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Abstract

Much research has focused on the deleterious effects of free-riding in public goods
games, and a variety of mechanisms that suppresses cheating behavior. Here we argue
that under certain conditions cheating behavior can be beneficial to the population. In
a public goods game, cheaters do not pay for the cost of the public goods, yet they
receive the benefit. Although this free-riding harms the entire population in the long
run, the success of cheaters may aid the population when there is a common enemy that
antagonizes both cooperators and cheaters. Here we study models in which an immune
system antagonizes a cooperating pathogen. We investigate three population dynamics
models, and determine under what conditions the presence of cheaters help defeat the
immune system. The mechanism of action is that a polymorphism of cheaters and
altruists optimizes the average growth rate. Our results give support for a possible
synergy between cooperators and cheaters in ecological public goods games.

Introduction 1

The sociology of microorganisms is an important and growing field of study [36], and 2

altruism and conflict, as applied to biofilm evolution, are important factors within its 3

domain [4, 37]. Public goods benefit every agent, but more so the free-riders that use 4

them without contributing. An example is siderophore production in bacterial 5

population [7]. Iron is an import and scare resource for bacteria living in hosts. Thus, 6

they produce siderophores that bind to iron in hemoglobin and other molecules to form 7

iron-siderophore complexes. The bacteria then absorb these complexes. Some bacteria 8

cheat, by not producing (or producing fewer) siderophores. They absorb the 9

iron-siderophore complexes produced by the community as a whole, without 10

contributing to the cost [3]. The lower operating cost allows cheating strains to 11

reproduce faster, dominate the population, and lead to an iron-deprived community. 12

There are several questions that arise from this social dilemma: how can altruists 13

survive with competing cheaters? What role do cheaters play within the infection? If 14

altruists and cheaters can coexist, how do they interact and evolve? 15

Ecological public goods games have been shown to facilitate cooperation where 16

population density depends on average payoff [18, 19]. Other mechanisms proposed to 17

facilitate altruism include kin selection [16,28], and reciprocal altruism [1]. 18

Experimental studies of altruistic siderophore production in Pseudomas aeruginosa have 19

shown that higher levels of cooperation are observed in higher relatedness communities. 20

More localized competition selects for lower levels of siderophore production. 21
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Furthermore there is a significant interaction between relatedness and the scale of 22

competition, with relatedness having less effect when the scale of competition is more 23

local [15]. Studies of P. aeruginosa have shown another solution, metabolic constraints 24

on social cheating. Quorum sensing can control both these public goods (extracellular 25

proteases) and private goods (cellular enzymes) [10]. Additionally, it is well known that 26

space can facilitate cooperation and coexistence of cooperators and defectors. This 27

effect has been shown in both theoretical models [31] and in experimental bacterial 28

populations [21,30]. A review of altruism in microbial communities that explore a 29

collection of these mechanism and issue is found in [9]. 30

A variety of interesting pathogen-immune system models has been explored in the 31

literature [14,23,24,27]. Here, we extend the model in [24] by the incorporation of a 32

public goods game, and interpret their model as a general host-pathogen model. We 33

explore both linear and Monod public good growth function, and adapt two other 34

canonical two-species growth models into our models that are adaptations of the logistic 35

equation [8]. Depending on the specific growth source used by the microbes, empirical 36

data either supports a linear or Monod growth rate function [26]. We find that the 37

models employing the Monod function exhibit a synergy between altruists and cheaters 38

where the public good is more efficiently used to increase the growth rate of the entire 39

population of pathogens. With this effect, the pathogens can overcome the immune 40

response of the host whereas wholly altruistic or cheating populations cannot. 41

Methods 42

Let xa and xc be the numbers of altruists and cheaters, respectively, X = xa + xc be 43

the total pathogen population, and y be the number of immune system effectors. The 44

growth rate of the cheater pathogens, rc, is the sum of the basal growth rate, β, and the 45

benefit from the public good, g(xa/X), which is a function of the proportion of the 46

population that are altruists. We explored two public good growth functions, linear (1) 47

and Monod growth (2): 48

g
(xa
X

)
=
αxa
X

, (1)

g
(xa
X

)
=

αxa/X

Kα + xa/X
, (2)

where α is the maximum growth rate provided by the public good, and Kα is the half 49

velocity constant. The growth rate for altruists is ra = rc − c, where c is the cost of 50

producing the public good. Let K be the carrying capacity and r̄ = (raxa + rcxc)/X be 51

the average rate of growth. In the absence of an immune response and other 52

complications, it is standard to describe the growth and competition of bacteria by 53

logistic dynamics [8]. Here we separately consider three models in this class: r/K 54

selection (5), weak selection (6), and interspecific competition (7). 55

ẋa = raxaFa(xa, xc), (3)

ẋc = rcxcFc(xa, xc), (4)

Fi(xa, xc) =

(
1− X

K

)
, (5)

Fi(xa, xc) =

(
1− X

riK

)
, (6)

Fi(xa, xc) =

(
1− r̄X

riK

)
. (7)
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Parameter/
variable

Value Definition

α 1.3088 Benefit from the public good
β 1.636 Basal growth rate
δ 0.3743 Death rate of immune agents
η 20.19 Activation parameter
K 500 Carrying capacity
Kα 0.5 Monod parameter
µ 0.00311 Inactivation rate
ρ 1.131 Activation parameter
σ 0.1181 Birth rate of immune agents
c 0.818 Cost to altruists
ra — Altruist growth rate
rc — Cheater growth rate
r̄ — Average growth rate
xa — No. of altruists
xc — No. of cheaters
X — Total pathogen population
y — No. of immune agents

Table 1. Summary definitions of parameters and variables.

In r/K selection (5), the success of one phenotype over the other is determined by 56

both the growth rates and carrying capacities. There is a trade-off between ri and K: 57

when close to the carrying capacity, K determines selection. And, when the population 58

is small, ri determines selection. In weak selection (6), the population is limited by riK, 59

and this trade-off does not exist. Finally, in interspecific competition (7), the 60

phenotypes compete against one another for resources. A phenotype with a larger 61

growth rate will curtail the carrying capacity of its competitor. 62

In our model, the immune system does not differentiate between cooperating and 63

free riding pathogens, and thus ẏ depends only on X. The immune system’s effectors, 64

which kill foreign cells, are produced at a basal rate, σ, and die at a rate, δ. The 65

pathogen free host thus has an equilibrium y∗ = σ/δ. In the presence of a pathogen, the 66

production of immune agents is determined by the nonlinear activation function, 67

ρyX/(η +X), and immune agents are exhausted at a rate, µX. The immune system 68

attacks the pathogen, and reduces their number at a rate, xiy. The dynamics of this 69

system are governed by the following system of equations: 70

ẋa = raxaF (xa, xc)− xay, (8)

ẋc = rcxcF (xa, xc)− xcy, (9)

ẏ = y

(
ρX

η +X
− µX − δ

)
+ σ. (10)

This model is based on [24], where it was shown to agree with empirical observations. 71

Here we have generalized it to include bacteria with two kinds of social behavior. A 72

summary of the parameters, variables, and their values (from [24]) can be found in 73

Table 1. We have chosen the values of α, Kα, and c in Table 1 to highlight the 74

synergistic behavior of cheaters and altruists, since the synergy is not present 75

throughout parameter space. 76
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Results 77

Here we discuss the qualitative dynamics of immune system plus social and anti-social 78

bacteria, i.e. the equilibria, stability, and invariant surfaces. We follow these analyses 79

with simulation results that depict the synergy between altruists and cheaters, and the 80

effects of different parameters on this synergy. 81

At equilibrium, we have ẋa = ẋc, which implies that (rc − c)Fa = rcFc. In all three 82

models, this reduces to rc− c = rc. Thus, assuming that c > 0, there are no polymorphic 83

pathogen equilibria. 11 and 12 are the equilibria at these monomorphic populations for 84

r/K selection and inter-specific competition, and weak selection, respectively; 85

xi = K

(
1− y

ri

)
, (11)

xi = K(ri − y), (12)

with ra = β + g(1)− c and rc = β (note that since r̄ = ri in a monomorphic population 86

of phenotype i, 11 applies for both r/K selection and interspecific competition). Since 87

we assume that the public good is beneficial to the pathogens in a monomorphic 88

altruistic population, g(1) > c =⇒ ra > rc, it can be easily seen by 11 and 12 that all 89

monomorphic altruist equilibria have higher pathogen counts than their monomorphic 90

cheater counterparts. However, in a polymorphic population, 91

rc = β + g(xa/X) > β + g(xa/X)− c = ra. Since the growth rate for cheaters is always 92

greater than the growth rate of altruists in such a case, there are no stable 93

monomorphic altruistic equilibria. 94

The model has four fixed points: the pathogen free state, a suppressed population of 95

pathogens (i.e. corresponds to a dormant state); a very large population of pathogens 96

(i.e. bacteria take over the host); and a saddle point (i.e. the bacteria are populous, but 97

have not taken over the host). The pathogen free state is connected to the saddle via a 98

stable manifold. This stable manifold, a separatrix, divides phase space into regions 99

where the pathogens succeed and fail. The unstable manifold spirals into the suppressed 100

state on one side of the separatrix, and connects to the success state on the other side. 101

Qualitatively, this picture is the same as in [24] with the addition of the altruist 102

dimension. 103

Fig. 1 shows the regions of suppression (gray) and success (white) of pathogens for 104

all the models we study. The goal here is to check whether a certain initial population 105

of microbes (xc, xa) succeeds in defeating the host. The line xa = X − xc (with 106

constant X) is overlaid to these plots to show whether changing the composition of the 107

population—without changing the total number of bacteria—results in a difference in 108

the fate of the disease. 109

Interestingly, in some cases we observe that population compositions with an 110

intermediate number of cheaters can place the population in the successful region, while 111

too little or too many cheaters jeopardize the population. In other words, while neither 112

pure cooperation nor pure cheating leads to success, a mixture of the two does. We 113

observe this phenomenon in bacteria growing according to the Monod law, but not for 114

linear growth. 115

We can explain this phenomenon by examining the equations for the change in the 116

total population, Ẋ, r/K selection and interspecific competition (13), and weak 117

selection (14); 118
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Ẋ = r̄X

(
1− X

K

)
− yX, (13)

Ẋ = r̄X − X2

K
− yX. (14)

In linear growth, r̄ = β + (α− c)xa/X, which is an increasing function with respect to 119

xa (given α > c). Thus, 13 and 14 are increasing with respect to xa. Therefore, the 120

impact of decreasing altruists in favor of cheaters is a decrease in the total population’s 121

rate of growth; cheaters harm the population as a whole. However, for Monod growth, 122

we have the function 123

r̄ = β +

(
α

Kα + xa/X
− c
)
xa
X

(15)

with the assumption that α/(Kα + 1) > c. With respect to the proportion of altruists, 124

this function has a local maximum at 125

xa
X

=

√
αKα

c
−Kα >

√
Kα(Kα + 1)−Kα > 0. (16)

Figure 1. A mixed population of altruists and cheaters minimizes the number of
pathogens required to overcome the immune system when growth from the public good
behaves as a Monod function (d-f). However, this behavior is not observed when the
growth function is linear (a-c). The white and gray regions are where the pathogens
overcome and are suppressed by the immune system, respectively. The black curves are
the isoclines, xa = X − xc, where X = 10 in b and e, and X = 40, otherwise.
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Therefore, unlike the linear growth case, the optimal growth rate will occur in the 126

presence of cheaters when
√
αKα/c−Kα < 1. 127

Figure 2. Comparison of success of a 5% cheater population vs. a pure altruist
population for varying parameters α, Kα, and c. The gray scale measures the difference
between the number of pathogens required to overcome immune suppression for the
5% cheater, X, vs. pure altruist populations, X ′, divided by X. The curves define the
envelope in which the optimal growth rate occurs for xa < 1 and the pure altruist Monod
growth rate is greater than c. Where a parameter is not varied, its value is from Table 1.

Fig. 2 shows the results for simulations where we varied the parameters, α (the 128

maximum growth rate from the public good), Kα (the half velocity constant), and c 129

(the cost of public good production). We ran simulations for populations of size X with 130

5% of the population cheaters. We incrementally increased X until the pathogens 131

succeeded. We then simulated a complete altruist population of size X ′ = X. If this 132
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population was suppressed, we increased X ′ until it succeeded, and colored the graphs 133

by magnitude (X ′ −X)/X. 134

Figure 3. Comparison of varying benefits from public good growth rates (α). All curves
are in decreasing order from top to bottom of the graphs with increasing α (α = 1.5, 1.75,
2, and 2.25). As α increases, the behavior of the model approaches that of linear growth,
i. e. a monomorphic altruistic population is optimal with respect to the pathogens.

We observe that for sufficiently large α and small c, cheaters do not benefit the 135

population. In these cases, the public good is cheap and efficacious. However, within 136

the region where we observe cheater-altruist synergy, increasing α intensifies the 137

synergistic effect except with respect to c in interspecific competition. Figure 3 explains 138

this effect. Note the sharp drop in the separatrix in Figure 3; a small proportion of 139

altruists is beneficial to the pathogens. However, the remainder of the curve shows 140

malign effects of increasing the proportion of cheaters. As we increase α, this 141

phenomenon disappears, and we observe the same qualitative behavior as linear growth. 142

Figure 4. Comparison of the separatrices of a polymorphic population of two types,
altruists and cheaters, at initial condition xa/X (solid curves), and a monomorphic
population with growth rate 15 (dashed curves). Below the curves, the immune system
suppresses the pathogens, and above them, it does not. For low altruism, the two-type
case outperforms the mixed type. And, for high altruism, the mixed type is optimal.

Kα is negatively correlated with cheater success (Figure 2). A low half velocity 143

constant implies that the marginal benefit from the public good rapidly decreases as the 144

proportion of altruists increases. As such, cheaters permit a more efficient utilization of 145

the public good in the population. In the linear growth case, this effect cannot occur 146

because the higher the proportion of altruists, the greater the total population’s growth 147
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rate. 148

We compared the separatrices for the Monod models of a population of the two 149

phenotypes and a population with a single phenotype with an intermediate production 150

of the public good in Figure 4. We plotted the population size required to overcome the 151

immune system given an initial proportion of altruists xa/X for the two type case, and 152

a single type with growth rate 15. When altruism is low, the two-type population is 153

optimal for the pathogens. Conversely, when altruism is high, the mixed type 154

population is optimal. If xa/X <
√
αKα/c−Kα, then the mixed type will outcompete 155

the two type case. Since, xa/X → 0 as t→∞ and 4 is a decreasing function from 0 to 156√
αKα/c−Kα in the two type case, while the growth rate of the mixed type will not 157

decrease. 158

Discussion 159

Previous studies support the hypothesis of frequency dependent selection among 160

cheaters and altruists [12,25,32]. Altruists are less fit in the presence of cheaters, who 161

outperform them. Further, average fitness is negatively correlated with the proportion 162

of cheaters, which reduces virulence [17,33]. Our linear growth model qualitatively 163

matches these empirical results. Given these observations, the question arises as to how 164

altruism can be facilitated. However, less discussed, is why both cheating and altruism 165

are prevalent, which is relevant since the prevalence of cheaters may be common [13,35]. 166

Much research has explored mechanisms by which altruism can be facilitated, yet 167

not how cheating can indirectly aide the population. Our approach was to explore how, 168

in host-pathogen ecology, if cheaters may be necessary for pathogens to overcome the 169

host’s immune system. Our problem is essentially a threshold Volunteer’s 170

Dilemma [2,11], where only if the population’s public good production is sufficient, the 171

group as a whole benefits. The Volunteer’s Dilemma has been studied with respect to 172

punishment [29], shared rewards [6], voluntary reward funds [34], and asymmetric player 173

strength [20]. Additionally, multilevel selection can favour a polymorphism of 174

cooperators and defectors by maximizing the group donation level when the benefit 175

function is sigmoid [5]. We have shown that although cheaters out-compete altruists in 176

a mixed population, such a population can be more virulent than a pure population of 177

altruists or cheaters. This unexpected phenomenon occurs due to the Monod growth 178

nature of the public good, as in the case of iron facilitated growth in P. aeruginosa [22]. 179

The optimal total population growth rate may be at a mixed population. Although this 180

harms altruists relative to cheaters, it may permit the pathogens to resist suppression 181

by the immune system. Future work that studies the epidemiology of such a system 182

would be interesting. A mixed population is required to overcome the immune response, 183

during which the relative number of cheaters is increasing. However, if the carrying 184

capacity for altruists were to be larger than for cheaters, than at large population sizes, 185

the relative fitness advantage of cheaters may vanish. In this interplay, cheaters are r 186

selection and altruists K selection phenotypes. 187

This research did not consider associativity amongst the bacteria, which may come 188

about due to spatial effects. Future work employing associativity would be interesting, 189

since the degree of associativity may have surprising effects. For example, high 190

associativity between similar phenotypes would facilitate cooperation. However, this 191

would reduce the optimization of the growth rate that occurs with cheaters in the 192

Monod case. 193
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