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Abstract 
Medium to  large  phylogenetic gene  trees constructed  from datasets of different species density and 
taxonomic range  are  rarely topologically consistent because  of missing  phylogenetic signal, 
non-phylogenetic signal  and  error. In  this study, we  first use  simulations to  show  that taxon  sampling 
unequally affects nodes in  a  gene  tree, which  likely contributes to  controversial  conclusions from taxon 
sampling  experiments and  contradicting  species phylogenies such  as for the  boreoeutherians. Hence, 
because  it is unlikely that a  large  gene  tree  can  be  reconstructed  correctly based  on  a  single  optimized 
dataset, we  take  a  two-step  approach  for the  construction  of model  gene  trees. First, stable  and 
unstable  clades are  identified  by comparing  phylogenetic trees inferred  from multiple  datasets and 
data  types (nucleotide, amino  acid, codon) from the  same  gene  family. Subsequently, data  subsets 
are  optimized  for the  analysis of individual  uncertain  clades. Results are  summarized  in  form of a 
model  tree  that illustrates the  evolutionary relationship  of gene  loci. A case  study shows how  a 
seemingly complex gene  phylogeny becomes increasingly consistent with  the  reference  species tree 
by attentive  taxon  sampling  and  subtree  analysis. The  procedure  is progressively introduced  to 
SwissTree  (http://swisstree.vital-it.ch), a  resource  of high  confidence  model  gene  (locus) trees. Finally 
we  demonstrate  the  usefulness of SwissTree  for orthology benchmarking. 
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Introduction 
Gene  tree  reconstruction  is challenging. Because  of the  limited  amount of information  available, gene 
trees are  typically much  more  difficult to  reconstruct than  species trees. Gene  trees inferred  from 
different datasets of the  same  family (e.g. nucleotide  vs amino-acid  sequence, varying  taxon  sampling) 
are  often  topologically discordant [1]. The  reasons for analysis artefacts have  been  studied  and 
discussed  extensively, both  stochastic (e.g. short sequences, lack of phylogenetic signal) and 
systematic error (e.g. inappropriate  methods or models, insufficient taxon  sampling) as well  as their 
combinatorial  effects. Methods and  models are  continuously enhanced, but a  sizable  fraction  of 
incorrect predictions seems unavoidable. Hence, complementary steps have  to  be  taken  to  overcome 
limits. As an  example, because  evolutionary events other than  speciation  (e.g. gene  duplication, 
horizontal  gene  transfer) are  rare  in  most gene  families, substantial  improvements can  be  achieved  by 
tree  reconstruction  methods that take  into  account a  species phylogeny (reviewed  in  [2]).  

SwissTree  is a  collection  of high-confidence  model  gene  trees for the  benchmarking  of inferred  gene 
relationships. The  project was developed  within  the  Quest for Orthologs (QfO) consortium 
(https://questfororthologs.org), a  community effort aiming  to  improve  orthology predictions [3]. Besides 
SwissTree, two  other databases of reference  gene  trees exist, Orthobench  [4] and  TreeFam-A [5]. 
SwissTree  is comparatively small  and  focuses on  carefully establishing  a  reproducible  and  coherent 
system for reference  gene  tree  curation. Challenges concern  not only tree  reconstruction, 
interpretation, annotation  and  visualization, but also  issues in  benchmarking  as well  as the  feasibility of 
expeditious reactions to  requests for taxa  that are  not part of the  current QfO proteome  set by the  QfO 
community. Important recent achievements include  the  construction  of a  consensus species tree  for 
organisms of the  QfO reference  datasets (http://swisstree.vital-it.ch/species_tree) [6], which  is now 
used  as reference  for the  interpretation  of gene  trees in  SwissTree. With  regard  to  the  QfO 
benchmarking  activities, we  studied  in  detail  phylogenomic database  concepts to  better understand 
their fundamental  different hierarchical  levels (e.g. pairwise  species comparisons, ortholog  groups, 
hierarchical  ortholog  groups, reconciled  gene  trees); such  knowledge  is important to  define  suitable 
benchmarks [7]. Meanwhile, the  Orthology Benchmarking  Webservice  [8] has been  developed, which 
provides - amongst other tests - a  comparison  of predicted  orthologies with  those  inferred  by 
SwissTree  (‘Gold  Standard  gene  tree  test’) and  the  correctness of an  orthology-based  species tree  in 
comparison  to  the  reference  species tree  (‘Species tree  discordance  test’). 

With  overrepresented  clades on  the  one  hand  and  consecutive  long  branches on  the  other hand, the 
78-species QfO reference  set (1017; http://www.ebi.ac.uk/reference_proteomes; 
http://swisstree.vital-it.ch/species_tree ) is by no  means simple. By empirical  evidence  we  assume  that 
any single  phylogenetic analysis is unlikely to  correctly infer all  evolutionary gene  relationships of a 
gene  family for all  species in  the  QfO dataset. Thus, we  changed  strategy and  optimized  datasets for 
the  prediction  of deep  divergence  patterns in  the  gene  tree  as well  as for the  prediction  of individual 
clades and  subclades. In  the  majority of cases, these  phylogenetic gene  trees show  some 
contradicting  topologies. Tree  inconsistency within  gene  families raises questions of how  to  distinguish 
correct from incorrect, how  to  best summarize  and  visualize  results and  how  to  maintain  reference 
gene  trees.  

In  this study, we  first performed  a  simulation  study in  which  we  explored  the  impact of taxa  sampling 
on  individual  nodes in  a  gene  tree  and  compared  ways to  best summarize  results obtained  from a  set 
of heterogeneous gene  trees. The  study leads to  an  analysis procedure  that offers transparency with 
regard  to  the  final  resulting  tree, and  facilitates the  maintenance  and  extendibility of SwissTree. We 
apply the  approach  to  a  gene  family that is difficult to  analyze  and  construct a  highly supported  model 
gene  tree  that is concordant with  the  reference  species tree. Finally, we  discuss the  perspective  of this 
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approach  for the  construction  of sustainable  representative  gene  trees and  possibilities for a  stepwise 
automation. 

Conventions . 1. Throughout this article, we  use  the  term ‘clade’  rather than  ‘split’  to  specify 
monophyletic groups with  at least two  members in  a  gene  tree  or species tree. This also  applies to 
unrooted  gene  trees when  compared  to  a  rooted  - gene  or species - tree. 2. When  calculating  the 
mean  basal  aLRT-SH  support of a  clade  in  multiple  trees, we  consider in  addition  to  predictions also 
missing  predictions - which  can  be  deduced  from the  set of operational  taxonomic units (OTUs) - by 
setting  the  support value  to  ‘0’. This measure, which  combines quantity and  quality of clade 
predictions, is referred  to  as ‘mean2’. 3. Gene  trees can  depict different incidents dependent on  the 
scientific context. Inferred  by tree  reconstruction  methods, gene  trees in  fact reflect the  divergence 
pattern  of individual  gene  lineages (variants). Often  annotated  with  speciation  and  duplication  events, 
nodes can  have  other meanings. For instance  in  the  case  of incomplete  lineage  sorting  (ILS), the 
observed  gene  tree  species tree  discordance  results from the  erroneous interpretation  of a  node  as 
speciation  event rather than  the  occurrence  of a  new  gene  variant. Because  SwissTree  is generated  to 
benchmark gene  relationships (orthology, paralogy, xenology), we  design  trees to  reflect gene  locus 
relations (Fig. 1). The  term ‘locus tree’  was introduced  by Rasmussen  and  Kellis for the  development 
of a  joint model  for phylogenetics and  population  genetics [9]. Here  we  use  the  term ‘gene  locus tree’ 
as opposed  to  ‘gene  lineage  trees’; nodes of a  gene  locus tree  represent vertical  gene  transfer, 
duplication  and  lateral  gene  transfer, nodes of a  gene  lineage  tree  depict in  addition  coalescent effects 
such  as ILS. 

 

 

Fig. 1. Incomplete  lineage  sorting: difference  between a  phylogenetic  tree  (gene  lineage  tree) 
and a  gene  locus  tree . Species tree: evolutionary relationship  of species A-D; all  nodes in  a  species 
tree  represent speciation  events. Phylogenetic tree: illustration  of the  evolutionary relationship  of gene 
1  for species A-D. In  the  case  of incomplete  lineage  sorting, tree  reconstruction  methods capture 
signal  originating  from retained  gene  variants that occurred  prior to  speciation; in  this case, the 
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ancestral  node  represents the  occurrence  of a  new  gene  variant rather than  a  speciation  event. The 
difference  becomes evident when  comparing  the  gene  lineage  history and  the  gene  locus history. 
Gene  lineage  history: a  new  gene  variant 1-II that appears in  the  ancestral  node  is retained  in  species 
C  and  disappears in  species D  and  in  the  sister clade  of C, prior to  the  speciation  of A and  B. 
Simultaneously, the  ancient variant is lost in  species C, but retained  in  the  other species. The  shade  of 
the  branch  color indicates the  variant frequency. Gene  locus history: Because  gene  variants 1-I and 
1-II occupy the  same  gene  locus, ILS is not visible  in  the  gene  locus tree. 
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Results  and Discussion 
To  better understand  how  different datasets covering  the  same  family contribute  to  the  reconstruction 
of a  gene  phylogeny, we  first performed  a  simulation  study. While  simulation  makes many simplifying 
assumptions, it provides a  helpful  baseline  in  which  the  correct trees are  known  with  certainty. We 
then  show  how  these  results informed  the  strategy pursued  in  the  construction  of reference  gene  trees 
in  SwissTree. Next, we  provide  a  case  study of a  family investigated  using  the  SwissTree  approach. 
Based  on  the  same  principle, we  highlight an  efficient way for testing  taxa  samples for their information 
content regarding  specific clades without tree  reconstruction. Finally, we  illustrate  the  usefulness of 
SwissTree  for orthology benchmarking. 

Survey  on gene trees  inferred  from  simulated data 

To  study the  problem of gene  tree  inference  from multiple  datasets with  different taxon  sampling, we 
generate  simulation  data  comprising  100  taxa  with  1000  1:1  orthologs that evolve  under a  codon 
model  with  variable  rates of sequence  evolution  across sites and  genes. Analyses are  performed  on 
the  full  dataset (“a100”) and  six data  subsets of 10  and  30  taxa, consisting  of two  nested  subclades 
(“a10”, “a30”), two  balanced  sets of taxa  (“b10”, “b30”) and  two  sets of randomly selected  taxa  (“r10”, 
“r30”) (for more  details, see  Material  and  Methods and  Supporting  Information  S1). Because  this study 
investigates ways to  generate  representative  gene  trees from imperfect gene  trees, maximum 
likelihood  (ML) tree  reconstruction  is moderately violated  by choosing  a  fixed  model  of DNA, codon 
and  amino  acid  sequence  evolution. Possible  advantages for codon-based  analyses are  compensated 
by a  less extensive  ML  tree  search. Gene  phylogenies are  inferred  from the  known  multiple  sequence 
alignments (MSA), so  that erroneous topologies are  solely the  result of missing  phylogenetic signal, 
non-phylogenetic signal  or tree  reconstruction  artefacts. The  final  tree  set consists of 21,000  trees with 
597,000  clades (subtrees of at least 2  OTUs), which  we  analyze  for correctness and  support.  

The  species tree  is challenging  because  it contains long  branches and  several  short internodes (Fig. 
2A). First, we  explore  gene  trees that were  reconstructed  from the  known  alignment. For the  seven 
datasets (a100, a10-r30) of 1000  gene  trees we  observe  that the  fraction  of correct tree  topologies 
decreases as the  number of genes per tree  increases. Remarkably, none  of the  trees inferred  from the 
full  datasets (a100  DNA/codon/aa) is correct (Fig. 2B). By contrast, the  fraction  of correct clades is 
primarily linked  to  the  taxon  composition  with  first the  balanced  subsets, then  the  complete  sets and 
finally the  random subsets. Interestingly, this is less dependent on  the  size  of the  dataset. Moreover, 
most trees possess a  small  fraction  of incorrect clades and  only few  trees are  topologically very distant 
from the  true  tree  (Fig. 2C). For the  1000  genes from all  datasets and  data  types (21000  trees, 199000 
clades), the  majority of clades are  correctly predicted  from all  the  three  data  types (DNA, codon, amino 
acid: 67.64%; 134595  out of 199000  clades); at the  other end, 7.23%  of the  clades (14381) are 
predicted  solely by one  of the  data  types and  13.58%  of the  clades (27036) are  not recovered  at all 
(Fig. 2D). Not surprisingly, the  largest fraction  of correct clades is predicted  from balanced  datasets 
(99.21%  for b10, 97.05%  for b30), because  these  have  fewer very short (and  thus difficult) branches 
compared  with  unbalanced  trees. The  correlation  between  the  level  of node  support and  internode 
length  is shown  for dataset a100/aa  in  Fig. 2E. 

In  summary, the  simulated  gene  phylogenies are  difficult to  reconstruct because  of missing 
phylogenetic signal  and  error. None  of the  largest gene  trees is fully correct, but only few  trees are 
topologically very distant from the  true  tree. The  taxon  composition  of the  data  subsets has a  strong 
impact on  the  tree  correctness. 
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Figure 2. Survey on gene trees inferred from known alignment of simulated data. The simulation data comprises the 
coding region of 1000 1:1 orthologs from 100 taxa (dataset a100); data subsets consist of two nested subclades of 10 and 30 
taxa (a10, a30), two overlapping balanced sets  of 10 and 30 taxa (b10, b30) and two sets of 10 and 30 randomly selected taxa 
(r10, r30). A. Known species tree of the 100 taxa: short internodes and long branches indicate phylogenies that are likely difficult 
to resolve. Nodes 63 and 78 are annotated. B. Column chart visualizing the correctness of trees inferred from the known MSA of 
amino acid sequences of the full  dataset and the six data subsets. The fraction of correct trees is largest for balanced and small 
datasets, the fraction of correct clades is approximately consistent within the trait (balanced, all, random) of the taxon 
composition. Trees inferred from nucleotide or codon sequences show a similar distribution of results with a slightly larger 
fraction of true trees and true clades. C. Pyramid plot of the average fraction of incorrect clades per tree for the seven protein 
sequence datasets. D. 100% stacked column chart of correct clades inferred from sequences of all  character types (gray; 
nucleotide, codon, amino acid), by two (blue shade), by one (magenta shade) or not predicted (black). E. Scatter plot showing 
the branch support of gene trees as a function of the internode length in the species tree (a100/aa). The branch support includes 
the highest aLRT-SH support for a clade (green plus), arithmetic mean of aLRT-SH support values (blue cross), and clade 
occurrence frequency (red filled circle).  
 

 

Clade occurrence frequency and statistical support  – which  clades are correct? 

Since  we  have  established  that gene  trees are  mostly—but not fully—correct, the  next question  is how 
can  we  predict which clades are  correct. Here  we  consider three  measures: bootstrap  branch  support 
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[10], aLRT-SH  branch  support [11], and, since  we  are  particularly interested  in  situations in  which  we 
have  multiple  datasets covering  a  single  gene  family, clade  occurrence. 

First, we  explored  the  boundary between  correct and  incorrect clades (“the  twilight zone”) in  terms of 
these  measures. (Fig. 3). For the  1000  gene  trees of each  dataset, clade  occurrence  frequencies are 
consistently low  for incorrect clades and  more  dispersed  for correct clades (Fig. 3A). In  contrast, clade 
occurrence  frequencies for incorrect clades show  more  variation  when  looking  at bootstrap  values (20 
genes exemplarily selected  by increasing  alignment length  from datasets b30, a30  and  r30; see 
Materials and Methods). This is most likely because  of biased  data  and  lack of complementary 
information  when  compared  to  results from phylogenomic data  (Fig. 3B). As for the  aLRT-SH 
statistics, support is predominantly high  for correct clades and  dispersed  for incorrect clades, though 
the  median  support is typically low  (Fig. 3C,D). The  predictive  power of the  two  measures is thus to 
some  extent complementary. Significant aLRT-SH  branch  support  (>=0.95) is mostly obtained  for 
correct clades; however also  a  minor fraction  of clades (0.000093, 9/97000; a100/aa) show  significant 
support for incorrect predictions in  trees that have  an  average  error rate  (Supporting  Information  S2, 
Fig. S2-1). Thus, a  high  aLRT-SH  is an  indication  but no  guarantee  of correctness, nor are  strongly 
supported  incorrect clades an  indicator of topologically highly erroneous trees. 

Clades inferred  from datasets with  varying  taxon  composition  vary in  occurrence  frequencies and 
support (Fig. 3E, Supporting  Information  S2, Fig. S2-2). For balanced  trees (b10, b30), the  values for 
both  measures are  on  average  higher than  for trees obtained  from other datasets, but also  trees from 
random datasets (r10, r30) possess nodes with  higher occurrence  frequencies and  support which  can 
be  explained  by extended  internode  lengths due  to  the  lower taxon  density. Importantly, this does not 
mean  that smaller datasets generate  more  accurate  phylogenies, which  would  contradict previous 
findings ([12], [1]): Fig. 3E also  shows that clades with  a  low  occurrence  frequency in  trees of the  full 
dataset (a100) rarely occur in  balanced  trees. An  easy way to  compare  tree  correctness of large  and 
small  datasets is by pruning  the  larger dataset to  the  taxa  of data  subsets. By doing  so, the  fraction  of 
correct predictions increases for all  datasets and  data  types (dna, codon, aa) with  up  to  21,3%  for 
trees and  up  to  15.3%  for clades (r10/DNA) (Fig. 3F). Hence, more  data  generates more  accurate  tree 
topologies and  multiple  datasets a  wider spectrum of results. Taken  together, concordance  between 
tree  topologies from datasets with  different taxon  sampling  constitutes a  good  indicator for clade 
correctness.  

Further traits of correct topologies are  highly supported  clades with  long  basal  branch  length. 
Occasionally, an  incorrect clade  shows similar features (Supporting  Information  S2, Fig. S2-3), but it is 
usually not stable  and  can  be  easily distinguished  from correct clades when  summarizing  results from 
multiple  analyses (Fig. 3G). Thus, the  twilight zone  for clade  predictions is characterized  by rather low 
- but not lowest - occurrence  frequencies and  short basal  internode  distances. 

In  summary, different taxon  sampling  have  different strengths and  weaknesses when  it comes to 
resolve  individual  nodes. Therefore, it is worthwhile  considering  multiple  datasets of the  same  gene 
family when  inferring  a  gene  phylogeny. 
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Figure 3. Clade occurrence frequency, branch support and internode length. A-D. Boxplot of clade occurrence frequencies                
in 1000 genes from dataset a100/aa (A), in trees inferred from 1000 bootstrap replicates for a small data subset of datasets                     
a30/aa, b30/aa and r30/aa. (B), aLRT-SH branch support for the same data as in B (C), aLRT-SH branch support for 1000                     
genes from dataset a100/aa (D). The box illustrates the Q1-Q3 interquartile range (IQR), the bold line shows the median and                    
whiskers delimit the upper and lower 1.5 IQR; circles depict outliers; support for correct clades is shown in green, support for                     
incorrect clades in red. E. Scatterplot of clade occurrence frequency for corresponding clades of trees from datasets with                  
different taxon composition, sorted by descending support for the dataset a100/aa. Occurrence frequencies of (compatible)               
clades 63 and 87 from different datasets are marked by circles; colors correspond to the relevant dataset. F. Distribution of the                     
fraction of correct clades per tree for dataset r10 (green dashed lines) and for the corresponding clades from pruned trees of                     
datasets a100 (blue dashed lines); results for the consensus gene trees (DNA/codon/aa) are shown as continuous lines. G.                  
3D-scatterplot (angle: 300) with clade occurrence frequency (x), mean2 aLRT-SH clade support (y) and the mean basal                 
internode length of each clade (z) (dataset a100/aa). 

 

  

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 5, 2017. ; https://doi.org/10.1101/181966doi: bioRxiv preprint 

https://doi.org/10.1101/181966
http://creativecommons.org/licenses/by/4.0/


9 

Can we  predict correct clades from the  sequence alignment?  

Phylogenetic trees are  typically inferred  from MSAs, which  means, the  alignment contains the 
phylogenetic information. In  cladistics, shared  derived  characters (synapomorphies, phylogenetic 
signal) are  used  to  infer species relationships, and  in  comparative  genomics, assumed  shared  derived 
(‘synapomorphic’) characters (e.g. nucleotides, codons, amino  acids) can  be  read  directly from the 
MSA for each  clade  of a  tree. However, phylogenetic tree  reconstruction  methods also  have  to  deal 
with  contradicting  (non-phylogenetic) signal, which  are  signals supporting  topologies other than  the 
correct tree. If there  exists a  correlation  between  clade  occurrence  and  the  fraction  of synapomorphic 
signal, we  should  be  able  to  efficiently predict suitable  taxa  samples prior to  tree  reconstruction. 

A simple  approach  to  quantify phylogenetic signal  is to  determine  from the  1000  MSAs the  fraction  of 
synapomorphic characters. To  further ease  the  analysis, we  focus on  individual  internodes in  the 
known  species tree  and  determine  synapomorphic positions for the  known  correct tree  topology as 
well  as for the  two  alternative  tree  topologies around  the  selected  internodes (Fig. 4A). Thereby, we 
distinguish  three  modes ‘stringent’, ‘medium’  and  ‘relaxed’, which  differ in  the  level  of conserved 
positions within  the  three  subclades and  the  outgroup  (Fig. 4B). Exemplarily, two  clades with  different 
occurrence  frequencies are  chosen  from Fig. 3E. The  first example, clade  87, is predicted  399  times 
from dataset a100, but compatible  clades are  inferred  975  and  985  times from datasets r10  and  r30, 
respectively. The  search  for synapomorphic sites in  the  MSAs reveals that there  is on  average  more 
synapomorphic signal  per gene  (r10: 11.2, r30: 6.1) and  less contradicting  signal  per gene  (r10: 1.7, 
r30: 0.2) in  the  random datasets than  for the  full  dataset (a100; synapomorphic: 2.2, contradicting: 1.9) 
(Fig. 4C). We  observe  a  clear correlation  between  the  fraction  of synapomorphic signal 
(synapomorphic / synapomorphic + contradicting) and  the  clade  occurrence  frequency. The  second 
example, clade  63, is inferred  more  than  750  times from the  proteomes of datasets a100  (858), b10 
(987), b30  (874), r10  (762), and  r30  (880). Nevertheless, the  number of synapomorphic signal  per 
gene  differs largely for the  different datasets and  decreases in  the  order b10  (11.4), r10  (5.1), r30 
(1.3), b30  (1.1), a100  (0.4) (Fig. 4D). For dataset a100  the  number of signal  is below  one  per gene. 
When  signal  is weak, a  more  fine-grained  approach  is needed, taking  into  account amino  acid 
similarity rather than  identity. 

Finally we  investigate  in  a  comparison  of signal  obtained  from a  complete  clade  and  subclades. We  do 
this for the  largest clade  in  in  our example, which  is the  outgroup  of the  true  sister clade  at node  78. 
Clade  subsets with  taxonomically diverse  clade  members provide  less signal  than  a  biased  subset of 
clade  members  (Fig. 4E). In  addition  we  observe  that the  number of signal  increases as the  number 
of clade  members decreases. In  both  cases, the  increase  of signal  is associated  with  a  decrease  in 
the  proportion  of synapomorphic signal, indicating  that biased  and  small  datasets include  more  noise 
and  less true  signal  than  more  balanced  and  larger datasets.  

Three  facts are  notable  in  this analysis: 1) the  existence  of contradicting  signal, which  has also  been 
found  in  real  data  and  for which  different reasons have  been  described  [13]; 2) the  correlation  between 
the  fraction  of synapomorphic signal  and  the  clade  occurrence  frequency; 3) the  impact of the  clade 
size  and  taxa  diversity on  the  balance  of synapomorphic and  contradicting  signal. In  multiple  further 
examples not described  here, we  notice  that data  bias and  clade  size  have  a  large  impact not only on 
the  fraction  of synapomorphic and  contradicting  signal, but likewise  on  the  inferred  tree  topologies; a 
large-scale  real  data  example  is shown  further below. At the  comparative  genomics level, the 
investigation  of signal  in  MSAs could  therefore  constitute  a  simple  and  efficient way for compiling 
genetically diverse, complementing  datasets prior to  tree  reconstruction. 
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Figure 4. Quantitative assessment of synapomorphic characters in the MSA for  tree topologies at two short internodes. 
A. Correct tree topology (Tree 1) and two alternative tree topologies (Tree 2, Tree 3) around internodes; letters denote clades, 
‘out’  stands for outgroup. B. Synapomorphic positions are determined in three modes which are illustrated by trees; stringent: 
the sister clades and the two outgroups share a common character; medium: the sister clades share a common character that is 
not present in the outgroups; relaxed: at least one member of each clade of the sister clade shares a common amino acid, that 
is not present in the outgroups; letters denote amino acids, curly brackets indicate absence of a specific amino acid, square 
brackets signal  presence of a specific amino acid in at least one member of each sister clade; C, D. Column chart of 
synapomorphic and contradicting MSA positions for clades 87 (C) and 63 (D), and scatter marking in dark blue the fraction of 
synapomorphic signal  (synapomorphic signal  / synapomorphic signal  + contradicting signal) and in cyan the clade occurrence 
frequency (OccFreq; clade occurrence în 1000 gene trees). The marker of the fraction for synapomorphic signal  is not filled as 
to indicate a dubious result (less than one signal  per gene). E. Column chart of synapomorphic and contradicting MSA positions 
for clade 87 from dataset r30 with a varying number of members in the largest clade C, which is the outgroup to the true sister 
clade. See Figure C for the legend; ‘all’  indicates the complete set of clade members (24), ‘diverse’  a taxonomic diverse set of 
members, ‘biased’  a biased set of more closely related clade members; numbers (x-axis) indicate the number of clade members 
in a set. 
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How to integrate  tree  inconsistency? 

Given  a  set of almost concordant gene  trees, an  automated  construction  of a  reference  gene  tree  is 
feasible. Consensus gene  trees, for instance, can  be  generated  from trees of identical  taxon 
composition  inferred  from the  three  data  types (DNA, codon, aa). By doing  so  for the  simulated  data, 
we  obtain  only a  negligible  increase  of correct clades, probably due  to  a  lack of complementing  signal 
in  the  coding  sequence  (Fig. 3H, Supporting  Information  S2, Fig. S2-4). When  summarizing  results 
from trees for six data  subsets including  the  corresponding  three  (better) pruned  trees of the  full 
dataset, we  even  observe  a  decrease  of clade  correctness over the  best gene  trees. Another 
approach  could  be  the  construction  of supertrees that combine  phylogenetic trees of different size  and 
taxon  composition  and  moreover visualizes alternative  topologies in  form of a  network within  a  tree 
structure. But in  the  end, would  it really be  the  gene  history that SwissTree  strives to  reflect?  Tree 
reconstruction  methods perceive  evolutionary traces of successful  gene  lineages (variants, alleles). 
One  reason  for the  often  observed  gene  tree  species tree  discordance  is incomplete  lineage  sorting 
(ILS), in  which  case  a  gene  variant emerges prior to  a  speciation  event, so  that the  basal  node  of the 
relevant clade  in  fact corresponds to  the  emergence  of a  new  variant rather than  to  a  speciation  event 
(Fig. 1). In  the  end, it is a  matter of definition  on  which  level  gene  histories are  revealed, interpreted 
and  annotated. Because  variants are  irrelevant to  the  attribution  of gene  relationships, trees in 
SwissTree  present gene  histories at the  level  of gene  loci  and  hence  illustrate  speciation  and  changes 
in  gene  copy numbers in  genomes. Strictly speaking, SwissTree  trees are  gene  locus trees. Notably, 
this has no  impact on  the  benchmarking  of gene  relationships with  SwissTree, because  the  tree 
discordance  involves neither gene  duplication  nor horizontal  gene  transfer. 
  
Gene  locus trees are  in  principle  simpler than  gene  lineage  trees. Nevertheless, the  construction  of 
gene  locus trees implies distinguishing  locus events from incidences of gene  lineage  events and  error. 
Because  species relationships inferred  from multiple  genes - and  a  large  number of characters - are 
likely more  accurate  than  when  inferred  from a  single  gene, we  trust the  reference  species tree 
topology more  than  the  topology obtained  from a  single  gene; with  other words, we  use  the  species 
tree  model  as a  null  hypothesis that is challenged  by discordant findings. As a  guideline  we  presume 
that tree  topologies based  on  true  signal  are  more  robust than  analysis artefacts, if the  distinct 
datasets are  diverse  and  compiled  for the  analysis of a  specific node  and, moreover, the  selected 
genes evolve  at similar rates. In  the  case  of tree  inconsistency, if one  out of alternative  topologies 
supports the  species tree, the  tree  topology concordant with  the  species tree  gives the  more 
parsimonious explanation  unless there  is strong  evidence  for another event but speciation   (Fig. 5A). 
The  same  applies when  datasets lack signal. In  the  case  of consistently discordant topologies or solely 
discordant topologies, further evidences are  looked  for, for instance  in  the  MSA, in  gene  synteny 
tables and  in  enlarged  datasets (witness of non-orthology, [14]). Thereby, hybridization  is difficult to 
investigate, because  it requires a  phylogenomic approach  and  furthermore  knowledge  on  the  degree 
of divergence  of the  involved  species. Nevertheless, it can  be  considered  (and  annotated  in  the 
reference  species tree), if species relationships are  affected  by hybridization. In  the  absence  of 
incidences supporting  events relevant to  the  gene  locus and  the  lack of strong  support for the  dubious 
topology, we  assume  incomplete  lineage  sorting  and  present the  topology that is concordant with  the 
species tree  (Fig. 5B). This way, we  prevent overprediction  of gene  locus-relevant events that are  due 
to  a  lack of signal  or erroneous topologies. The  benefit of this concept can  be  tested  for the  simulation 
data  by mapping  identical  and  compatible  subclades from 21  gene  trees (3  character types, 7 
datasets) to  the  model  of gene  locus evolution  for the  full  dataset (a100), which  in  our case  is identical 
to  the  species tree. In  doing  so, the  fraction  of correctly supported  clades increases by 18.37% 
(13.84%  complete  clades, 4.53%  compatible  clades) from 72.04%  as achieved  from the  individual 
analysis of the  a100/aa  dataset (a100/aa, 1000  genes, 97000  clades) to  90.41%  in  the  model  gene 
trees - and  this without adding  additional  taxa  or clade-specific data  optimization  (Fig. 5C). We  can 
therefore  assume  that this approach  has the  potential  for the  accurate  construction  of large  gene 
trees. 
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Figure 5. Integration of tree inconsistency. A. Tree inconsistency: if one of the alternative tree topologies supports the 
species tree, the SwissTree model  gene tree corresponds to the concordant tree topology (gene tree 2) for this clade. 
Alternative topologies are retained in the set of result trees. B. Incomplete lineage sorting (ILS): Trees in SwissTree illustrate 
gene locus relationships rather than gene genealogies; thus, ILS is not presented in the SwissTree topology. Gene synteny and 
the lack of gene duplications in related species evidence ILS rather than pseudo-orthology. The red asterisk denotes the 
polymorphic ancestor. C. Bar chart illustrating clade correctness of gene trees (GTs) for the different data types (amino acid, 
codon, DNA), of consensus of the gene trees derived from the three different data types (amino acid, codon, DNA), of the 
consensus species tree from 1000 gene trees, as well  as the fraction of correctly reconstructed identical  and compatible clades 
in 21 gene trees identified by model  tree mapping (MTM). 
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Strategy  for  the construction and maintenance  of representative  gene trees 

Based  on  the  preceding  simulation  study we  conclude  that medium to  large  phylogenetic gene  trees 
constructed  from datasets of different species density and  taxonomic range  are  rarely topologically 
consistent (Fig. 2B). Nevertheless, we  can  presume  that the  majority of clades are  predicted  correctly 
(Fig. 2C), because  the  species diversity - OTU  composition  and  OTU  density in  the  tree  space  - has a 
large  impact on  the  level  of clade  correctness and  clade  support (Fig. 2B, 3A,D,H) and  datasets of 
complementing  taxon  composition  provide  a  wide  range  of results (Fig. 3F,G), topological  consistency 
of compatible  clades evidence  tree  correctness. This finding  is supported  by MSA analysis for 
synapomorphic signal: datasets possess different levels of synapomorphic signal  for different clades 
(Fig. 4C,D) and  representative  datasets of different size  possess similar signal  for the  same  clade  (Fig. 
8; large-scale  study below). A second  strong  indicator of tree  correctness is the  topological 
concordance  with  the  species tree  and  an  average  high  clade  support (mean2) (Fig. 3J). As for 
consensus gene  trees, there  is a  risk of biased  tree  topologies due  to  predominantly overlapping 
signal  and  a  lack of complementing  signal  in  the  coding  region  of the  simulated  data  (Fig. 3B, 5A). As 
a  consequence, trees for SwissTree  are  generated  from multiple  datasets - optimized  for the  analysis 
of the  full  dataset, data  subsets as well  as individual  clades and  subclades - in  a  process of repeated 
analysis, interpretation, and  annotation. Results are  stored  in  form of a  model  gene  tree  and  a  tree 
pool. Figure  6  summarizes the  process. 

Initiation of a  tree  pool. At first we  explore  the  consistency of tree  topologies. A first analysis with 
(almost) all  family members can  result in  gene  trees that are  in  large  part concordant with  the  species 
tree, even  when  inferred  from unrevised  data. The  relevant MSAs typically possess regions of unequal 
confidence  including  long  indels as well  as gaps and  missing  data  that are  difficult to  interpret by most 
tree  reconstruction  algorithms. For the  generation  of trees for SwissTree, we  reassess gene 
phylogenies using  smaller, revised  datasets and  data  subsets for individual  clades. Consistent tree 
topologies inferred  from (unbiased) MSAs of different species density and  composition  evidence 
phylogenetic signal. In  case  of alternative  topologies, the  one  concordant with  the  species tree  is the 
most parsimonious explanation  for a  gene’s evolution. Alternative  topologies that occur with  similar 
frequency indicate  a  lack of phylogenetic signal. With  regard  to  the  statistical  branch  support, we 
showed  in  the  simulation  study that values can  be  strongly influenced  by the  internode  length  (Fig. 
2E). For SwissTree  we  currently use  bootstrap, a  rather conservative  measure. When  trees from 
extended  datasets are  pruned, we  think it is admissible  to  report the  highest support for a  clade  of 
interest; though, we  have  not yet introduced  this in  practice. If all  phylogenies for a  clade  are 
discordant from the  species tree, we  perform additional  studies that focus on  individual  spots in  the 
tree  and  strive  to  explain  topologies, taking  into  account also  gene  synteny, if species are  not too 
distant from each  other. Finally, representative  trees - including  the  ones with  contradicting  topologies 
- are  gathered  in  the  family ‘tree  pool’. 

Model gene  trees  and confidence  annotation. During  manual  recursive  phylogenetic analyses of a 
gene  family, gradually a  model  of gene  evolution  becomes apparent, despite  contradicting  topologies 
in  the  result trees (‘tree  pool’). Some  alternative  topologies can  be  easily identified  as artefacts, others 
remain  questionable  and  require  further study ; each  family has its own  peculiarities in  addition  to  the 
typical  clade-specific characteristics. By interpreting  the  continuously accumulating  phylogenetic gene 
trees, the  at first complex model  of gene  evolution  progressively turns into  an  easy to  explain  gene 
history. This model  tree  is then  evaluated  by annotating  the  quality and  quantity of clade  predictions 
from the  gene  trees. For each  internode, we  annotate  the  highest statistical  support, the  number of 
clade  occurrence, the  average  clade  support, and  in  addition  we  distinguish  whether a  clade  was 
confirmed  by a  tree  including  all  clade  members or whether the  clade  is confirmed  by a  compatible 
clade  with  less members. By doing  so, users can  treat as unresolved  (“soft polytomies”) nodes that are 
below  the  minimum required  level  of confidence. Confidence  annotation  is furthermore  added  in  form 
of branch  colors, indicating  the  strength  of support or missing  support. Latter gives a  convenient 
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survey already during  the  construction  of SwissTree  trees and  can  be  used  as guide  for subsequent 
analyses. Vice  versa, we  annotate  also  the  correctness of each  pool  tree  given  the  model  tree  by 
shades of colors according  to  the  gene  tree’s branch  support.  

This procedure  has been  introduced  to  the  SwissTree  entries ST001, ST003, ST005, and  ST018. The 
annotated  model  tree, pool  trees, raw  trees and  MSAs are  available  at 
http://swisstree.vital-it.ch/gold_standard , the  reference  species tree  is available  at 
http://swisstree.vital-it.ch/species_tree . 

SwissTree: maintenance  and extendibility . Our framework makes the  maintenance  of a  collection 
of deep  gene  histories feasible: upon  new  findings, for instance  a  change  in  the  reference  species 
tree, the  updated  gene  tree  models can  be  annotated  with  no  further analysis based  on  the  tree  pool. 
Likewise, the  tree  pool  can  be  augmented  with  trees reconstructed  with  alternative  phylogenetic 
reconstruction  methods or newly available  data. 

But what is more, the  framework grants new  options. Acquired  - and  generally conserved  - molecular 
characteristics of genes, gene  products or gene  environments can  be  encoded  as (partially or fully 
resolved) tree  structures and  added  to  the  pool  of gene  trees, and  their concordance  or discordance 
with  the  model  gene  tree  can  be  assessed. Examples of such  complements are  gene  synteny, 
exon-intron  structure, domain  architecture, functional  regions or sites. 

 

 

Fig. 6. Conceptual  overview  of SwissTree  construction. 
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Case study: The APP  gene family 

Amyloid  Precursor Proteins (APP) are  cell-surface  receptors involved  in  diverse  functions including 
iron-export, cell  adhesion, endocytosis, Notch  signaling  pathway inhibition, apoptosis. Well-studied  is 
the  impact of A4  subfamily members on  neurons, because  its cleavage  can  generate  plaque-forming 
amyloid  beta  peptides in  Alzheimer disease  patients. Members of the  gene  family have  been  identified 
in  the  metazoan  lineage. Typically, invertebrate  genomes possess a  single  gene  copy (APP), 
vertebrates three  copies (A4, APLP1, APLP2), and  ray-finned  fishes an  additional  A4  gene  copy (A4a, 
A4b). Four conserved  domains are  predicted  in  all  family members analyzed  here, three  in  the 
extracellular space  (APP-N  (PF02177), APP_Cu_bd  (PF12924), APP_E2  (PF12925)) and  one  in  the 
intracellular space  (APP_amyloid  (PF10515)). The  vertebrate  A4  and  APLP2  subfamilies possess in 
addition  a  Kunitz domain  (PF00014), and  A4  subfamily members an  extra  beta-APP domain 
(PF03494). The  placozoa  Trichoplax adhaerens (UniProtKB mnemonic code: TRIAD) lacks a  typical 
amyloid  domain. 

The  phylogenetic analysis is performed  on  a  set of 45  genes from Quest for Orthologs (QfO) reference 
species. The  challenge  is versatile. Protein  sequences are  highly conserved  within  mammalian 
subfamilies, resulting  in  a  lack of phylogenetic signal  particularly at the  protein  level  for closely related 
species and  in  a  strong  mutational  bias within  the  coding  region  of genes. By contrast, a  lack of 
phylogenetic signal  in  invertebrate  data  is due  to  a  low  species density. Not to  mention, subfamilies 
and  clades evolve  at different rates and  multiple  gene  models are  incomplete  or erroneous. Based  on 
the  current dataset it therefore  seems not feasible  to  generate  an  accurate  gene  family tree  by means 
of a  single  analysis and  indeed, none  of the  major phylogenomic databases at present show  a 
conclusive  gene  phylogeny. However, by performing  multiple  problem-optimized  analyses we  can 
develop  a  model  of gene  evolution  that is - in  the  end  - in  agreement with  the  reference  species tree. 
Main  clades, for instance, are  analyzed  with  a  dataset that is enriched  with  invertebrate  genes and 
reduced  for vertebrate  genes. Subfamily phylogenies are  inferred  from nucleotide  and  amino  acid 
sequence  data  by maximizing  the  alignment length  and  minimizing  missing  and  ambiguous 
characters; latter have  a  strong  impact on  results when  analyzing  highly redundant data. Unstable  or 
questionable  nodes are  re-evaluated  in  subsequent subclade-specific analyses. For instance  in  all  the 
three  subfamilies, the  divergence  order of primates, glires and  laurasatherians is questionable  and 
incongruence  due  to  missing  phylogenetic signal  can  be  expected  because  of short time  spans 
between  the  two  speciation  events. Because  the  species tree-consistent topology is one  of the  two 
alternative  topologies and  we  observe  no  evidence  for an  evolutionary event other than  speciation, the 
model  tree  is concordant with  the  species tree  at this node, annotated  with  the  corresponding 
bootstrap  support. Figure  7  shows an  example  of a  phylogenetic tree  that was optimized  for the  study 
of early vertebrate  divergence  patterns. During  the  analysis we  start with  enlarged  datasets and  strive 
to  stepwise  reduce  redundancies while  the  topology remains consistent. This way, we  can  also 
remove  taxa  for which  species phylogenies are  inconsistent, thus making  an  interpretation  of the  tree 
difficult. The  model  gene  tree  for the  APP family is shown  in  Figure  7  along  with  one  of the  pool  trees 
and  the  corresponding  raw  tree. The  annotated  model  tree, pool  trees and  raw  trees can  be  explored 
at http://swisstree.vital-it.ch/ST018 . 
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Figure 7. SwissTree model gene tree for  the APP gene family (ST018). A. Comparison of the model  tree (left) and one of the 
pool  trees (tree 6) for subfamily APLP2 (right), visualized using phylo.io with tree comparison setting; tree concordance is 
color-coded dark blue, discordance light blue, missing clades are shown in white, missing subclades in grey. The analyzed 
subfamily APLP2 stands out in blue. B. Same as A, ‘maximum support’  settings; the model  tree is annotated and color-coded 
according to the maximum level  of clade support by the pool  trees, the pool  tree is color-coded for model  tree concordance and 
shows the level  of bootstrap support. Green indicates topological  concordance, the color shade relates to the level  of support; 
red indicates topological  discordance. The outgroup branch of the model  tree is always shown in red, because outgroups are 
removed from the pool  trees prior to tree reconciliation. In the pool  tree the primate/laurasatherian clade is not confirmed. C. 
Raw tree corresponding to the pool  tree shown in Figure A and B, color-coded by topological  concordance with the model  tree. 
Raw trees are phylogenetic gene trees used to generate pool  trees by pruning supplementary taxa and subsequent annotation. 
The raw tree shows additional  taxa in for early vertebrates (white and grey branches), which was the focus of interest in this 
analysis. D. Raw tree generated with a focus on the mammalian clade. The enrichment of the dataset with mammalian genes 
(white and grey branches) results in a tree topology that is in concordance with the species tree.  
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Large-scale study. Synapomorphic signal, tree inconsistency and taxa        
sampling ( Boreoeutheria ) 

Phylogenetic analyses of boreoeutherians lead  to  controversial  phylogenies for primates, glires and 
laurasatherians, supporting  either a  primate  glires sister clade  (e.g. [15], [16] [17] or a  primate 
laurasatherian  sister clade  (e.g. [18], [19], [20]). QfO datasets include  seven  boreoeutherian 
proteomes, three  primates (human, chimpanzee, macaque), two  glires (mouse, rat) and  two 
laurasatherians (bovin, dog) (abbreviated  by 7(3/2/2) in  Fig. 8). In  a  similar way than  in  the  simulation 
study above, we  analyze  MSAs from 374  1:1  orthologous gene  families for synapomorphic characters. 
Results clearly favor a  primate  laurasatherian  sister clade  with  glires as outgroup  (Fig. 8A). Because 
the  dataset is small  and  furthermore  redundant for glires, caution  is advised  for the  interpretation  of 
these  results. More  importantly, this data  is used  for benchmarking  purposes and  we  explore 
topologies of corresponding  phylogenetic trees from a  phylogenomic database  that does not take  into 
account species trees for tree  reconstruction. In  agreement with  the  phylogenetic signals observed  in 
the  MSAs, we  find  indeed  highest clade  occurrence  frequencies for the  sister clade 
primates/laurasatherians (Fig. 8B). In  addition, we  observe  within  gene  families tree  inconsistency that 
corresponds to  the  fraction  of observed  synapomorphic and  contradicting  signal. This result suggests 
that the  QfO benchmarking  dataset of seven  relevant proteomes could  be  indeed  too  small  for a 
rational  inference  of the  boreoeutherian  phylogeny, in  which  case  results should  differ when  analyzing 
enlarged  datasets. To  test this, we  perform the  same  MSA analysis on  a  dataset of 3526  mammalian 
families including  at least six members of each  clade  of interest and  at least two  out of six selected 
outgroup  members. From this dataset, three  subsets are  generated: 1) the  seven  relevant species of 
the  QfO datasets (same  as above; 7(3/2/2)), 2) all  six selected  species for each  of the  three  clades 
(18(6/6/6)), and  3) two  diverse  species for each  of the  three  clades (6(2/2/2)) (Fig. 8C-E). Results 
suggest that MSAs from the  large  dataset and  from the  small  dataset of diverse  species contain  more 
synapomorphic signal  for the  established  human  mouse  sister clade  (Euarchontoglires) than  for 
alternative  tree  topologies. Now  going  back to  findings from previous publications, it is striking  that it is 
especially the  innovative  large-scale  studies that suggest the  primate  laurasatherian  sister clade, but 
because  such  analyses are  CPU-time  intensive  and  because  of the  small  number of genomes with  a 
high  quality gene  prediction  one  to  two  decades ago, the  number of genomes used  was often  low. 
Rerunning  the  same  approaches with  data  from more  diverse  species, might well  result in  consistent 
topologies with  similar support. 
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Figure 8. Quantitative assessment of synapomorphic signal for  boreoeutherian sister  clades. A. Number of 
synapomorphic positions from MSAs of 374 one-to-one ortholog gene families for tree topologies with three different 
boreoeutherian sister clades primates/glires (H,M), primates/laurasatherian (H,D) and glires/laurasatherians (M,D); tree 
topologies are exemplified for Human (H), Mouse (M), Dog (D); for more detail, see text and cmp. Fig. 4. B. Venn diagram 
depicting the observed tree heterogeneity in the 374 gene families with 2-17 trees obtained from different datasets of the QfO 
proteomes. The largest fraction of families supports a primate/laurasatherian sister clade, tree heterogeneity is observed in 
45.2% of the gene families. C-E. Results from a dataset of 25,272 MSAs. C. Same taxon composition as in A; results confirm 
findings in A. D. Enlarged dataset with six diverse species for each of the three clades; the largest fraction of signal  supports the 
primates/glires sister clade; E. Dataset with only two, but diverse, representative species from each clade.  
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Assessment of orthology  predictions with SwissTree 

Benchmarking  results with  SwissTree  are  obtained  from the  Orthology Benchmarking  Webservice 
(http://orthology.benchmarkservice.org; [8] for 15  sets of orthology predictions from important methods 
and  databases: the  pairwise  methods InParanoid  [21] and  a  higher confidence  subset named 
“InParanoid  core”, OMA pairs [22], Reciprocal  Best Hits (RBH) [23] and  Reciprocal  Smallest Distance 
(RSD) [24], the  group-wise  (graph-based) methods EggNOG [25], Hieranoid  [26], OMA groups [22], 
OMA GETHOGs [27] and  OrthoInspector [28], and  the  tree-based  methods Ensembl  Compara  [29], 
PANTHER  [30], a  subset of PANTHER  named  PANTHER_LDO (Least Diverged  Orthologs), and 
PhylomeDB [31], as well  as the  meta-method  MetaPhOrs [32] (for details, see  [8]). A survey on  the 
correctness and  completeness of predicted  orthologs from the  benchmarking  dataset reveals a 
precision-recall  trade-off for all  methods from all  database  concepts (pairs, groups, trees, meta), 
particularly when  higher confidence  predictions are  provided  in  a  subset (InParanoid_core, 
PANTHER_LDO) (Fig. 9A, Supporting  Information  S3, Table  S3-1). 

Three  factors vitally affect the  identification  of orthologs: the  sequence  length, the  evolutionary 
distance  between  proteins and  the  complexity of gene  families. The  sequence  length  confines the 
region  within  which  phylogenetic signals can  occur and  logically, long  sequences can  capture  more 
signal  than  short ones. Indeed, the  distribution  of sequence  lengths for correct, missing  and  incorrect 
predictions show  the  trend  for higher correctness at long  sequence  length  (mean: 413.99  aa), and 
more  false  predictions (FP, FN) at shorter sequence  length  (mean: 333,79  aa) (Fig. 9B, Supporting 
Information  S3, Fig. S3-1). Another challenge  for orthology prediction  is the  difference  in  sequence 
length  of gene  pairs, which  can  occur naturally or as an  analysis artefact. On  the  one  hand, sequence 
search  and  alignment strategies can  be  more  difficult than  for equally long  sequences, on  the  other 
hand  it is a  fundamental  decision  whether to  consider also  partial  sequence  homologies or not. 
Phylogenomic databases deal  with  this issue  by setting  cut-offs for minimal  sequence  length 
differences or overlaps in  the  analysis procedure, which  can  furthermore  be  combined  with  a  minimum 
sequence  identity or similarity score. Thereby, a  stringent cut-off increases the  number of missed 
predictions (FN), a  relaxed  cut-off the  number of incorrect predictions (FP). It is thus an  important 
feature  of a  database’s strategy and  an  essential  criterion  for users in  search  for a  dataset suitable  for 
a  specific research  question. Figure  9C  (Supporting  Information  S3, Fig. S3-2) illustrates the 
correlation  between  the  sequence  length  differences of gene  pairs and  the  prediction  accuracy: on 
average  the  length  of correctly predicted  orthologs is more  similar (mean: 39.16  aa) than  the  length  of 
incorrectly predicted  orthologs (mean: 145.42  aa). For pairwise  methods, particularly RBH  and  RSD, 
largest sequence  differences are  observed  for incorrect predictions (mean: 201.30  aa), graph-based 
methods show  strongest length  differences either for missing  orthologs or incorrect predictions, and 
tree-based  methods possess a  mostly balanced  distribution  of sequence  length  differences for missing 
and  incorrect predictions. It is especially the  orthologs from distant species that largely differ in  size, so 
that results might be  influenced  from enlarged  evolutionary distances. By testing  the  impact of 
evolutionary distances on  the  analysis results, we  observe  indeed  similar trends for correct and 
incorrect predictions (substitutions per site; mean  for TP: 1.21; mean  for FP/FN: 2.13) (Fig. 9D, 
Supporting  Information  S3, Fig. S3-3). 

Gene  families are  difficult to  analyze  when  genes duplicate  successively within  a  short time  range  and 
when  paralogs evolve  at different rates. We  grouped  families into  two  categories of complexity, small 
(S) and  large  (L), according  to  the  number of paralogs. Taken  all  results from databases together, the 
fraction  of false  positives is considerably higher in  large  families (1.05%) than  in  small  families 
(0.25%). By contrast, the  fraction  of missing  orthologs in  large  families is only about half of that from 
small  families (24,26%  versus 12.25%  in  large  families) for the  set of SwissTree  families. 
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Figure 9. Survey on SwissTree benchmarking results. A. Correct (TP) and incorrect (FP, FN) orthology predictions for 15 
approaches, sorted by increasing number of true positives for each orthology prediction strategy in the order pairs, groups, 
trees, meta. B.-D. Distribution of sequence lengths (B), sequence length differences between genes of gene pairs (C) and 
evolutionary distances (D) for correct (green) and incorrect predictions (red) in the order pairs (bright-colored boxes), groups 
(medium-colored), trees (darkish), meta (darkest). The first, yellow box shows the distribution of values for orthologs predicted 
by SwissTree. Figures are available in Supporting Information S3. 

 

  

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 5, 2017. ; https://doi.org/10.1101/181966doi: bioRxiv preprint 

https://doi.org/10.1101/181966
http://creativecommons.org/licenses/by/4.0/


21 

Outlook  - Automation perspective  of the  SwissTree  procedure 
In  this study we  demonstrate  a  new  approach  that could  serve  as a  basis of sustainable  representative 
gene  trees. Attentive  taxon  sampling  optimized  for the  analysis of large  extended  datasets, individual 
clades and  subclades guaranties a  comprehensive  data  exploration. The  thereby generated  gene  tree 
heterogeneity conduces to  the  identification  of analysis artefacts and  missing  or contradicting 
phylogenetic signal. In  addition, potential  cases of discordant evolution  (e.g. introgression, ILS) stand 
out. Annotation, maintenance  and  extensibility of model  gene  trees are  part of the  SwissTree  concept. 

During  the  development, analyses were  performed  manually. Without bearing  automation  in  mind, 
optimization  steps are  at the  risk of introducing  bias. It is therefore  eligible  to  progressively automate 
the  analysis procedure, whereby an  elaborated  taxon  sampling  occupies a  central  position  in  view  of a 
massive  amount of genomic data. The  second  suspenseful  topic concerns the  construction  of 
preliminary model  gene  trees. With  some  experience  we  might learn  the  rules to  generate  assumed 
models automatically for a  large  part of genes and  to  subsequently evaluate  concordance  with  the 
phylogenetic gene  trees. By doing  so, human  time  will  be  freed  to  focus on  unconfirmed  branches in 
preliminary model  gene  trees. 
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Material and Methods 
Simulation data . A simulation  dataset of 1000  protein-coding, 1:1  orthologs for 100  taxa  was 
constructed  with  ALF, with  speciation  events occurring  according  to  a  ToL  of 1038  species from the 
OMA project (server version  3-Aug-2015  at http://alfsim.org; [33]) from a  generated  root genome 
(parameter settings: realseed  false, minGeneLength=240, gammaLengthDist=2.4/133.8, blocksize=3, 
treeType=TolSample, scaleTree=false, substModels=CPAM [34], indelModel=(0.0003, ZIPF, 
1.821,50), rateVarModel=(gamma,5,0.01,1), targetFreqs=random, amongGeneDistr=(gamma,1), time 
scale  PAM). The  amount of possible  phylogenetic information  that a  sequence  can  carry is limited  by 
the  sequence  length. The  minimal  gene  length  of the  ancestral  genome  is set to  240  nucleotides; the 
simulated  genes evolve  to  a  length  between  177  and  4083  nucleotides, 1071  on  average  (Fig. 10). 
The  result includes the  species tree  and  the  MSA as well  as the  phylogenetic tree  for each  gene 
family. The  distribution  of the  gene  lengths are  given  below.  

 

Fig. 10. Scatterplot depicting the  range  of nucleotide  sequence  lengths  for  each of the  1000 
simulated gene  families.  

 

From the  full  simulated  dataset, we  generated  six data  subsets: 1) a  balanced  set of 30  taxa, obtained 
by successively pruning  taxa  with  long  branches and  small  clades with  short internodes from the  100 
species tree  (b30); 2) a  balanced  set of 10  taxa, obtained  by successively pruning  taxa  with  long 
branches and  small  clades with  short internodes from the  species tree  of dataset b30  (b10); 3) 30 
randomly selected  taxa  from the  100  taxa  (r30); 4) 10  randomly selected  taxa  from 100  taxa  (r10); 5) a 
subclade  of 30  taxa  of the  100  species tree  (a30); 6) a  subclade  of 10  taxa  of the  30  species tree 
(a10). The  full  dataset is named  a100, and  we  further distinguish  a100/aa  for protein  sequence  data, 
and  a100/codon  and  a100/dna  for nucleotide  sequence  data. Taxon  names and  the  known  tree 
topology for each  dataset are  given  in  the  Supporting  Information  S1. 

Phylogenetic  analysis  of the  simulation data. Alignments for each  dataset are  extracted  from the 
true  alignments and  gap  positions with  less than  10%  characters are  removed  from the  dataset in 
order to  save  computing  time. Trees are  reconstructed  with  codon-PhyML  using  the  model 
HKY85+F+G(4)+I for nucleotide  substitution, GY+W+K+F F3x4  for codon  substitution, and 
WAG+F+G(4)+I for amino  acid  substitution. These  models are  likely over-parameterized  in  most 
cases. In  the  ML  and  BI frameworks and  for nucleotide  substitution  models, overfitting  was found  to  be 
robust on  tree  topologies, but can  affect branch  length  estimates, branch  support and  the  overall 
likelihood  and  posterior probability of a  tree, respectively [35],[36]. The  tree  topology search  was 
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performed  with  NNI and  SPR  (‘Both’), except for the  codon-based  analysis for which  we  applied  only 
NNI to  minimize  a  possible  advantage  for this approach  over others because  the  simulation  data 
evolved  under a  codon-based  model. Parameters are  optimized  for tree  topology, branch  length  and 
substitution  rate. For each  dataset 1000  maximum likelihood  (ML) trees were  inferred  under the  model 
of nucleotide, codon  and  amino  acid  substitution, resulting  in  21000  trees.  

For the  comparison  of clade  recurrence  values and  aLRT-SH  support from complete  proteomes 
versus single  datasets, we  selected  from the  list of all  genes sorted  by alignment length  every 50th 
alignment, starting  at position  50. The  known  alignments of the  20  genes were  obtained  for datasets 
a30, b30  and  r30  and  a  rapid  bootstrap  analysis was performed  from 1000  replicates using  RAxML 
(model: GAMMAIWAGF). 

Analysis  of tree  correctness. The  concordance  of reconstructed  gene  trees with  the  corresponding 
species trees are  measured  using  Perl  scripts; the  fraction  of correct and  incorrect trees as well  as the 
fraction  of correct and  incorrect clades are  obtained  directly from the  annotated  sequence  trees. 
Results are  visualized  and  compared  with  R  (3.0.3) and  Microsoft Excel  (Office14). To  assess 
characteristics of balanced  trees, we  plot for dataset a100/aa  confidence  values from correct clade 
predictions (clade  occurrence  frequency, branch  support (aLRT-SH), maximum branch  support 
(aLRT-SH) against the  corresponding  internode  length  from the  species tree  (PAM distance). 
Confidence  of corresponding  correct clades from different datasets are  obtained  by mapping 
compatible  clades between  the  a100  species tree  and  the  species trees of the  six sub-datasets. 
 
Analysis  of synapomorphic  sites  in the  known MSAs  of the  simulation data. Amino  acids 
assumed  to  be  a  shared  derived  character of a  sister clade  is denoted  ‘synapomorphic’. The  number 
of synapomorphic sites in  the  MSA is determined  in  three  modes. In  the  stringent mode, the  two  sister 
clades share  a  conserved  amino  acid  in  an  MSA position, and  the  two  outgroups share  another 
conserved  amino  acid, whereas in  the  medium mode, the  two  outgroups to  the  sister clade  can  have 
any amino  acid  except the  one  shared  by the  sister clade. In  the  relaxed  mode, the  two  sister clades 
share  at least one  amino  acid  in  an  MSA position, and  the  two  outgroups to  the  sister clade  can 
possess any amino  acid  except the  one  shared  by the  sister clade. The  number of synapomorphic 
sites is determined  for two  clades (63, 87) for the  true  and  2  alternative  divergence  patterns of the 
subclades (Fig. 4A) from the  1000  MSAs of the  amino  acid  sequences from all  simulated  datasets. In 
addition, we  count the  number of parsimonious non-informative  sites according  to  our criteria 
(considering  only identity, not similarity) and  sites that are  not considered  (gaps: missing  positions in  at 
least one  clades or in  the  outgroup).  

Consensus  tree  construction and ranking strategies. Consensus trees are  constructed  with  Perl 
scripts, following  a  Nelson-like  combinable-component approach  for unrooted  trees. From a  set of 
unrooted  gene  trees, tree  split information  is summarized  in  a  matrix to  ease  the  mapping  of 
corresponding  splits and  to  collect clade  confidence  information  such  as clade  occurrence  frequency, 
maximum branch  support and  the  sum of branch  support for each  clade, which  is used  to  generate 
ordered  clade  lists for consensus tree  construction. As ranking  criteria, we  use  clade  occurrence 
frequencies as well  as ‘mean2’  which  is the  arithmetic mean  of the  clade  support considering  the  clade 
occurrence  frequency in  that the  clade  support for not predicted  true  clades is set to  zero. Consensus 
trees are  constructed  for the  three  trees for each  gene  (DNA, codon, aa; dataset), for the  three  gene 
trees pruned  from the  a100  gene  trees (DNA, codon, aa; pruned), as well  as for all  six gene  trees 
(DNA, codon  aa; dataset and  pruned). Trees of the  largest datasets (a100/dna, a100/codon, a100/aa) 
were  pruned  to  the  size  of the  six data  subsets using  the  Newick utilities [37]. 
 

Phylogenetic  analysis  of the  APP gene  family. The  phylogenetic analysis is performed  on  gene 
data  from 19  out of 21  metazoan  Quest for Orthologs (QfO) reference  species (04_2016; 
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http://www.ebi.ac.uk/reference_proteomes); the  two  metazoans not included  are  Ciona intestinalis 
(vase  tunicate) with  no  predicted  APP gene  family members, and  Ornithorhynchus anatinus (platypus) 
with  largely incomplete  data. Transcript and  protein  sequence  data  is obtained  from UniProt [38], 
ENSEMBL  [39], and  NCBI [40]. Transcripts are  translated  into  amino  acid  sequences, aligned 
(T-coffee: Expresso  mode  [41]; MAFFT: INSi-E or INSi-G mode  [42], dependent on  the  domain 
composition  of the  dataset) and  subsequently explored  and  edited  using  Jalview  [43] or MEGA (v6.06) 
[44]. The  nucleotide  sequences are  mapped  to  the  alignment, and  the  data  model  is selected  manually 
in  order to  maximize  homologous sequence  regions and  to  remove  ambiguous positions. Best fit 
models are  determined  with  Prottest (v3.4) [45] and  Mega6  (v6.06) and  ML  trees reconstructed  using 
codonPhyml  and  Mega6. The  resulting  trees are  inspected  with  Archaeopteryx 
(https://sites.google.com/site/cmzmasek/home/software/archaeopteryx) or phylo.io  [46]. If phylogenetic 
gene  trees are  incongruent with  the  SwissTree  reference  species tree  model  or weakly supported, the 
stability of tree  topologies is revised  by subclade  analyses with  a  higher species density. If the  new 
gene  tree  is concordant with  the  species tree, the  tree  is pruned  to  the  species set of interest (using 
the  NEWICK Utilities or manually with  Archaeopteryx) and  added  to  the  gene  tree  pool. The  analysis 
of the  family and  subfamily results in  x trees. Subsequent to  the  analysis of ambiguous clades, a 
model  of gene  family phylogeny is generated  manually. The  gene  tree  support - occurrence  frequency, 
highest support and  mean  support -  is mapped  to  all  nodes to  the  family tree  model  (extended  Newick 
format) using  Perl  scripts; likewise, congruence  with  the  gene  tree  model  is annotated  in  all  gene 
trees. 

Analysis  of synapomorphic  sites  in MSAs  and tree  inconsistency  within gene  families. The 
PhylomeDB/QfO benchmarking  reference  dataset 2013  comprises 186282  trees, from which  we 
remove  exact tree  duplicates (30753  trees), prune  prokaryotic genes from all  trees (991613  OTUs; 
prokaryotic data  is not suitable  for this analysis because  of extensive  HGT and  the  lack of a  confident 
species tree) and  discard  trees with  less than  4  OTUs (12192  trees). Subsequently, trees with  two  or 
more  genes from the  same  species (132584  trees with  intra-species gene  copies) are  filtered. Gene 
trees that share  at least one  gene  are  grouped  into  2262  families and  filtered  for intra-species gene 
copies across trees (349  families), resulting  in  1913  1:1  ortholog  gene  families with  at least two  gene 
trees. This dataset is used  to  study tree  inconsistency within  gene  families. Model  trees are  generated 
for each  family by pruning  the  species tree  to  the  relevant set of family members. Family tree  pools 
and  model  trees are  reconciled, annotated  and  evaluated  as described  above. In  order to  calculate  the 
maximal  possible  support for each  node, we  perform the  same  analysis with  trees obtained  by pruning 
the  species tree  to  the  corresponding  set of family members for each  pool  tree. To  determine  support 
for different models of mammalian  evolution, we  select from the  set of 1913  families those  with  the 
relevant species in  the  QFO benchmarking  dataset, namely three  primates Homo sapiens, Pan 
troglodytes, Macaca mulatta), two  glires (Mus musculus, Rattus norvegicus) and  two  laurasatherian 
(Bos taurus, Canis lupus familiaris), resulting  in  374  families. Because  models are  rooted, there  is no 
need  to  include  outgroups. Two  alternative  model  trees are  generated  with  the  sister clades 
primates/laurasatherians and  laurasatherians/glires. The  analysis is performed  as described  above. 
From the  corresponding  MSAs of the  human  phylome, we  determine  the  number of synapomorphic 
sites for the  true  tree  and  the  2  alternative  trees around  an  internode  in  the  three  modes for the  374 
families of the  QfO benchmarking  dataset. 

From a  dataset of 26252  mammalian  MSAs provided  by eggNOG (maNOG; release  4.5.1), we  select 
3526  MSAs that contain  a  single  (assumed  1:1  orthologs) of six primates (Homo sapiens, Pan 
troglodytes, Pongo abelii, Macaca mulatta, Callithrix jacchus, Microcebus murinus), glires (Cavia 
porcellus, Dipodomys ordii, Ictidomys tridecemlineatus, Mus musculus, Oryctolagus cuniculus, Rattus 
norvegicus), and  laurasatherians (Bos taurus, Canis lupus familiaris, Equus caballus, Myotis lucifugus, 
Sus scrofa, Tursiops truncatus) as well  as at least two  outgroup  members (Loxodonta africana, 
Dasypus novemcinctus, Monodelphis domestica, Notamacropus eugenii, Ornithorhynchus anatinus, 
Sarcophilus harrisii). The  number of synapomorphic positions is determined  for three  datasets: 1) the 
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seven  species of the  QfO benchmarking  dataset 2013  (same  as above), 2) for a  dataset of 6  species 
per clade  and  for a  dataset of two  diverse  species per clade  (Homo sapiens, Microcebus murinus, Mus 
musculus, Oryctolagus cuniculus, Bos  taurus, Myotis lucifugus). 

Analysis  of the  SwissTree  benchmarking results. Benchmarking  results for SwissTree  were 
obtained  from the  orthology benchmarking  service  (http://orthology.benchmarkservice.org) in  form of 
lists including  the  unique  identifiers for each  gene  of a  gene  pair as well  as the  prediction  result (True 
Positive  (TP), True  Negative  (TN), False  Positive  (FP), False  Negative  (FN)). From the  QfO 
benchmarking  proteomes we  determined  the  length  of each  sequence  and  calculated  the  sequence 
length  difference  of gene  pairs. The  evolutionary distance  of gene  pairs was estimated  from the 
multiple  sequence  alignment of each  family using  MEGA6.6. Finally we  classified  gene  families in 
three  categories of complexity according  to  the  number of paralogs. Database  concept-specific 
prediction  results were  determined  by calculating  Venn  diagrams at 
http://bioinformatics.psb.ugent.be/webtools/Venn.  

Visualization. Graphs were  generated  using  R  and  MS-Excel. Phylogenetic trees are  visualized  with 
phylo.io. 
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