not immediately evident that the generators on the right-hand-sides of both equations

are identical, but they in fact are. I show how Eq. 59 emerges from Eq. 60. First note that

the integral on the right-hand-side of Eq. 60 can be rewritten as

L̃Gτ = (61)∫ 1

0

{x0 [Gτ (x|x0 + (1− x0)λ)− (1− x0)λ ∂x0Gτ (x|x0)] (62)

−Gτ (x|x0) + (1− x0) [Gτ (x|x0 − x0λ) + x0λ ∂x0Gτ (x|x0)]} dλ
λ2

(63)

which can be split into two parts,

L̃Gτ = A+B (64)

with

A = x0

∫ 1

0

Gτ (x|x0 + (1− x0)λ)−Gτ (x|x0)− (1− x0)λ ∂x0Gτ (x|x0)

λ2
dλ (65)

B = (1− x0)

∫ 1

0

Gτ (x|x0 − x0λ)−Gτ (x|x0) + x0λ ∂x0Gτ (x|x0)

λ2
dλ (66)

Next, we change the integration variables. In A, we use x′ ≡ x0 + (1 − x0)λ running from

x0 to 1. In B, we use x′ ≡ x0 − x0λ running from 0 to x0. These substitutions yield

A =

∫ x0

0

w(x′|x0) [Gτ (x|x′)−Gτ (x|x0)− (x′ − x0) ∂x0Gτ (x|x0)] dx′ (67)

B =

∫ 1

x0

w(x′|x0) [Gτ (x|x′)−Gτ (x|x0)− (x′ − x0) ∂x0Gτ (x|x0)] dx′ (68)

Obviously, adding both terms yields a single integral running from x′ = 0 to x′ = 1. Moreover

the last term can be split off as an advection term if the remaining integral is interpreted in

terms of the Cauchy Principle Value (PV),

A+B =PV

∫ 1

0

w(x′|x0) [Gτ (x|x′)−Gτ (x|x0)] dx′ − ∂x0Gτ (x|x0) PV

∫ 1

0

w(x′|x0)(x′ − x0) dx′

(69)

=V (x0)∂x0Gτ (x|x0) + PV

∫ 1

0

w(x′|x0) [Gτ (x|x′)−Gτ (x|x0)] dx′ = LGτ (70)
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establishing L̃ = L .

X. APPENDIX: RESAMPLING DISTRIBUTION

Here, I determine the distribution that describes how allele frequencies change from one

generation to the next in the large N limit, in which we can ignore the binomial sampling

error.

The resampling distribution is fully characterized by the probability wN(y|x)of the event

X(t + 1) = y (the allele frequency in generation t + 1 is y) given X(t) = x (the allele

frequency x in generation t). We can write this probability as

wN(y|x) =

〈
δ

(
M

M +W
− y
)〉

M,W

=

〈∫ ∞
−∞

dσ

2π
e−iσ(

M
M+W

−y)
〉
M,W

where the average 〈〉M,W is taken over the distributions of M and W given the initial fre-

quency x. Before we express these distributions, it is convenient to simplify the expression

by substituting σ ≡ s(M +W ),

wN(y|x) =

∫ ∞
−∞

ds

2π

〈
(M +W )e−is(M−yW )

〉
M,W

(71)

= ∂y

∫ ∞
−∞

ds

2πis

〈
e−isM(1−y)+isWy

〉
M,W

(72)

= ∂yWN(y|x) , (73)

where WN(y|x) is, up to a constant, the reverse cumulative distribution. Since M and W

are independently drawn, the average factorizes and we can write WN(y|x) as

WN(y|x) =

∫ ∞
−∞

ds

2πis
Φ

(M)
N (−s(1− y)|x) Φ

(M)
N (sy|1− x) (74)

where I introduced the characteristic function

Φ
(M)
N (s|x) ≡

〈
eisM

〉
M

of the distribution of M and used the fact that the distribution of W can be obtained from

the distribution of X by replacing x→ 1−x, which implies Φ
(W )
N (s|x) = Φ

(M)
N (s|1−x). Once

we have figured out the average Φ
(M)
N (s|x) for large N , wN can be determined by integration.

But obtaining the characteristic function is standard: Recall that M is the sum of XN

random variables, each distributed according to a x−2 power law. So, the characteristic func-

tion of M must for large N approach the one of the Landau distribution up to a stretching
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factor,

Φ
(M)
N (s|x) ∼ eiNxs log(is) . (75)

(A heuristic derivation of this expression is provided in Sec. XI). It is noteworthy that the

probability density corresponding to Φ
(M)
N (s|x) has a peak at Nx log(Nx) and the peak has

a width of order Nx. So as we increase the population size, the peak becomes increasingly

sharper relative to its position. This behavior is responsible for the asymptotic vanishing of

the diffusion coefficient (see below).

Inserting Φ
(M)
N (s|x) in Eq. 74 leads to

WN(y|x) =

∫ ∞
−∞

ds

2πis
eiNsx(1−y) log(is(1−y))−iNsy(1−x) log(−isy) (76)

=

∫ ∞
−∞

dσ

2πiσ
e−iσx(1−y) log(−iσ(1−y)/N)+iσy(1−x) log(iσy/N) (77)

where I substituted σ = −Ns.

Since log(ik) = log(k) + iπ/2 for k > 0 and the integral of the imaginary part of the

integrand vanishes, we can rewrite this integral as

WN(y|x) =

∫ ∞
0

dσ

πσ
e−

πσ
2

(y+x−2xy) sin

[
σy(1− x) log

(σy
N

)
− σx(1− y) log

(
σ(1− y)

N

)]
(78)

=

∫ ∞
0

dσ

πσ
e−

πσ
2

(y+x−2xy) sin [σ(x− y) log(N) + σy(1− x) log (σy)− σx(1− y) log (σ(1− y))](79)

The remaining integral can only be evaluated numerically, as shown in Fig. 3.

1. Large N limit

In the limit N → ∞, we can simplify the last integral in Eq. 79 further: The argument

of the sine function is typically dominated by the term multiplying ln(N), except if y is

very close to x in which case the other terms matter as well. In the large N limit, we can

therefore replace y by x in the subdominant terms inside the argument of the sine function,

leading to

WN(y|x) ∼
∫ ∞

0

dσ

πσ
e−

πσ
2

(y+x−2xy) sin

[
σ log(N)(x− y) + σx(1− x) log

(
x

1− x

)]
.(80)

The remaining integral reduces has an elementary expression in terms of an inverse tangent,

which to leading order in lnN is given by

WN(y = x+ ∆|x) ∼ π−1 arctan

[
log(N)

π

∆−∆N(x)

x(1− x) + ∆(1− 2x)/2

]
(81)
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in terms of the shift

∆N(x) =
x(1− x)

log(N)
log

(
x

1− x

)
. (82)

The probability distribution of the increments ∆ = y − x reads

wN(y = x+ ∆|x) = ∂∆WN(y = x+ ∆|x) (83)

=
2 log(N) (∆N + 2x(1− x−∆N))

π2(∆ + 2x(1− x−∆))2 + 4 log(N)2(∆−∆N)2
(84)

and approaches in the limit lnN →∞ a stretched and shifted Cauchy distribution

wN(y = x+ ∆|x) ∼ 1

πγN(x)

[
1 +

(
∆−∆N (x)
γN (x)

)2
] (85)

where ∆ is restricted to the interval (−x, 1− x) and γN(x) is the scale factor

γN(x) = πx(1− x) log[N ]−1 . (86)

It is now straight-forward to show that

w(y = x+ ∆|x) = lim
N→∞

log(N)wN(y = x+ ∆|x) =
x(1− x)

(x− y)2
(87)

v(x) = log(N)∆N(x) = x(1− x) log

(
x

1− x

)
(88)

D = O
[
log(N)−1

]
→ 0 . (89)

XI. APPENDIX: HEURISTIC CALCULATION OF THE LAPLACE TRANS-

FORM OF THE LANDAU DISTRIBUTION

Here, I provide a purely heuristic calculation of the Laplace transform FM
N (s|x) of the

sum M =
∑Nx

j=1 Uj

FM
N (s|x) ≡ 〈exp(−sM)〉P =

(
xN∏
j=1

∫ ∞
1

duju
−2
j

)
e−s

∑
j uj (90)

=

(∫ ∞
1

duu−2e−su
)xN

(91)

∼

(∫ s−1

1

du(u−2 − su−1)

)xN

(92)

∼ (1 + s log(s))xN (93)

∼ eNsx log(s) (94)
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Here, the variable ui stands for the offspring number of the ith individual. In the first line,

I integrate over the offspring number distribution g(u) = u−2 for u > 1. In the third line,

I replaced the upper integration interval by s−1 knowing that larger p values are cut off

by the decaying exponential. In the forth and fifth line, I assumed s � 1. Note that the

resulting Eq. 94 is a stretched version of the Laplace transform of the Landau distribution.

The characteristic function of U follows from an analytic continuation s→ is.
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