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Abstract 25 

Purpose:  Sedentary behavior has become a public health pandemic and has been associated 26 

with a variety of comorbidities including cardiovascular disease, type 2 diabetes, and some 27 

cancers. Previous studies have also shown that excessive amount of sedentary behavior is 28 

associated with all-cause mortality. However, no studies investigated whether patterns of 29 

sedentary and active time accumulation are associated with mortality independently of total 30 

sedentary and total active times. This study addresses this question by i) comparing several 31 

analytical ways to quantify patterns of both sedentary and active time accumulation through 32 

metrics of fragmentation of objectively-measured physical activity and ii) exploring the 33 

association of these metrics with all-cause mortality in a nationally representative US sample of 34 

elderly adults. 35 

Methods:  The accelerometry data of 3400 participants aged 50 to 84 in the National Health and 36 

Nutrition Examination Survey 2003-2006 cohorts were analyzed. Ten fragmentation metrics 37 

were calculated to quantify the duration of sedentary and active bouts: average bout duration, 38 

Gini index, average hazard, between-state transition probability, and the parameter of power law 39 

distribution. The association of these fragmentation metrics with all-cause mortality followed 40 

through December 31, 2011 was assessed with survey-weighted Cox proportional hazard 41 

models.  42 

Results: In models adjusted for age, sex, race/ethnicity, education, body mass index, common 43 

comorbidities, and total sedentary/active time , four fragmentation metrics were associated with 44 

lower mortality risk: average active bout duration (HR=0.72 for 1SD increase, 95% CI = 0.59-45 

0.88), Gini index for active bouts (HR = 0.75, 95% CI = 0.64-0.86), the parameter of power law 46 

distribution for sedentary bouts (HR = 0.75, 95% CI = 0.63-0.90), and sedentary-to-active 47 
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transition probability (HR = 0.77, 95% CI = 0.61-0.96), and four fragmentation metrics were 48 

associated with higher mortality risk: the active-to-sedentary transition probability (HR = 1.40, 49 

95% CI=1.23-1.58), the parameter of power law distribution for active bouts  (HR = 1.33, 95% 50 

CI = 1.16-1.52),  average hazard for durations of active bouts (HR = 1.32, 95% CI = 1.18-1.48), 51 

and average sedentary bout duration (HR =1.07, 95% CI = 1.01-1.13). After sensitivity analysis, 52 

average sedentary bout duration and sedentary-to-active transition probability became 53 

insignificant.    54 

Conclusion:  Longer average duration of active bouts, a lower probability of transitioning from 55 

active to sedentary behavior, and a higher normalized variability of active bout durations were 56 

strongly negatively associated with all-cause mortality independently of total active time. A 57 

larger proportion of longer sedentary bouts were positively associated with all-cause mortality 58 

independently of total sedentary time. The results also suggested a nonlinear association of 59 

average active bout duration with mortality that corresponded to the largest risk increase in 60 

subjects with average active bout duration less than 3 minutes. 61 

Key Words: objectively-measured physical activity, accelerometry, sedentary behavior, 62 

fragmentation, mortality, NHANES. 63 
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Introduction  70 

Sedentary behavior is a significant risk factor for a wide range of chronic diseases, 71 

comorbidities, and mortality [1–10]. As people age, sedentary behaviors increase [7,11,12]. 72 

However, little is known about the detailed changes in daily sedentary patterns that accompany 73 

these shifts.  A better understanding of temporal patterns of sedentary behavior in the 74 

characteristics of daily activities may clarify the role sedentary behaviors play in the progression 75 

of disability and disease, and thus provide more relevant public health recommendations 76 

regarding aging and diseases.  Recently, the proliferation of wearable accelerometers has 77 

provided researchers with high-resolution, continuous activity data.  As a result, accelerometer-78 

measured physical activity (PA) offers the potential for both exploring detailed patterns of 79 

sedentary behaviors and providing more accurate estimates of overall sedentary behaviors, which 80 

have traditionally been underestimated by subjective methods [13,14]. 81 

Frequently, studies quantify sedentary behavior via an absolute amount (total sedentary 82 

minutes per day) or proportion (percentage) of waking hours spent sedentary  [7,11,15,16]. 83 

Isotemporal substitution (ITS) model has been recently proposed to examine effects of replacing 84 

sedentary behavior with light PA (LiPA) and moderate-to-vigorous PA (MVPA) on weight, 85 

cardiovascular disease biomarkers, and mortality [2,17–19]. Compositional data analysis 86 

(CoDA) has been applied recently [20–22] to study the combined effects of time spent in LiPA 87 

and MVPA, sedentary behaviors and sleep while taking into account the codependence between 88 

those behaviors due to the finite time during a day. CoDA considers the time budget composition 89 

of the day without encountering issues of spurious correlations and collinearity. Both ITS and 90 

CoDA study the effect of allocation of the 24-hour budget between time spent in sedentary 91 

behavior, LiPA, MVPA and sleep and do not take into account how those total times have been 92 
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accumulated. Several methods have been recently proposed to quantify the patterns of sedentary 93 

time accumulation to better understand how these patterns affect health and functional status.  94 

Conceptually, these methods segment objectively-measured daily activity into alternating bouts 95 

of sedentary and active time and the patterns are quantified via summaries of duration of 96 

frequency of switching between sedentary and active bouts.  97 

From a statistical perspective, these methods can be grouped into two categories: 98 

nonparametric and parametric. Nonparametric approaches do not impose any distributional 99 

assumptions and summarize the distribution of bout durations via average duration, variability of 100 

durations, or describe properties of durations via hazard function. Paraschiv-Ionescu [23] used 101 

the area above the cumulative distribution function curve (AAC) of bout durations to study the 102 

relationship between chronic pain and PA. Mathematically, AAC is equivalent to the average 103 

bout duration. Healy et al. [5,24–26] and Chastin et al. [27] both proposed to use the reciprocal 104 

of average sitting or sedentary bout duration, which  is shown in this paper to be related to the 105 

sedentary-to-active transition probability. The Gini index, a normalized measure of the 106 

variability of durations of sedentary bouts, has been proposed and applied by Chastin [13]. Lim 107 

[28] proposed to use two non-parametric summaries, kar and kra, to quantify the frequency of 108 

switching from active to resting (sedentary) and from resting (sedentary) to active state and 109 

defined them as the constant level of corresponding hazard functions.  110 

Parametric approaches assume that bout durations follow a specific probability 111 

distribution, and then estimate the parameters that characterize the chosen distribution 112 

[13,23,27,29]. The most popular distribution used to quantify patterns of sedentary time 113 

accumulation is the power law distribution [13,23]. The parameter of power law has 114 

demonstrated stronger associations with clinical outcomes the total sedentary time in many 115 
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clinical populations [13,23,27]. Another choice is the exponential distribution, a commonly used 116 

parametric distribution for time-to-event data [30]. Nakamura [29] modeled the duration of 117 

active periods using the stretched exponential distribution. Paraschiv-Ionescu [23] compared the 118 

performance of several heavy tail distributions to model sedentary and active duration, including 119 

the lognormal and the double Pareto distribution (Pareto2).  120 

This work studies patterns of sedentary and active time accumulation with the 121 

fragmentation metrics outlined above using accelerometry data from 50 year and older 122 

participants of 2003-2006 National Health and Nutrition Examination Survey (NHANES). It 123 

compares the fragmentation metrics from both a practical and a statistical perspective and 124 

investigates whether these metrics are associated with mortality independently of total sedentary 125 

and total active time.  126 

 127 

Methods 128 

Study Populations and Measures 129 

The National Health and Nutrition Examination Survey (NHANES) is a stratified, 130 

multistage, probabilistic sample representative of the civilian non-institutionalized U.S. 131 

population, described in detail elsewhere [31]. Fragmentation metrics were calculated from 132 

NHANES 2003-2004 and 2005-2006 waves, in which NHANES recruited a representative sub-133 

sample aged 6 years and older to objectively evaluate PA using accelerometry. Since a survival 134 

analysis was conducted, subjects under the age of 50 years were excluded from the analysis to 135 

minimize potential biases induced by including younger individuals who were susceptible to 136 

genetic and/or atypical virulent diseases not related to habitual physical activity.  NHANES data 137 

have been linked to death records from the National Death Index through December 31, 2011. If 138 
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a participant is deceased, the duration of time in months between the NHANES examination and 139 

death is provided. Accidental deaths were excluded from the analysis. Demographic and 140 

comorbidity information that are available included, age, gender, race, education level, smoking 141 

status (never, former, current), drinking status (former or current drinker, heavy drinker, 142 

moderate drinker, non-drinker), body mass index (BMI; kg/m2), mobility difficulty (yes, no), 143 

diagnosis of diabetes, coronary heart disease, congestive heart failure, stroke, and cancer. 144 

Subjects with missing covariates were also excluded. In total, 3400 participants aged 50 to 84 145 

years who fulfilled the inclusion criteria remained in the analysis, where 1773 were from cohorts 146 

2003-2004, and 1627 were from cohorts 2005-2006. There were 542 reported deaths in the 147 

sample over an average of 6.4 follow-up years (7.2 for cohort 2003-2004, and 5.6 for cohort 148 

2005-2006).  149 

Physical activity was measured with the ActiGraph AM-7164 accelerometer (ActiGraph, 150 

LLC, Fort Walton Beach, Florida). The device was placed on an elasticized fabric belt, custom-151 

fitted for each subject, and worn on the right hip. Participants were instructed to remove the belt 152 

while sleeping, bathing, and swimming. The monitors were programmed to record activity 153 

counts in successive 1-minute epochs for up to 7 consecutive days. Non-wear time was defined 154 

as any interval of 90 minutes or longer in which all count values were 0 with allowance for up to 155 

two minutes of non-zero counts between 1 and 99 [32,33]. Subjects were included if they had at 156 

least one valid day of accelerometer data, defined as at least 10 hours of wear time and all 157 

NHANES generated quality flags for the data were deemed valid [34].  158 

Following previous work [35,36], minutes with activity counts < 100 are defined as 159 

sedentary, and minutes with activity counts ≥100 are defined as active without further 160 

distinguishing between light physical activity (LIPA) and moderate to vigorous physical activity 161 
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(MVPA). A sedentary or active bout is defined as being sedentary or active for at least one 162 

minute.   163 

Notations 164 

First, necessary notations are introduced. To define fragmentation metrics, the following 165 

notations are introduced: the duration of the longest active bout is denoted by DA, the number of 166 

bouts of length t is denoted by nA(t), the number of active bouts of length ≤ t is denoted by ��
�(t). 167 

Total active time can be represented as �� �  ∑ ����� · �
��

���
, and the total number of active bouts 168 

can be represented as �� � ∑ �����
��

���
.  Notations for sedentary bouts can be defined similarly, 169 

with all subscripts changed to “S”. When introducing and defining the fragmentation metrics, the 170 

subscripts are sometimes dropped since they are defined for both sedentary and active. For 171 

simplicity of exposition, most of the conceptual derivations below will assume continuous t. 172 

Necessary adjustments are required to account for the fact that observed durations are integers. 173 

In this context, the continuity assumption is reasonable as a minute-level epoch assumption may 174 

be relaxed and a much finer resolution can be considered for high-frequency accelerometry data.  175 

Nonparametric metrics 176 

We now review nonparametric fragmentation metrics. 177 

1. Average duration 178 

The simplest and the most intuitive fragmentation metric is the average bout duration. 179 

Some previous studies have demonstrated usage of average bout durations. Paraschiv-Ionescu 180 

used the area above the cumulative distribution function curve (AAC) of bout durations (which 181 

statistically is equivalent to average duration) to study the relationship between chronic pain and 182 

PA [23]. To study how “breaks” of sedentary was associated with metabolic risk, Healy et al. 183 
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considered the mean duration of the breaks [25].  Similarly, Lynch et al calculated the average 184 

length of active and sedentary bouts and studied their association with breast cancer biomarkers 185 

[37].  Average bout duration is denoted by μ and estimated as  186 

� � �

�
�  ∑ ����·��

���

∑ �����
���

  �Equation 1�  187 

respectively.  188 

2. Normalized variability 189 

Second most common method for nonparametrically summarizing a distribution is to 190 

estimate its variability. The Gini index was originally developed in econometrics to study the 191 

statistical dispersion of the distribution of incomes [38] and was used by Chastin et al [13] as a 192 

measure of the accumulation of sedentary time. Here, the Gini index is denoted by g, and defined 193 

and estimated as 194 

� �  ∑ ∑ ����������|��	��|
�
����

�
����


���
  (Equation 2) 195 

respectively. 196 

The Gini index can be seen as a measure of (absolute, not squared) variability of bout 197 

durations normalized by the average duration. It can be shown that g is bounded between 0 and 1 198 

[38]. When Gini index is close to 1, it indicates that total time is accumulated via a small number 199 

of longer bouts. Conversely, when Gini index is close to 0, it indicates that all bouts contribute 200 

equally to total time.  201 

3. Average hazard  202 

Lim et al. [28] proposed two metrics kra and kar to quantify the frequency of switching 203 

from active to resting (sedentary) and from resting (sedentary) to active states, respectively, and 204 
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studied their association with cognitive impairment in older adults [39]. Similarly, they adopted 205 

this concept to study sleep fragmentation and its effects on Alzheimer’s Disease (AD) [40,41].  206 

The estimation procedure focused on estimation of “transition probability” as a function of bout 207 

duration, applied smoothing, and identified a range of durations when the “transition probability” 208 

function flattened out. The constant values of the “transition probability” from those “constancy” 209 

ranges have defined kra and kar. 210 

From a statistical point of view, the “transition probability” function constructed by Lim 211 

et.al is exactly the hazard function widely used and studied in survival analysis. Modeling the 212 

hazard function is a principal approach for analyzing time-to-event data. The hazard function can 213 

be seen as the instantaneous probability of failure at time t given that the subject has survived 214 

until time t [30,42,43]. In this sense, the hazard is a measure of risk: the greater the hazard, the 215 

greater the risk of failure. Thus, in terms of dichotomous sedentary-active states, the hazard 216 

function can be used to study the probability of transitioning from sedentary to active or from 217 

active to sedentary state.  218 

There are a few statistical reservations and modeling limitations to directly use the 219 

proposal of Lim et al. [28]. First and the most important, their proposal does not provide a well-220 

defined estimand of interest. Second, the estimation of kra and kar tries to identify the “constancy 221 

range” of hazard function - a restrictive and hard-to-verify assumption. Third, the proposal 222 

employs LOWESS smoothing to identify the “constancy” range, thus, requires “ad hoc” 223 

decisions to make. To avoid these limitations, but stay close to the original proposal, we suggest 224 

the average hazard (AH) as the primary estimand to non-parametrically summarize the hazard 225 

function as a function of bout duration. Next, we outline our proposed procedure to estimate the 226 

AH. 227 
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For observed durations t1,...,tn, it is assumed that there are m unique values, which are 228 

denoted in increasing order by {��� , ��� , … , ���}. Then, hazard rates can be estimated at these 229 

distinct bout durations nonparametrically using the Nelson-Aalen approach [43] while treating 230 

all bout durations as non-censored (i.e, all active bouts will transition to sedentary bouts, and 231 

vice versa)  232 

������ � �����
�

�	������	�
�
  (Equation 3) 233 

where i = 1, …, m. Note that Nelson-Aalen approach does not estimate the hazard function at 234 

time points that are not observed. The AH is then estimated as 235 

�� � �



∑ ������� ,  (Equation 4) 236 

where D = {��� , ��� , … , ���}. Larger �
� indicates a higher frequency of transitioning from 237 

sedentary to active state; and larger �
�indicates a higher frequency of transitioning from active to 238 

sedentary state.  239 

4.  Transition probability 240 

Several studies have considered to use the reciprocal of average bout duration. To investigate 241 

the efficacy of a multicomponent intervention to reduce office workers’ sitting time, Healy et al. 242 

considered “sit to stand transition” which is defined as “number of sit-to stand transitions per 243 

hour of sitting” [24]. Chastin [27] studied the accumulation of sedentary time in older adults with 244 

obesity and low muscle strength by using the ratio of the number of sedentary bouts divided by 245 

the total sedentary time.  246 

Here the reciprocal of average bout duration is denoted by λ. It can be shown (see proof in S1 247 

Text) that λ is equal to between-states (i.e. sedentary-to-active or active-to-sedentary) transition 248 
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probability, namely 249 

�� �  ���� � Pr����� � 1|�� � 0� �Equation 5� 

�� �  ���� � Pr����� � 0|�� � 1�,   �Equation 6� 

where �� is the indicator of activity type (sedentary or active) at time epoch t, and 0 and 1 250 

denote sedentary and active states, respectively. Larger/smaller values of λ correspond to 251 

more/less frequent switching between the states and as a result, may indicate more/less 252 

fragmented activity pattern. It is important to note that larger/smaller values of λ also 253 

correspond to shorter/longer average bout duration. 254 

From a parametric point of view, if the bout durations follow an exponential distribution, 255 

frequently used to model time-to-event data [30], λ is exactly the parameter that fully defines 256 

the exponential distribution with the following cumulative distribution function (CDF): 257 

!��� �  1 "  #	�� , � $ 0 (Equation 7). 258 

Note that any parametric assumptions should be validated through an appropriate goodness-of-fit 259 

tests.  260 

Parametric metrics 261 

In this section, Power law, one of the most popular and widely used distribution to model 262 

bout duration, is discussed. 263 

The CDF of a Power law or Type I Pareto distribution is defined as 264 

!��� �  1 " � �

�
��

�	���, � $ ����, (Equation 8) 265 
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where  �	
� is the lowest bout duration, the scaling parameter α summarizes information about 266 

the pattern of accumulation of total sedentary or total active time. Larger values of α indicates 267 

that subject tends to accumulate sedentary (active) time with a larger proportion of shorter 268 

sedentary (active) bouts.  269 

The parameter α is typically estimated through maximum likelihood [44,45]. For the 270 

analysis of bout durations, the distribution is assumed to be discrete and the approximation to 271 

MLE estimator is used as follows   272 

%& � 1 ' �(∑ ln ��

��
��	�.�

�
��� *	� (Equation 9) 273 

[44]. Here �̂min is the lower bound and can be estimated by the minimum bout length. Most 274 

studies [13,46]  assess the goodness-of-fit of a power law through a visual assessment of the 275 

histogram of bout durations on doubly logarithmic plot. While Paraschiv-Ionescu employed a 276 

formal statistical goodness-of-fit test based on Anderson-Darling test [23].  277 

 278 

Table 1 summarizes all five metrics described above along with their estimation method 279 

and interpretation.  280 

 281 

Table 1: Summary of five-fragmentation metrics and their estimations 282 

Metrics Interpretation Estimation 
Nonparametric   

� Average duration �
� 

g Normalized variability ∑ ∑ ��������
�|�� " �
|�
����

�
���� 2�
�  

�
 Average hazard �� � 1
, - ����

���
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� Transition probability �
� 

Parametric   

� Power law distribution 

1 ' �(- ln ���̂��� " 0.5
�

���

*	� 

 283 

Statistical analysis 284 

Descriptive statistics were grouped by the survival status at the end of follow-up. For 285 

each subject, distributions of sedentary and active bouts were calculated by aggregating data 286 

from all bouts across valid days.  Marginal densities for each metric was plotted by the survival 287 

status (deceased/alive). Survey-weighted Cox proportional hazard models [47–49] were fitted to 288 

model mortality. All models were adjusted for the covariates and comorbidities described in the 289 

Measures subsection.  Two groups of models were fitted. Models in Group A studied the 290 

individual effect of each fragmentation metric on the relative risk of death by including one 291 

metric at a time. Models in Group B studied the individual effect of each metric on the relative 292 

risk of death independently of total sedentary/active times by including total sedentary time in 293 

the models with fragmentation metrics summarizing sedentary bouts and including total active 294 

time in the models with fragmentation metrics summarizing active bouts. For additional 295 

interpretability of the results, each fragmentation metric included in the models was standardized 296 

by subtracting population-level mean and dividing by population-level standard deviation, 297 

resulting in hazard ratios that correspond to one standard deviation change.  298 

 299 

Results 300 

Baseline characteristics 301 
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Descriptive statistics stratified by survival status at the end of follow-up period are 302 

presented in Table 2. All descriptive statistics are survey weighted to be representative of the U.S 303 

population. The average age of the participants was 64 years. Slightly more than half of 304 

participants were female (54%). Participants recorded as deceased tended to have greater daily 305 

sedentary time and lower daily active time. In addition, deceased participants tended to be older 306 

and have higher prevalence of comorbidities, mobility problems, and tobacco use. 307 

Table 2: Baseline characteristics for all 3400 subjects, and by the end of follow-up status 308 

Variables 
Status at end of follow up 

 
Total 

  Alive Deceased  
n 2858 542 3400 
Age (mean (sd)) 62.82 (9.62) 72.35 (10.16) 64.07 (10.21) 
Male  (%) 44.9 53.3 46 
Education (%)    
   Less Than High 
School 

30.8 48.7 33.1 

   High School 40.3 35.7 39.7 
   More Than High 
School 

28.9 15.3 27.2 

   Missing Education 0 0.3 0.1 
Race (%)    
   White 79.7 82.1 80 
   Black 9.5 10.1 9.5 
   Mexican 4 3.6 4 
   Other Hispanic 2.5 1 2.3 
   Other Race 4.3 3.2 4.2 
Alcohol History (%)    
   Never Drinker 13.3 14.1 13.4 
   Former Drinker 22.1 40.8 24.6 
   Current Drinker 60 38.7 57.2 
   Missing Information 4.6 6.4 4.8 
Alcohol Usage (%)    
   Moderate Drinker 53.2 31.9 50.4 
   Heavy Drinker 6.7 6.7 6.7 
   Missing Information 40 61.3 42.8 
Smoking (%)    
   Never Smoker 47.9 30.4 45.6 
   Former Smoker 35.7 48 37.3 
   Current Smoker 16.4 21.6 17.1 
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Mobility 
Difficulty(%) 

15.4 29.6 17.2 

CHF  (%) 3.8 17.3 5.5 
CHD (%) 6.7 16.2 8 
Cancer  (%) 15.4 28.5 17.1 
Stroke  (%) 4 13.6 5.2 
Diabetes (%) 12.8 25.5 14.5 
TS : total sedentary 
time 

532.68 (137.29) 623.81 (179.83) 544.57 (146.79) 

TA : total active time 341.08 (103.46) 247.40 (108.16) 328.85 (108.75) 
μS 6.39 (2.71) 9.12 (7.42) 6.75 (3.79) 
μA 3.89 (1.24) 3.05 (1.02) 3.78 (1.25) 
λS 0.18 (0.06) 0.14 (0.06) 0.17 (0.06) 
λA 0.28 (0.08) 0.36 (0.11) 0.29 (0.09) 
gS 0.61 (0.05) 0.63 (0.05) 0.61 (0.05) 
gA

 0.50 (0.06) 0.45 (0.08) 0.50 (0.07) 
�
S 0.17 (0.04) 0.15 (0.04) 0.17 (0.04) 
�
A 0.27 (0.08) 0.35 (0.11) 0.28 (0.09) 
αS 1.57 (0.07) 1.52 (0.08) 1.56 (0.07) 
αA 1.65 (0.07) 1.72 (0.10) 1.66 (0.08) 

 309 

Differences by survival status  310 

Density plots of all metrics and total sedentary and active times categorized by the 311 

survival status are shown in Fig 1. These plots along with Table 2 estimates marginal 312 

associations between the fragmentation metrics and mortality status. Participants in the deceased 313 

group (red) tended to have longer sedentary time (TS) and shorter active time (TA), longer 314 

average sedentary bout (μS) and shorter average active bout (μA) durations than participants in the 315 

alive group (blue). Deceased participants were also more likely to have larger gS  and smaller gA, 316 

indicating that their (normalized by the mean) sedentary bout durations are more variable while 317 

their (normalized by the mean) active bout durations are less variable. Considering the average 318 

hazard metrics, alive participants were more likely to transition from sedentary to active behavior 319 

(higher �
�), and deceased participants were more likely to transition from active to sedentary 320 
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behavior (higher �
�). Deceased participants also had smaller λS and higher λA that corresponded 321 

to smaller chances of switching from sedentary to active behavior and higher chances of 322 

switching from active to sedentary behavior. Similarly, deceased participants tended to 323 

accumulate total active time with shorter active bouts (larger αA), and accumulate total sedentary 324 

time with longer sedentary bouts (smaller αS). Another interesting observation is that while the 325 

distributions of μS and μA exhibit considerable skewness, λS and λA had near-symmetric 326 

population-level distributions, a highly desirable statistical property. Note also that because of 327 

the skewness in distributions, the population averages of μS and μA are quite different from the 328 

reciprocals of the population averages of, λS and λA. 329 

 330 

Fig 1. The estimated probability distribution functions of total sedentary time and 331 

sedentary fragmentation metrics (TOP) and total active time and active fragmentation 332 

metrics (BOTTOM) for deceased (red) and alive (blue) participants. 333 

 334 

Pairwise scatterplots and correlations of fragmentation metrics  335 

Fig 2 shows the pairwise scatterplots (bottom triangle) and correlations (upper triangle) 336 

between all metrics.  As expected, there was a clear parabolic association shape between μ and λ 337 

due to their definitions and estimation procedures. A parabolic relationship between μ and α was 338 

observed for both sedentary and active bouts. Meanwhile, λ and �
 were highly positively 339 

correlated with a linear trend (ρ = 0.84 for sedentary bouts, and ρ = 0.93 for active bouts); and λ 340 

and g were highly negatively correlated with a linear trend (ρ = −0.77 for sedentary bouts, and ρ 341 

= −0.92 for active bouts).  Moreover, λ and α had an almost linear relationship (ρ = 0.94 for 342 

sedentary bouts, and ρ = 0.97 for active bouts). The correlation between the total sedentary time 343 
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and the five sedentary bout fragmentation metrics were equal to 0.67, 0.57, -0.74, -0.74, -0.71. 344 

The correlations between the total active time and the five active bout fragmentation metrics 345 

were equal to 0.76, 0.74, -0.80, -0.81, -0.79. The shape and variability in the pair-wise 346 

scatterplots seem to indicate that fragmentation metrics may provide information about mortality 347 

beyond that of already provided by the total sedentary and total active times. In addition to 348 

revealing pairwise dependences between fragmentation metrics, Fig 2 allows to visually explore 349 

pairs of fragmentation metrics and their potential to separate deceased (red) from alive (blue) 350 

participants. 351 

 352 

Fig 2: Pairwise scatterplots (lower triangular) and correlations (upper triangular) for the 353 

fragmentation metrics for deceased (red) and alive (blue). Deceased group was plotted over 354 

the alive group. 355 

 356 

Cox PH models 357 

Table in S1 Table shows the results of the baseline models adjusted for all covariates and 358 

comorbidities described in Measures and adjusted for the total sedentary time (Model 1) or the 359 

total active time (Model 2). The results were consistent with those reported in previous studies 360 

[35,50,51] and demonstrate that one minute increase of total active time is associated with lower 361 

mortality risk (HR = 0.99, 95% CI = 0.99-1.00), and one minute increase of total sedentary time 362 

is associated with higher mortality risk (HR = 1.002, 95% CI = 1.001-1.002). 363 

The left panel of Table 3 shows the odds ratio based on 1 SD increase for models in 364 

Group A (unadjusted for total sedentary and total active time). All ten fragmentation metrics 365 

were significantly associated with the relative odds of mortality. Five fragmentation metrics had 366 

a negative significant association with the relative odds of mortality: μA(HR = 0.50, 95% CI = 367 
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0.42-0.60), gA (HR = 0.61, 95% CI = 0.55-0.69), �
� (HR = 0.80, 95% CI = 0.70-0.92), λS (HR = 368 

0.67, 95% CI = 0.57-0.79), and αS (HR = 0.69, 95% CI = 0.60-0.78). Conversely, the other five 369 

fragmentation metrics had a positive association with the relative odds of mortality: μS (HR 370 

=1.11, 95& CI = 1.05-1.16), gS (HR = 1.18, 95% 1.04-1.34), �
� (HR = 1.52, 95% CI = 1.39-371 

1.66), λA (per SD HR = 1.59, 95% CI=1.45-1.75), and αA (HR = 1.56, 95% CI = 1.42-1.72).  372 

Table 3: The results of fully adjusted Cox proportional hazard models (HR corresponding 373 

to 1SD increase)  374 

Metrics Group A  Group B  
 HR (95% CI) p values HR (95% CI) p values 
μS 1.11* (1.05, 1.16) 4.88e-05 1.07* (1.01, 1.13) 2.82e-02 
μA 0.50* (0.42, 0.60) 4.26e-13 0.72* (0.59, 0.88) 1.44e-03 
gS 1.18* (1.04, 1.34) 9.33e-03 1.00 (0.85, 1.18) 0.97 
gA

 0.61* (0.55, 0.69) 6.66e-16 0.75* (0.64, 0.86) 9.70e-05 
λS 0.67* (0.57, 0.79) 8.56e-07 0.77* (0.61, 0.96) 2.07e-02 
λA 1.59* (1.45, 1.75) <2e-16 1.40* (1.23, 1.58) 1.86e-07 
�
A 1.52* (1.39, 1.66) <2e-16 1.32* (1.18, 1.48) 9.04e-07 
αS 0.69* (0.60, 0.78) 4.05e-08 0.75* (0.63, 0.90) 1.95e-03 
αA 1.56* (1.42, 1.72) <2e-16 1.33* (1.16, 1.52) 2.85e-05 

 375 
*  Indicates significant association at 5% significance level. 376 

HR: hazard ratio associated with one standard deviation increase 377 

CI: confidence interval 378 

 379 

         The right panel of Table 3 shows the odds ratio based on 1 SD increase for models in 380 

Group B. Models in Group B additionally included total sedentary time in the models with 381 

sedentary bouts fragmentation metrics and included total active time in the models with active 382 

bouts fragmentation metrics. After the adjustment for the total sedentary/active times, four 383 

fragmentation metrics had a negative significant association with the relative odds of mortality: 384 

μA (HR=0.72, 95& CI = 0.59-0.88), gA (HR = 0.75, 95% CI = 0.64-0.86), αS (HR = 0.75, 95% CI 385 

= 0.63-0.90), λS (per SD HR = 0.77, 95% CI = 0.62-0.96), and four fragmentation metrics had a 386 
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positive significant association with the relative odds of mortality: μS (HR =1.07, 95% CI = 1.01-387 

1.13), �
� (HR = 1.32, 95% CI = 1.18-1.48), αA (HR = 1.33, 95% CI = 1.16-1.52), and λA (HR = 388 

1.40, 95% CI=1.23-1.58). 389 

Sensitivity Analysis 390 

Two sensitivity analyses were conducted. The first explored possible effects of reversed 391 

causality by excluding all deaths within the first year of follow-up. The second excluded days 392 

with wear time longer than 20 hours to eliminate any bias from days when subjects wore 393 

accelerometers during sleep.   394 

The first sensitivity analysis excluded deaths within the first year of follow-up. After the 395 

exclusion, 3334 (with 476 deaths) subjects remained and the same Cox PH models were re-396 

estimated. The results are shown in Table 4. The exclusion of the 1-st year follow-up deaths 397 

slightly attenuated results, but has not changed neither the significance or direction of most of the 398 

associations, with the exception of λS that became insignificant in the model of Group B. 399 

Table 4: The results of fully adjusted Cox proportional hazard models after excluding 400 

deaths within the first year of follow-up (HR corresponding to 1SD increase) 401 

Metrics Group A  Group B  
 HR (95% CI) p values HR (95% CI) p values 
μS 1.11* (1.07, 1.16) 7.18e-07 1.07* (1.02, 1.13) 9.11e-03 
μA 0.54* (0.45, 0.66) 1.76e-09 0.71* (0.57, 0.87) 1.30e-03 
gS 1.15 (0.99, 1.34) 0.056 0.98 (0.82, 1.17) 0.83 
gA

 0.64* (0.57, .73) 4.77e-13 0.74* (0.64, 0.86) 1.01e-04 
�
S 0.83* (0.73, 0.95) 8.67e-03 1.05 (0.90, 1.24) 0.52 
�
A 1.45* (1.32, 1.59) 1.48e-14 1.31* (1.16, 1.47) 7.37e-06 
λS 0.73* (0.62, 0.85) 4.92e-05 0.86 (0.69, 1.07) 0.18 
λA 1.51* (1.37, 1.67) <2e-16 1.39* (1.20, 1.60) 5.75e-06 
αS 0.73* (0.64, 0.84) 3.60e-06 0.82* (0.68, 0.99) 0.04 
αA 1.48* (1.34, 1.63) 7.66e-15 1.31* (1.13, 1.52) 2.97e-04 

 402 
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 The second sensitivity analysis excluded days with wear time longer than 20 hours. 403 

“Valid” days in the original analysis is defined based on the wearing time longer than 10 hour. 404 

However, there are numbers of subject-days that had more than 20 hours of wear time, with up to 405 

24 hours of wear per day. Including days with wear time longer than 20 hours might lead to 406 

counting sleep time as sedentary that in turn could result in biased estimated summaries for 407 

sedentary and active time. Therefore, for the second sensitivity analysis, valid day was defined as 408 

a day with wear time between 10 and 20 hours. The threshold of 20 hours has been previously 409 

used to identify “bed-time” periods in NHANES [52].  After exclusion of invalid subject-days 410 

from the original samples, 3362 (with 534 deaths) subjects remained and same Cox PH models 411 

where re-estimated. The results are shown in Table 5. Although, the direction of association and 412 

significance for majority of the metrics remained the same, both μS and λS became insignificant.  413 

Table 5: The results of fully adjusted Cox proportional hazard models after excluding 414 

invalid days with either too short or too long wear time (HR corresponding to 1SD 415 

increase) 416 

Metrics Group A  Group B  
 HR (95% CI) p values HR (95% CI) p values 
μS 1.11* (1.05, 1.16) 1.05e-04 1.05 (0.99, 1.11) 0.13 
μA 0.52* (0.43, 0.62) 1.19e-11 0.78* (0.65, 0.95) 1.24e-02 
λS 0.67* (0.58, 0.79) 5.70e-07 0.79 (0.62, 1.02) 0.07 
λA 1.54* (1.40, 1.70) <2e-16 1.30* (1.14, 1.48) 6.24e-05 
gS 1.21* (1.06, 1.38) 3.82e-03 1.05 (0.90, 1.22) 0.53 
gA

 0.63* (0.56, 0.71) 2.78e-14 0.78* (0.68, 0.90) 5.23e-04 
�
S 0.84* (0.74, 0.96) 8.64e-03 1.03 (0.91, 1.16) 0.68 
�
A 1.49* (1.36, 1.63) <2e-16 1.27* (1.15, 1.41) 2.03e-06 
αS 0.70* (0.61, 0.80) 3.15e-07 0.79* (0.63, 1.00) 4.99e-02 
αA 1.51* (1.37, 1.66) <2e-16 1.23* (1.08, 1.42) 2.62e-03 

 417 

Nonlinear effect of average active bout and average sedentary bout 418 

durations 419 
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Among all considered fragmentation metrics, average bout duration, μ, is probably the 420 

most straightforward to calculate and communicate. Below, we show that, when modeled via λ 421 

(=1/μ), the effect of μ on proportional HR is highly nonlinear and the largest risk increase is 422 

observed in subjects with average active bout duration less than 3 minutes. 423 

To illustrate our argument, we refer to Table in S2 Table that reports estimated effect for 424 

non-standardized fragmentation metrics with respective to 1 unit increase for μA and λA, which 425 

equal to -0.26 and 3.88, respectively. The top panel in Fig 3 shows the hazard ratios with respect 426 

to a 1 minute increase of average activity bout calculated based on μA, (dashed line) and λA (solid 427 

line). When estimated from the Cox-PH model with μA, the effect on the hazard ratio is constant 428 

and equal to e-0.27 = 0.77 (dashed line in the top panel). This implies that increasing average 429 

active bout by 1 minute always reduces hazard by approximately 23%, regardless of “original” 430 

average bout duration. On contrary, when considering the effect of increasing μA by 1 minute 431 

estimated in the Cox-PH model with λA, the nonlinear change is given by  432 

exp 33.88 6 �

�
��
"  �

�

78 � exp 6" �.��

�
��
���
7. (Equation 10) 433 

The solid black line on top panel of Fig 3 demonstrates this nonlinear effect on the hazard ratio. 434 

This shows that effect is drastically large and nonlinear when ��  is small, and as μA gets larger, 435 

the effect flattens out. For example, if �� � 1, then the hazard ratio corresponding to one-436 

minute-increase is 0.14, i.e. increasing from a 1-minute to 2-minute average active bout makes 437 

hazard almost 86% (or 7 times) smaller. However, if �� � 4, a one-minute increase in the 438 

average active bout reduces hazard ratio to 0.82, which translates to roughly 18% decrease. The 439 

observed non-liner effect is consistent with the density plots of average active bout durations 440 
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shown at the bottom panel of Fig 3. It also shows that participants with average active bout 441 

shorter than 3 minutes are at highest risk of non-surviving.  442 

Fig 3. Effect of the change in μA on hazard ratio. Top: Change in hazard ratios as a 443 

function of 1-minute change in μA, based on μA  (dashed) and λA (solid). Bottom: density of 444 

μA for deceased (red) and alive (blue).  445 

 446 

Discussion 447 

To our knowledge, this study is the first that demonstrated that patterns of sedentary and 448 

active time accumulation are strongly associated with all-cause mortality independently of total 449 

sedentary and total active time, respectively. The major findings suggest that patterns of active 450 

time accumulation have much stronger significant associations with mortality than patterns of 451 

sedentary time accumulation. Longer average duration of active bouts, a lower probability of 452 

transitioning from active to sedentary behavior, and a higher normalized variability of active 453 

bout durations were strongly negatively associated with all-cause mortality independently of 454 

total active time. Although, the main analysis showed that a longer average duration of sedentary 455 

bouts and a lower probability of transitioning from sedentary to active behavior were positively 456 

associated with all-cause mortality, these associations became non-significant during sensitivity 457 

analysis. A larger proportion of longer sedentary bouts remained positively significantly 458 

associated with all-cause mortality during both sensitivity analyses.  459 

The results for durations of active bouts suggest nonlinear associations of average active 460 

bout duration with mortality. The largest nonlinear risk increase was observed in subjects with 461 

average active bout duration less than 3.  These results are consistent with previous studies 462 

showing positive health effects of accumulating active time in prolonged active bouts [25,37], 463 
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but provide more insight in developing further individualized guidelines of physical activity.  464 

The results regarding sedentary bout duration may imply that subjects that accumulate their 465 

sedentary time through prolong sedentary bouts may benefit from breaking those long bouts. 466 

This is consistent with the emerging evidence that breaking up prolong sedentary time can have 467 

multiples positive effects including improvement of cardiovascular and cardiometabolic health 468 

[3,5,6,24,26,53,54]. 469 

       Methodologically, this work compared various approaches to quantify patterns of 470 

sedentary time accumulation through fragmentation of accelerometry measured physical activity. 471 

Active-to-Sedentary and Sedentary-to-Active transition probabilities, co-expressed as reciprocals 472 

of average active bout and average sedentary bout durations, are easily interpretable modifiable 473 

fragmentation metrics with insightful connection to other metrics of fragmentation, and stronger 474 

associations to mortality. Importantly, the use of λ results in a non-linear effect on hazard ratio 475 

that could potentially help with providing more subject-specific guidelines.  The parameter of 476 

power law distribution, α, has been a popular metric in a few recent studies on accumulation 477 

patterns of sedentary time [13,46,53].   Fig 2 demonstrates a close-to-linear relationship between 478 

α and λ with correlation coefficients of 0.94 for sedentary bouts and 0.97 for active bouts. 479 

Nevertheless, αS was the only sedentary time fragmentation metric that remained significant 480 

through the sensitivity analyses. This supports recent findings where among several sedentary 481 

fragmentation metrics only αS was significantly associated with biomarkers of glucose 482 

metabolism [53].   483 

 There are a few limitations in the present study. First, the minimum bout length was 484 

defined based on the Actigraph epoch duration of 1 minute.  The results may change, if the 485 

sedentary and active bouts are defined in a different way. Second, the threshold of 100 AC used 486 
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to define sedentary state is a widely accepted for the NHANES data. However, there is an on-487 

going debate on whether this threshold can be uniformly applied across all age groups and 488 

genders and whether such uniform thresholds induce bias in classifying sedentary behaviors. 489 

Therefore, it is imperative to fragmentation metrics as a function of different threshold values in 490 

future work. Third, the non-wear criteria may overestimate the total amount of sedentary time by 491 

including those have not complied with the protocol and wear the device during sleep time. 492 

Finally, this study is cross-sectional, therefore, all findings are associative, not casual. 493 

Fragmentation metrics can provide unique translatable insights into accumulation 494 

patterns for sedentary and active time and lead to the better understanding of associations 495 

between those patterns and health outcomes. 496 

 497 
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