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Ten years after the first observations of a ribosome sixty years ago by G. E. Palade 
and P. Siekevit (1), theoreticians elaborated the first models on the ribosomal 
translation mechanism using tools coming from statistical mechanics and physical 
chemistry (2-4). Simultaneously, mathematicians like S. Ulam and J. Conway 
simulated large automata networks and remarked that with simple rules, they 
obtained complex numerical behaviours similar to those observed in biology, like 
motion and division (5, 6). Then, biologists defined the notions of genetic code 
ancestor and proto-ribosome, regularly used after by numerous authors (7-27) until 
some recent papers on the evolutionary biology (28, 29). We will give in the following 
the essential of three papers treating this topic in the wider framework of genetic 
code and biological boundaries (30-32). 
 
The genetic code as optimizing a variational principle 

 
The genetic code consists in dispatching 64 triplets made of 3 letters representing 
purine bases – A for Adenine and G for Guanine - and pyrimidine ones – U for Uracil 
and C for Cytosine – into 21 synonymy classes. Each class can contain between 1 
and 6 triplets, the 20 classes corresponding to the 20 amino acids (except for one 
class containing only 1 triplet, which corresponds either to the amino acid Methionine 
or, if this triplet initiates a sequence of messenger RNA (mRNA), to a “start” 
punctuation symbol), plus one class corresponding to the “end” punctuation symbol 
finishing the mRNA sequences. It has been proved that stereo-chemical bonds can 
favor a non-permanent reversible link between amino acids and triplets of their 
synonymy class (33-35), despite some criticisms (36). 
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An archetypal circular RNA structure called AL (for Archetypal Loop) exists obeying 
following opposite constraints, i.e., satisfying a min-max problem: 

- to be as short as possible, 
- to present in its sequence at least one triplet corresponding to each amino 

acid, in order to serve as “matrimonial agency” favoring the vicinity of any 
couple of amino acids present in the original soup, close to the circular 
RNA AL, and able to form a strong peptide bond (i.e., the covalent 
chemical bond formed by two amino acids, when the carboxyl group of one 
reacts with the amino group of the other) between them, in order to initiate 
the peptide building, such as an ancestral ribosome. For satisfying this 
constraint, the circular RNA AL must contain at least 20 triplets. 

By solving the min-max problem above, we find the structure of Fig. 1 (11, 13, 18, 
21). This structure can be obtained in a circular or hairpin form and could be 
considered as the ancestor of the present ribosomes. 

Fig. 1. The AL structure is given in (a) circular and (b) hairpin forms. From (37), we 
have extracted the triplets which are present (c) in the sequence of the structure AL 
(3’- 5’) and have the maximum frequency in a set of tRNAs from 29 selected 
organisms with the corresponding standard deviations (red ellipses), or in the reverse 
sequence C’ (5’- 3’)  (red dotted ellipses), or in the anti-strand sequence C’’ (blue-red 
ellipses). The 22 AL triplets (with overlap) correspond to all the synonymy classes (d). 
 
It is possible to show (30-32) that the codon repartition of the genetic code satisfies a 
variational principle equalling the normalized mean error M due to mutation between 
2 synonymy classes of frequency f and (1-f) respectively and the normalized 
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information I of the Bernoulli distribution B(f,1-f) defined by: 
   

M = M / ∫01M(x)dx and I = I / ∫01I(x)dx, where 
 

M(f)=f(1-f)+(1-f)f, I(f)=-[fLogf+(1-f)Log(1-f)], ∫0
1M(x)dx=∫012x(1-x)dx=[x2-2/3x3]01=1/3, 

∫0
1I(x)dx=∫01[-xLogx-(1-x)Log(1-x)]dx=[-x2Logx/2+x2/4+(1-x)2Log(1-x)/2-x2/4+x/2]01=1/2. 

The normalized functions M and I, whose integral equal 1, verify (Fig. 2 bottom left):  
M(f) = 1.125 ≈ I(f), for f = ¼ or ¾  

Hence, we obtain the repartition R of triplets inside the genetic code (Fig. 1d) after 10 
successive partitions into 2 subclasses respecting the optimal frequency f=¼ (Fig. 2).  
                                                                                                              
 
 
 
 
 
 
  
 
 
 

 
 
 
 
 
Fig. 2. Top: Successive repartition of the 64 codons following the optimal rule of 
affectation: when the ratio between sizes of the smaller and larger new classes is 
about 3 it is indicated in red. This optimal repartition R of amino acids respects at 
each division of triplet classes the min-max rule equalling the information I, and the 
mutational behaviour M, i.e., about the proportions 3/4 – ¼. Bottom left: graph of the 
functions M and I with indication of the optimal f. Bottom middle: ranking of the amino 
acids depending on their frequency in proteins of 8 species (P1) and in their Last 
Universal Ancestor (LUA) (P2); N denotes the size of the amino acid class, R1 its 
ranking based on P1 and R2 on P2. R2 is the same as the ranking R obtained from the 
optimal repartition (38). Bottom right: Hamiltonian path solving the variational problem 
on a graph whose vertices represent the 21 synonymy classes, counting twice Met.  
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The main property of the circular RNA sequence AL is to include the most frequent 
triplets (Fig. 1) in tRNAs of 29 selected organisms (39), allowing revisiting amino acid 
ranking from their appearance order in various experiments, which are all coherent, 
giving the same ranking for the first 6 amino acids occurring in a neo-synthesis of 
Miller’s type (Table 1). 

Table 1. Amino acids ranking (except for Met/Start) in various sets of nucleic acids 
from different organisms and experiments of RNA neo-synthesis 

Ala, Gly, Ile, Glu, Asp, Val                     maximal triplet frequencies in tRNAs (39) 
Gly, Ala, Val, Glu, Asp, Asn                  mutational behaviour order (40, 41) 
Gly, Ala, Val, Asp, Glu, Pro                   Miller’s proportions (42) 
Gly, Ala, Ser, Asp, Val, Glu                   Miller’s proportions revisited (43) 

 
  

 

 

 

 

 

 

 

 

Fig. 3. A: The amino acids appearing progressively in a clustering based on their 
mutational behaviour, with indication of the synonymy class sizes. B: Order of the first 
amino acids appearing at the top of the dendrogram, whose start clusters (in red) are 
similar to the beginning of the optimal rule (Fig. 2 top).  

The amino acids appear in Fig. 2 in a hierarchical clustering process based on their 
mutational behaviour proposed in (40), and the progressive concatenation of clusters 
follows approximately the optimal repartition of amino acids respecting, at each triplet 
class division, a min-max rule consisting of maximizing the entropy and minimizing 
the mutational behaviour of amino acids, depending on their synonymy class size. If 
we rank the amino acids (Table 1 and Fig. 4) by using either their relative 
concentration in Miller’s experiment (42) thought to reproduce the conditions of the 
prebiotic earth (44), or their codons’ thermo-stability (45), or their concentrations in 
revisited Miller’s data (43). 

	  

B            Asn, Lys, Tyr, Gly, Ala, Val, Pro, Thr, Asp, Glu, His, Gln 
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Fig. 4. A. Amino acids ranking by using their relative concentration in Miller’s 
experiment (44) B. Codons thermo-stability (kcal/M) (45) C. Amino acids 
concentrations in revisited Miller’s data (43). 

Biological boundaries 
 
A cell can be defined anatomically by its membranes and functionally by the 
concentration or gradient boundaries of the metabolites involved in its main survival 
functions (Fig. 5). The gradient boundary of a metabolite is the line on which the 
mean Gaussian curvature C on the surface defined by its concentration c vanishes: 

C = (∂2c/∂x2)(∂2c/∂y2)-(∂2c/∂x∂y)2 = 0 

The k-concentration boundary is the contour line of the concentration surface on 
which the concentration c=k. The advantage of the gradient boundary over the 

concentration boundary comes from the fact that if the concentration surface is an 
isotropic Gaussian bell-shaped surface (for example in the case of isotropic diffusion 
of a metabolite from its source of production), then the gradient boundary is the zero-
Laplacian curve, where diffusion vanishes: on such a boundary the metabolite can 
self-assembles or assembles with other membrane constituents if they are also 
slightly diffusing and if their co-existence time at the same place is sufficiently long for 
allowing this assemblage. We give in the following an example of use of the gradient 
boundary for the "proto-cells" at the origin of life. 

Proto-cell boundary 

"A boundary is needed to separate life from non-life" (46). At the beginning of life, 
without any enzymes, RNA strands bound to longer template strands of RNA could 
grow in single nucleotide steps according to the base pairing rules of Watson and 
Crick. These duplication steps could take place on the timescale of hours (47) giving 
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support to the theory that RNA spontaneously replicated during prebiotic evolution. 
Let us suppose now that the initial RNA template strands polymerized by chance in 
the prebiotic RNA world were circular with nucleotide sequences similar to those of a 
the Archetypal Loop (AL). This RNA ring offers weak interaction sites (electrostatic at 
short distance and van der Waals at mean distance) for any hydrophilic or 
hydrophobic amino acid present in the prebiotic medium. "The most obvious function 
of RNA today is to serve as a structural element that assists in the formation of strong 
peptide bonds between amino acids in the synthesis of proteins. The first RNAs may 
have served the same purpose, but without any preference for specific amino acids. 
Many further steps in evolution would be needed to "invent" the elaborate 
mechanisms for replication and specific protein synthesis that we observe in life 
today" (46). Such primitive RNA-dependent protein-building machinery (a 
"matrimonial agency" for amino acids) could have been more efficient than thioesters 
of amino acids which spontaneously form peptides in aqueous solutions (48) and 
would have played the same role as a ribosome, the machine that presently makes 
the proteins inside cells. The high similarity between AL and the sequence made of 
the concatenation of the tRNA loops (D-, anticodon- and Tψ−loops) reinforces this 
hypothesis (cf. 13, 18, 21 and AL supplementary material one). 

The boundary of the first functional "proto-cell" able to build peptides can be defined 
as a peptide gradient boundary centred on the "proto-ribosome" AL, resulting from an 
a-specific confinement of amino acids around AL favouring the occurrence of peptide 
bounds. This "proto-ribosome" into a "proto-membrane" constituted the "proto-cell" 
with a circular organization satisfying a variational principle: peptide synthesis 
favoured by AL was necessary to build and repair the membrane of the proto-cell, 
made of hydrophobic peptides ensuring the integrity of the RNA AL "proto-ribosome", 
hence protected against denaturation, like in a principle of parsimony "à la 
Maupertuis" (49). 

 

 

 

 

 

 

 

 

 

Fig. 5. Anatomical (left) and functional boundaries (right). 

The scenario presented above is similar to the behaviour of the auto-poietic 
automaton studied in (50-52), which is in exponential growth if the proto-membrane 
allows the entry of nucleic bases permitting AL as well as anti-sense AL replication, 

Gradient boundary ∂2c/∂x2∂2c/∂y2-(∂2c/∂x∂y)2 = 0 
	  

Concentration boundary c=k 

Anatomical membranes 
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anti-sense AL being very similar to AL because of its internal symmetry (Fig. 6). The 
ring AL (respectively the ring anti-sense AL) selects and confines L-amino acids 
(respectively D-amino acids), and builds either hydrophobic or hydrophilic peptides 
(53) depending on the pole used for the confinement, acting as a proto-ribosome. In 
Fig. 6 top left, we indicate the AL hydrophobic (respectively hydrophilic) pole, where 
codons bind mainly hydrophobic (respectively hydrophilic) amino acids, the excess of 
the polar hydrophobicity (respectively hydrophilicity) being equal to 13.4 (resp. -21.3) 
(54).  

According to the wobble hypothesis by Crick, the first two bases of the codons are 
essential for their assignation to a given amino acid and recognition by their tRNA 
anti-codon (55): like in (56, 57), we observed that the second base of the codons 
permits to associate them with hydrophobic amino acids, if this second base is Uracil 
U or Cytosine C and the first base is Guanine G, and with hydrophilic amino acids, if 
this second base is Adenine A or Cytosine C and the first base is either Adenine A or 
Uracil U (54). Cytosine C is difficult to obtain at the origin of life (58-60), but only 5 
amino acids were not confined by AL without C, these missing amino acids being 
Alanine, Proline, Threonine, Glutamine and Histidine, respectively the 3rd, 7th, 10th, 
12th and 17th amino acids in the decreasing order of use in human proteins (61), 
showing that the most frequent amino acids can be associated to primitive RNA 
without the help of Cytosine. 

Growth is stopped due to a lack of nucleic or protein "stones", i.e., because of the 
exhaustion of the basic atoms C, H, O, N, whose pool gives amino acids and 
nucleotides during the exponential growth, like in the Miller's experiment (42). If we 
denote by R (resp. A, B, M and P) the AL or anti-sense AL Ring (resp. Amino acids, 
nucleotide Bases, hydrophobic peptide Membranes and C,H,O,N-Pool) concentration, 
we have: 

dR/dt = kBB – kRR,  dA/dt = kPP – kARA, dB/dt = k'PP – kBB, 

dM/dt = kARA – kMM, dP/dt = kRR + kMM – kPP - k'PP 

The differential system above presents an initial exponential growth behaviour and 
tends to a stationary state, if P is constant. If we add a diffusion term for the different 
metabolites above, this dynamics leads to the spatial segregation of R, A, B, M, P 
into structures like a “proto-nucleus” (R), “proto-cytoplasm” (A + B), “proto-membrane” 
(M) and building blocks (P). AL serves as a template for the formation of hydrophilic 
Enzymatic peptides E able to catalyse the AL or anti-sense AL replication 
(respectively degradation) with a reaction constant kB (respectively kR) (62). 

During its exponential growth, the boundary of the automaton is chosen as the 
gradient boundary of peptides polymerized from the 15 amino acids, that is all of 
them minus Alanine, Proline, Threonine, Glutamine and Histidine. 



 

 

Fig. 6. Top left: The RNA ring AL (with hydrophobic and hydrophilic poles). Top right: 
anti-sense AL. Bottom left: Coherence with the genetic code representation giving the 
hydrophobic (u) and hydrophilic (p) codons (56) showing that the AL order of bases 
roughly preserves the order of the first codon bases in the genetic code (red circle). 
Bottom right: Gradient boundaries of the M molecules showing “proto-membranes” of 
“proto-cell” structures (63). 

  

  

 



  

Fig. 7. Primitive regulatory network of a “proto-cell” with only activatory arrows, 
showing different elements in interaction like a RNA proto-ribosome (R), proto-
cytoplasmic constituents (A, Amino acids and B, nucleic Bases), a proto-Membrane 
(M), functional molecules such as Active RNA (AR) and Enzymes (E) and building 
blocks Products (P). 

If we introduce diffusion (whose viscosity depends on the membrane concentration 
M) in the purely reaction differential system above, we get the new system below, 
having the graph of Fig. 7 as Jacobian graph, and whose discrete analogue has been 
simulated in (63) showing a progressive segmentation of the space by M molecules 
gradient: 

dR/dt = DRΔR + kBB + krE.B + krE.R.B – k’RR, 

dAR/dt = DARΔAR + kARA.R –  kEAR –  kMAR 

dA/dt = DAΔA + kPP – kARA.R – k’AA,  

dB/dt = DBΔB + k'PP – krE.B – krE.R.B – k’BB ,  

dM/dt = DMΔM + kMAR – k’MM, 

dE/dt = DEΔE + kEAR – k’EE 

dP/dt = DPΔP + kRR + kMM + kEE – kPP - k'PP 

 
In case of isotropic diffusion, the zero-Laplacian (or zero-curvature or maximal 
gradient) line of the concentration surface of M molecules constitutes a gradient 
boundary and can become an anatomical frontier, if M auto-assembles with lipids. 
This line corresponds to the region where the mean Gaussian curvature of the 
concentration surface, defined by ∂2M/∂x2∂2M/∂y2 - (∂2M/∂x∂y)2 , vanishes. 

 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 8. Left : Representation of the evolution of the zero-Laplacian line for 2 
constituents R and A. Right: asymptotic co-existence of R (in blue) and A (in red) on 
the zero curvature (and diffusion) lines, allowing locally the assemblage of a “proto-
membrane” (64). 
 
If the biosynthesis of M results from the meeting between the two wave fronts made 
respectively of R and A molecules, let us consider the intersection of the zero-
Laplacian lines of the corresponding concentration surfaces (Fig. 8): if the diffusion of 
R (respectively A) is isotropic from its initial synthesis at an initial P pool source, the 
R (respectively A) wave front progresses with the same velocity in all directions and 
the gradient boundary is the geometric locus where the diffusion in these directions 
vanishes. Therefore, at the intersection of the gradient boundaries, the co-existence 
time of R and A is maximum, favouring the amino acids / nucleic acids transient 
stereo-interaction, allowing the local peptide polymerization. Fig. 8 shows the 
possibility of such an intersection on only one tangency point or two intersection 
points (left) and on the whole gradient boundaries asymptotically confounded (right) 
for a convenient value of the ratio between the diffusion coefficients DR/DA (65). 

Cell boundary 

A hydrophobic proto-membrane plays the same role as a cell boundary made of 
amphiphilic lipid bilayers with membrane proteins. Peptides M interact with primitive 
amphiphilic components (66-68) or interact only with themselves like in co-cross-
linked peptide artificial membranes (69).  

ATP is present near the “proto-cells” because in an environment "poor in water but 
rich in ADP and inorganic phosphate, the formation of ATP is spontaneous, and ATP 
has a lower "energy" than ADP and inorganic phosphate" (70). The “proto-
membranes” could actively favour the penetration of ATP inside proto-cells if among 
the M peptides there exists membrane protenoids like the translocators present in 
micro-organisms, whose gene sequence matches with AL: the gene of the 2-
oxoglutarate translocator of Chlamydia muridarum contains for example 6 AL 
heptamers for 1416 bpi, the expected number X being equal to 1409x22/214 = 
1.89±2.27*. The symbol * indicates the 95% confidence interval and the probability p 

Concentration R 
Concentration A 

DA>DR 



of the observed number can be calculated from the normal approximation N(μ,σ) of 
X: p=P(⎜⎜X-μ⎜⎜≥ kσ) ≤ exp(-k2/2)/k√2π =10-y, where y≈0.4+Log10k+0.217k2. Here 
k≈3, y≈3 and p≈10-3. Among the 6 AL heptamers, GAATGGT, which is part of the AL 
hemi-hairpin ATGAATGGTA, is observed twice, but the expected number is 
0.086±0.48*, which corresponds to p=10-10. In Encephalitozoon romaleae, the 
observed number of AL heptamers in the ATP/ADP translocase is 9, with 2±2.5* 
expected, which correspond to p=10-5, and GAATGGT is also observed twice. 
Translocators (tlc) are considered as ancestors of the present translocases (71, 72) 
and they could have been stereo-chemically synthesized from the AL template acting 
as a “proto-ribosome” (cf. AL supplementary material two). 
 
AL and nucleo-peptidic mechanisms 
 
Different intracellular mechanisms involving RNA, DNA and proteins could conserve 
as relics sub-sequences of AL, in particular from its hemi-hairpin ATGAATGGTA. 
 
- Zinc finger mechanism 
A zinc finger is a small protein serving as interaction module binding RNA, DNA and 
proteins, thanks to one or more zinc ions ensuring the stabilization of the molecular 
fold. Numerous zinc finger proteins in many species contain AL pentamers. For 
example, the gene of the mRNA of the zinc finger protein 84-like of Jaculus jaculus 
contains 180 AL pentamers for 2687 bpi (p=10-53) and 32 AL heptamers ATGAATG, 
for 0.16±0.7* expected, corresponding to p=10-1390 (cf. AL supplementary material 
three).  
 
- Polymerase mechanism 
DNA (resp. RNA) polymerases are enzymes which synthesize DNA (resp. RNA) 
molecules from the nucleotides, ensuring the nucleic acids replication. They 
appeared very early in the evolution. The Jaculus jaculus polymerase alpha 1 
contains for example 160 AL pentamers for 94±16* expected (p=10-11) and 5 AL 
heptamers AAGATGA for 0.25±0.85* expected, corresponding to p=10-20 (cf. AL 
supplementary material four).  
 
- Defence mechanism  
The CRISPR-CAS system provides bacteria like Streptococcus agalactiae	    with 
adaptive immunity and we can notice that the AL pentamers ATGGT and ATTCA, 
and AL hexamers AATGGT and TCAAGAT (corresponding respectively to the D-loop 
Tψ−loop of many tRNAs) are often observed at many levels of this system 
(CASproteins, Casposon TIR and CRISP repeats) (cf. (81) and AL supplementary 
research five). For example, the typical repeat sequences for CRISPR1 and 
CRISPR3 (73) contain AL heptamers from tRNA loops: 
 
GTTTTTGTACTCTCAAGATTTAAGTAACTGTACAAC (CRISPR1) 
GTTTTAGAGCTGTGTTGTTTCGAATGGTTCCAAAAC (CRISPR3) 
 
as well as the sequences of TIR and CRISPR compared in (74), a consensus 
sequence from central part of the murine RSS VκL8, Jß2.6 and Jß2.2 (75-77), and 
the human RSS spacer common for Vh, V328h2 and V328 (78-80): 



 
3’-ATACATCCC(C)TCTTAAGTTCCCTT-5’ (TIR) 
3’-TTCCATCCC -TCTTAAGTTCGATT-5’ (CRISPR) 
5’-ATGGTACTG - CCATTCAAGATGA-3’ (AL) 
5’-GTGATACAG - CCCTTAACAAAAA-3’ (murine consensus RSS) 
5’-ATTCAACATGAA-3’ (human RSS spacer) 
 
The probability p=2 10-9 for 19 matches (with an insertion) between TIR and CRISPR 
using the binomial distribution B(1/4,22), p=8 10-6 for 15 anti-matches between AL 
and CRISPR plus 1 quasi-anti-match G-T using the distribution B(1/4,21)xB(3/8,1), 
p=7 10-4 for 13 matches between AL and consensus RSS using the binomial 
distribution B(1/4,22), p=2 10-6 for 11 matches between AL and RSS spacer using the 
binomial distribution B(1/4,12).  
 
Conclusion 

To conclude, a small circular RNA, called AL, which presents the following features: 

- its sub-sequences are observed as relics in many parts of the present genomes, 
namely in viral and non coding genomes (24), 

- AL relics are often present in tRNA loops (cf. (18, 25) and AL supplementary 
material one), 

- AL heptamer constitute the major part of the exon/intron boundary (cf. (82) and AL 
supplementary material five). 

Hence, AL could have played the role of an ancient proto-ribosome: this claim is 
central in the stereochemical hypothesis of the genetic code formulated by A. 
Katchalsky in 1973 (8): the existence of catalytic RNAs in clays such as the 
“montmorillonite” may have facilitated the appearance of small peptides, involved 
secondarily (as now the protein replicase) in the replication of the RNA molecules, 
hence constituting a virtuous loop at the origin of life. The existence of a simple RNA 
structure capable to survive as a stable hairpin or to be functional in a ring form has 
been postulated early after Katchalsky’s hypothesis (23, 29, 33), and numerous 
experimental works (34, 35) reinforce this stereo-chemical hypothesis, despite 
criticisms (36), showing that the subject is still open, experimentally and theoretically.  
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