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Around 150 million years ago, eusocial termites evolved from within the cockroaches, 50 million years
before eusocial Hymenoptera, such as bees and ants, appeared. Here, we report the first, 2GB genome
of a cockroach, Blattella germanica, and the 1.3GB genome of the drywood termite, Cryptotermes
secundus. We show evolutionary signatures of termite eusociality by comparing the genomes and
transcriptomes of three termites and the cockroach against the background of 16 other eusocial and
non-eusocial insects. Dramatic adaptive changes in genes underlying the production and perception
of pheromones confirm the importance of chemical communication in the termites. These are ac-
companied by major changes in gene regulation and the molecular evolution of caste determination.
Many of these results parallel molecular mechanisms of eusocial evolution in Hymenoptera. However,
the specific solutions are remarkably different, thus revealing a striking case of convergence in one of

the major evolutionary transitions in biological complexity.

1 Eusociality, the reproductive division of labour with overlapping generations and cooperative brood care,
2 is one of the major evolutionary transitions in biology'. Although rare, eusociality has been observed
;5 in a diverse range of organisms, including shrimps, mole-rats and several insect lineages®3%. A particu-
+ larly striking case of convergent evolution occurred within the holometabolous Hymenoptera and in the
s hemimetabolous termites (Isoptera), which are separated by ca. 400 my of evolution®. Termites evolved
s within the cockroaches around 150 mya, towards the end of the Jurassic®”, about 50 my before the first
7 bees and ants appeared®. Therefore, identifying the molecular mechanisms common to both origins of
s eusociality is crucial to understanding the fundamental signatures of these rare evolutionary transitions.
o While the availability of genomes from many eusocial and non-eusocial hymenopteran species® has allowed

910,11 "5 paucity of genomic data

10 extensive research into the origins of eusociality within ants and bees
u  from cockroaches and termites has precluded large-scale investigations into the evolution of eusociality
12 in this hemimetabolous clade.

13 The conditions under which eusociality arose from within the cockroaches differ greatly from
1 those present in the non-eusocial ancestors of eusocial Hymenoptera. Termites and cockroaches are
15 hemimetabolous and so show a direct development, while holometabolous hymenopterans complete the
16 adult body plan during metamorphosis. In termites, workers are immatures and only reproductive castes
v are adults'?, while in Hymenoptera, adult workers and queens represent the primary division of labour.
18 Moreover, termites are diploid and their colonies consist of both male and female workers, and usually
19 a queen and king dominate reproduction. This is in contrast to the haplodiploid system found in Hy-
2 menoptera, in which all workers and dominant reproductives are female. It is therefore intriguing that
a1 strong similarities have evolved convergently within the termites and the hymenopterans, such as differ-
» entiated castes and a nest life with reproductive division of labour. The termites can be subdivided into

23 wood-dwelling and foraging termites. The former belong to the lower termites and produce simple, small
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2« colonies with totipotent workers that can become reproductives. Foraging termites (some lower and all
» higher termites) form large, complex societies, in which worker castes can be irreversible!?. Similarly,
» within ants, bees and wasps, varying levels of eusociality exist.

27 Here we provide insights into the genomic signatures of eusociality within the termites. We analysed
;s the genomes of three termite species with differing levels of social complexity and compared them to the
2 first cockroach genome, as a closely-related non-eusocial outgroup. Furthermore, differences in expression
3 between nymphs and adults of the cockroach were compared to differences in expression between workers
a1 and reproductives of the three termites, in order to gain insights into how expression patterns changed
2 along with the evolution of castes. Using fifteen additional insect genomes to infer background gene
;3 family turnover rates, we analysed the evolution of gene families along the transition from non-social
u cockroaches to eusociality in the termites. In this study we concentrated particularly on two hallmarks
s of insect eusociality, as previously described for Hymenoptera, with the expectation that similar patterns
s occurred along with the emergence of termites. These are the evolution of a sophisticated chemical

» communication, which is essential for the functioning of a eusocial insect colony? 1314

and major changes
5 in gene regulation along with the evolution of castes® !?. Additionally, we tested the hypothesis that the
s high levels of transposable elements present in cockroach and termite genomes allowed the evolution of

w0 gene families which were essential to the transition to eusociality.

« Evolution of genomes and proteomes

2 We sequenced and assembled the genome of the German cockroach, Blattella germanica (Ectobiidae),
s and of the lower, drywood termite, Cryptotermes secundus (Kalotermitidae; for assembly statistics see
« supplementary table S1). The cockroach genome (2.0 Gb) is considerably larger than all three termite
s genomes. The genome size of C. secundus (1.30 Gb) is comparable to the higher, fungus-growing termite,
w Macrotermes natalensis, (1.31 Gb, Termitidae)'® but more than twice as large as the lower, dampwood
« termite, Zootermopsis nevadensis (562 Mb, Termopsidae)'®. The smaller genomes of termites compared
w to the cockroach are in line with previous size estimations based on C-values!”. The proteome of B. ger-
w0 manica (29,216 proteins) is also much larger than in the termites, where we find the proteome size in
so  C. secundus (18,162) to be similar to the other two termites (M. natalensis: 16,140; Z. nevadensis:
st 15,459; Fig. 1). In fact, the B. germanica proteome was the largest among all 21 arthropod species anal-
2 ysed here (20 insects and the centipede Strigamia maritima; Fig. 1). Strong evidential support for over
53 80% of these proteins in B. germanica (see supporting material) and large expansions in many manually
s« annotated gene families offer high confidence in the accuracy of this proteome size. We compared gene

s expression between nymphs (5th and 6th instars) and female reproductive adults in B. germanica, and
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ss  between workers, queens and kings in each of the three termites. Gene expression differed significantly
s (p < 0.05) between female reproductives and nymphs in 2457 genes for B. germanica. In the termites
s 3369 (C. secundus) to 6756 (Z. nevadensis) genes differed significantly between queens and workers,
5o which are arguably analogous to female adults and nymphs in the cockroach (Fig. 2).

60 The transitions to eusociality in ants'® and bees® have been linked to major changes in gene family
o sizes. Similarly, we detected significant gene family changes on the branch leading to the termites (7
» expansions and 10 contractions; Fig. S1, table S2). The numbers of species-specific, significant expan-
3 sions and contractions of gene families varied within termites (Z. nevadensis: 15/5; C. secundus: 27/3;
s« M. natalensis: 24/20; tables S3-S5). Interestingly, in B. germanica we measured 93 significant gene fam-
es ily expansions but no contractions (table S6), which contributed to the large proteome. The C. secundus
oo and B. germanica genomes contain similar proportions of repetitive content (both 55%; table S7), which
e is higher than in both Z. nevadensis (28%) and the higher termite, M. natalensis (46%)'®. This is in
e contrast to the reported negative correlation between repetitive content and the level of eusociality in

9. As also found in Z. nevadensis and M. natalensis'®, LINEs and especially the subfamily BovB

e bees
7 were the most abundant transposable elements (TEs) in the B. germanica and C. secundus genomes,
n indicating that a proliferation of LINEs may have occurred in the ancestors of Blattodea (cockroaches
2 and termites). We hypothesised that these high levels of TEs may be driving the high turnover in gene
73 family sizes within the termites and B. germanica'®. Expanded gene families indeed had more repetitive
72 content within 10 kb flanking regions in all three termites (p < 1.3x1078; Wald t-test; table S8-S9), in
7 particular in the higher termite M. natalensis. In contrast, gene family expansions were not correlated
% with TE content in flanking regions for B. germanica. These results suggest a major expansion of LINEs
77 at the root of the Blattodea clade contributed to the evolution of gene families within termites, likely via
s unequal crossing-over'?; however, the expansions in B. germanica were not facilitated by TEs. It can
7 therefore be concluded that the large expansion of LINEs within Blattodea allowed the evolution of gene
s families which ultimately facilitated the transition to eusociality.

81 Out of 729 non-saturated (synonymous substitution rate: dS < 3) 1-to-1 protein orthologs between
& the termites and the two closest related, available non-eusocial species, B. germanica and the orthopteran
&3 Locusta migratoria, we found 165 (22.6%) to be evolving significantly faster (ratio of nonsynonymous to
s synonymous nucleotide substitution rates: dN/dS or w) among the termites. These genes were enriched in
s functions related to carbohydrate metabolism (table S10), which was also over-represented in genes with

s higher w values in eusocial compared to non-eusocial bees'!.

Functions related to oxidation-reduction
&7 processes, including a number of mitochondrial genes, were also enriched among genes with a higher w
ss  within termites. This is consistent with the finding that mitochondrial genes were found to be evolving

s under positive selection during the evolution of ants??. One hundred (60.6%) of the genes with a signifi-
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o cantly higher w within the termites were evolving even faster on the branch leading to the higher termite,
o M. natalensis. The ten most significant of these genes have functions related to signaling, cell transport,
» glycogen metabolism, transcription regulation, proteolysis and morphogenesis (table S11). These findings
o3 support the notion that changes in gene regulation, diet and developmental pathways have facilitated
o the transition to higher eusociality and a change from simple wood-dwelling colonies to large, complex,

o foraging societies.

»« CHC production

oz Despite their different ancestry, both termites and eusocial hymenopterans are characterised by the pro-
s duction of caste-specific cuticular hydrocarbons (CHCs)?1:22:23 which are often crucial for regulating
o reproductive division of labour and chemical communication. Accordingly, we find changes in the ter-
wo mites in three groups of proteins involved in the synthesis of CHCs: desaturases (introduction of double
w1 bonds??), elongases (extension of C-chain length?®) and CYP4G1 (last step of CHC biosynthesis?®).

102 Desaturases are thought to be important for division of labour and social communication in ants?”. As
ws  previously described for ants?7, Desat B genes are the most abundant desaturase family in the termites
e and the cockroach (table S12), especially in M. natalensis where we found ten gene copies (significant
s expansion; p = 0.0024; table S5; Fig. S7). As in ants, especially the First Desaturases (Desat A - Desat E)
e vary greatly in their expression between castes and species in the three termites (Fig. 2; table S13)%7.
w7 Both in Z. nevadensis and M. natalensis, most desaturases are more highly expressed in worker castes
s than in queens, while these genes are generally more evenly expressed between castes in C. secundus.
1w In B. germanica 4 out of 7 Desat B genes are over-expressed in nymphs compared to female adults
uo and only one is more highly expressed in female adults (table S13). This pattern has been maintained
w in Z. nevadensis (1 queen, 2 worker genes) and M. natalensis (5 worker genes), in which most Desat B
12 genes are worker-specific. In contrast to ants, where these genes are under strong purifying selection?’, we
us  found significant positive selection within the Desat B genes for the highly eusocial termite, M. natalensis,
s (codeml site models 7 & 8; p = 1.1x107 1), indicating a diversification in function, possibly related to their
us greater diversification of worker castes (major and minor workers, major and minor soldiers). Although
us desaturases are often discussed in the context of CHC production and chemical communication, their
17 biochemical roles are quite diverse?”, and the positive selection we observe for M. natalensis may, at least
us in part, be related to their rather different ecology of foraging and fungus farming rather than nest mate
19 recognition. Future experimental verification of the function of these genes will help better understand
120 these observed genomic and transcriptomic patterns.

121 Underlining an increased importance of CHC communication in termites, the expression patterns
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122 of elongases (extension of C-chain length) differ considerably in the termites compared to the cockroach
s (Fig. 2; table S14). In contrast to B. germanica, in which elongases are both nymph- (6 genes) and adult-
s biased (5 genes), only one or two elongase genes in each termite are queen-biased in their expression,
s while many are worker-biased. As with the desaturases, a group of M. natalensis elongases also reveal
s significant signals of positive selection (codeml branch-site test; p = 4x10~%), further indicating a greater
7 diversification of CHC production in this higher termite.

128 The last step of CHC biosynthesis, the production of hydrocarbons from long-chain fatty aldehydes,
e is catalyzed by a P450 gene, CYP4G1, in Drosophila melanogaster?s. We found one copy of CYP4G1 in
1w B. germanica, Z. nevadensis and C. secundus, but three copies in M. natalensis, reinforcing the greater
w  importance of CHC synthesis in this higher termite. Such P450 genes have experimentally been shown to
12 be crucial for maintaining reproductive division in the termite C. secundus®®. Corroborating the known
1 importance of maternal CHCs in B. germanica®®, CYP4G1 is over-expressed in female adults compared
1z to nymphs (Fig. 2; table S15). In each of the termites, however, CYP4G1 is more highly expressed in
s workers (or kings in C. secundus) compared to queens (Fig. 2; table S15), adding support that, compared

s to cockroach nymphs, a change in the dynamics and turnover of CHCs in termite workers has taken place.

= Perception of chemical cues

138 Insects perceive chemical cues from toxins, pathogens, food and pheromones with three major families
15 of chemoreceptors, the Odorant (ORs), Gustatory (GRs) and Ionotropic (IRs) Receptors®’. Especially
w ORs have been linked to colony communication in eusocial Hymenoptera, where they abound!'?: 4. In-
w1 terestingly, as previously detected for Z. nevadensis'®, the OR repertoire is substantially smaller in
w2 B. germanica and all three termites compared to hymenopterans. IRs, on the other hand, which are
13 less frequent in hymenopterans, are strongly expanded in the cockroach and termite genomes (Fig. 3 &

s Fig. S6). Intronless IRs, which are known to be particularly divergent3!

, show the greatest cockroach-
1 and Blattodea-specific expansions (Fig. 3a, Blattodea-, Cockroach- and Group D-IRs). By far the most
1us IRs among all investigated species were found in B. germanica (455 complete gene models), underlining
w7 that the capacity for detecting many different kinds of chemosensory cues is crucial for this generalist
us that thrives in challenging, human environments. In line with a specialisation in diet and habitat, the
1o total number of IRs is lower within the termites (Z. nevadensis: 141; C. secundus: 135; M. natalensis:
10 75). Nevertheless, IRs are more numerous in termites than in all other analysed species (except Nasonia
w1 vitripennis: 111). This is strikingly similar to the pattern for ORs in Hymenoptera, which are also highly
13,32

12 numerous in non-eusocial outgroups as well as in eusocial species

153 We scanned each IR group for signs of species-specific positive selection. Within the Blattodea-specific
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15« intronless IRs, we found several codon positions under significant positive selection for the higher termite,
155 M. natalensis (codeml site models 7 & 8; p < 1.7x1071%). The positively evolving codons are situated
15 within the two ligand-binding lobes of the receptors (Fig. 3c), showing a diversification of ligand specificity
157 has occurred along with the transition to higher eusociality and a change from wood-feeding to fungus-
155 farming in this higher termite. In total, only two IRs were differentially expressed between nymphs and
10 adult females in B. germanica. Underlining a change in expression along with the evolution of castes, we
w0 found 35 IRs to be differentially expressed between workers and queens in Z. nevadensis, 12 in C. secundus
e and 11 in M. natalensis (Fig. 3, table S16). The possible role of IRs in pheromonal communication has
1z been highlighted both in the cockroach Periplaneta americana®® and in D. melanogaster3*, where several
13 IRs show sex-biased expression.

164 Omne group of ORs (orange clade in Fig. 3b) is evolving under significant positive selection at codon
165 positions within the second transmembrane domain in M. natalensis (codeml site model; p = 1.1x107 1)
s and C. secundus (p = 5.6x1071%; Fig. 3d). Such a variation in the transmembrane domain can be related
17 to ligand binding specificity, as has been shown for a polymorphism in the third transmembrane domain

35,36 adding further support for an adaptive evolution of chemoreceptors,

s for an OR in D. melanogaster
10 in line with the greater need for a sophisticated colony communication in the termites. Similar to IRs, a
o higher proportion of ORs were differentially expressed between workers and queens in the three termites
m  than between nymphs and adults in the cockroach (Fig. 2; table S17), highlighting a change in expression
12 and function along with the transition to eusociality. The evolution of chemoreceptors along with the
w3 emergence of the termites can also be related to adaptation processes and changes in diet compared to

s the cockroach. Experimental verification will help pinpoint which receptors are particularly important

175 for communication.

» Changes in gene regulation in termites

177 The development of distinct castes underlying division of labour is achieved via differential gene expres-
s sion. Major changes in gene regulation have been reported as being central to the transition to eusociality
1o in bees? and ants'®. Accordingly, we found major changes in DNA methylation patterns (levels per 1-to-1
o ortholog) among the termites compared to four other hemimetabolous insect species (Fig. 4a). This is

3738 correlating

w1 revealed by CpG depletion patterns (CpG,/.), a reliable predictor of DNA methylation
12 more strongly between the termites than among any of the other analysed hemimetabolous insects (Fig.
13 4). In other words, within orthologous genes, DNA methylation levels differ greatly between termites and
18s other hemimetabolous species but remain conserved among termite species. Furthermore, a higher pro-

s portion of genes were putatively DNA methylated (CpG,/. < 0.5) within the termites (40.7% to 50.6%)
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s compared to other hemimetabolous species (11.5% to 34.0%), as also described for eusocial compared to
1 solitary bees?.

188 Levels of DNA methylation correlated negatively with caste-specificity of expression for each of the
1o termites. This is confirmed by a positive correlation between CpG, /. (negative association with level of
1o DNA methylation) and logs-fold change of expression between queens and workers (Pearson’s r = 0.32
o to 0.36; p < 2.2x10716). The caste-specific expression of unmethylated genes in termites is reflected
12 in the enrichment of GO terms related to sensory perception, regulation of transcription, signalling and
103 development, whereas methylated genes are mainly related to general metabolic processes (Fig. 4b, tables
1ws  S18). These results show strong parallels to findings for eusocial Hymenoptera®?:4%41:42 This is in stark
105 contrast to the non-eusocial cockroach, B. germanica, where there was only a very weak relationship
s between CpG, /. and differential expression between nymphs and adult females (r = 0.14), nor were any
w7 large differences apparent in enriched GO terms between methylated and non-methylated genes (Fig.
ws  4b).

199 Our results argue in favour of a diminished role of DNA methylation in caste-specific expression

3743 In fact, DNA methylation appears to be important for

20  within eusocial insects, as recently shown
20 the regulation of house-keeping genes because methylated genes are related to general biological processes
22 (further supported by lower CpG, /. within 1-to-1 orthologs than in non-conserved genes)**, while caste-
203 specific genes are 'released’ from this type of gene regulation. However, a recent study linked caste-specific
2 DNA methylation to alternative splicing in Z. nevadensis*®.

205 Major biological transitions are often accompanied by expansions of transcription factor (TF) families,
26 such as genes containing zinc-finger (ZF) domains?6. We also observed large differences in ZF families
27 within the termites compared to B. germanica. Many ZF families were reduced or absent in termites,
28 while different, unrelated ZF gene families were significantly expanded (tables S2-S5). Queen-biased
20 genes were significantly over-represented among ZF genes for termites (p < 2 x 10710;x? test; table
20 S19), indicating an important role of ZF genes in the regulation of genes related to caste-specific tasks
au and colony organisation in the termites. This is in contrast to the significant under-representation of
22 differentially expressed ZF genes within B. germanica (p = 1.42 x 107°; x2-test). Interestingly, two other
23 important TF families (bHLH and bZIP)%®, which were not expanded in the termites, showed no caste-
2 specific expression pattern (p > 0.05). These major upheavals in ZF gene families and their caste-specific

215 expression show that major changes in TFs accompanied the evolution of termites, strikingly similar to

26 the evolution of ants!?.
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 Endocrine regulation

2 Hemimetabolous eusociality is characterised by differentiated castes, which represent different develop-
20 mental stages. This is in contrast to eusocial Hymenoptera, in which workers and reproductives are adults.
20  While cockroaches develop directly through several nymphal stages before becoming reproductive adults,
a1 termite development is more phenotypically plastic, and workers are essentially immatures (Fig. 2).
22 In wood-dwelling termites, such as C. secundus and Z. nevadensis, worker castes are non-reproductive
»3  immatures that are totipotent to develop into other castes, while in the higher termite, M. natalensis,
24 workers can be irreversibly defined instars. It is therefore clear that a major change during the evolution
25 of termites occurred within developmental pathways. Accordingly, we found changes in expression and
26 gene family size of several genes related both to molting and metamorphosis.

27 In the synthesis of the molting hormone, 20-hydroxyecdysone, the six Halloween genes (5 Cytochrome

47,48 = Only one Halloween gene, Shade (Shd;

28 P450s and a Rieske-domain oxygenase) play a key role
20 CYP314A1), which mediates the final step of 20-hydroxyecdysone synthesis, is differentially expressed
20 between the final nymphal stages and adults females in B. germanica (Fig. 2; table S20), consistent with
2n  its role in the nymphal or imaginal molt. In the three termites, the Halloween genes show varying caste-
2 specific expression (Fig. 2; table S20), showing that ecdysone plays a significant role in the regulation
23 of caste differences. Ecdysteroid kinase genes (EcK), which convert the insect molting hormone into its
2 inactive state, ecdysone 22-phosphate, for storage??, are only over-expressed in female adults compared
25 to nymphs in B. germanica (16/51 genes, Fig.2, table S21). In termites, however, where the gene copy
26 number is reduced (18 to 20 per species), these important molting genes appear to have evolved worker-
a7 specific functions (Fig. 2; table S21).

238 Whereas 20-hydroxyecdysone promotes molting, juvenile hormone (JH) represses imaginal develop-

0

20 ment in pre-adult instars®®. JH is important in caste differentiation in eusocial insects, including ter-

12,51

20 Mmites Hemolymph juvenile hormone binding proteins (JHBP), which transport JH to its target

21 tissues®?

, are reduced within the termites (21 to 33 genes) but significantly expanded in B. germanica
22 (51 copies). Thirteen of the JHBP genes are over-expressed in adult females and only 8 in nymphs in
23 B. germanica. In both Z. nevadensis (15 worker-specific and 1 queen-specific) and M. natalensis (11
24 worker-specific and 4 queen-specific), on the other hand, JHBPs are significantly more worker-biased (p
us < 0.01, x? test; table S22; Fig. 2). In C. secundus, expression is more varied, with 5 worker-biased, 8
26 king-biased and 3 queen-biased genes (Fig. 2; table S22).

247 These changes in copy number and caste-specific expression of genes involved in metamorphosis and

2#s  molting within termites compared to the German cockroach demonstrate that changes occurred in the

29 control of the developmental pathway along with the evolution of castes. However, this interpretation
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0 needs to be experimentally verified.

» Conclusions

22 These results, considered alongside many studies on eusociality in Hymenoptera® 10-13,27

, provide evi-
»3  dence that major changes in gene regulation and the evolution of sophisticated chemical communication
s are fundamental to the transition to eusociality in insects. Strong changes in DNA methylation patterns
»s  correlated with broad-scale modifications of expression patterns. Many of these modified expression
6 patterns remained consistent among the three studied termite species and occurred within protein path-
7 ways essential for eusocial life, such as CHC production, chemoperception, ecdysteroid synthesis and JH
»s  transport. Many of the mechanisms implicated in the evolution of eusociality in the termites occurred
9 convergently around 50 my later in the phylogenetically distant Hymenoptera. However, several details
%0 are unique due to the distinct conditions within which eusociality arose. One important difference is the
s higher TE content within cockroaches and termites, which likely facilitated changes in gene family sizes,
x%2 supporting the transition to eusociality. However, the most striking difference is the apparent importance
»3  of IRs for chemical communication in the termites, compared to ORs in Hymenoptera. According to our
x4 results, the non-eusocial ancestors of termites possessed a broad repertoire of IRs, which favoured the
x5 evolution of important functions for colony communication in these chemoreceptors within the termites,
266 whereas in the solitary ancestors of eusocial hymenopterans ORs were most abundant!®32. The parallel
»7  expansions of different chemoreceptor families in these two independent origins of eusociality indicate that

xs convergent selection pressures existed during the evolution of colony communication in both lineages.
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-~ MATERIALS AND METHODS

» (Genome sequencing and assembly

2¢  Genomic DNA from a single Blattella germanica male from an inbred line (strain: American Cyanamid
»s = Orlando Normal) was used to construct two paired-end (180 bp and 500 bp inserts) and one of the two
©26 mate pair libraries (2 kb inserts). An 8kb mate pair library was constructed from a single female. The
w7 libraries were sequenced on an Illumina HiSeq2000 sequencing platform. The 413 Gb of raw sequence
2 data were assembled with Allpaths LG!, then scaffolded and gap-filled using the in-house tools Atlas-Link
20 v.1.0 (https://www.hgsc.becm.edu/software/atlas-1ink) and Atlas gap-fill v.2.2. For Cryptotermes
a0 secundus, three paired-end libraries (250 bp, 500 bp and 800 bp inserts) and three mate pair libraries
s (2kb, 5 kb and 10 kb inserts) were constructed from genomic DNA that was extracted from the head and
s thorax of 1 000 individuals, originating from a single, inbred field colony. The libraries were sequenced on
;3 an [llumina HiSeq2000 sequencing platform. The C. secundus genome was assembled using SOAPdenovo
a (v.2.04)% with optimised parameters, followed by gapcloser (v1.10, released with SOAPdenovo) and kgf
s (v1.18, released with SOAPdenovo).

=« Transcriptome sequencing and assembly

«7  For annotation purposes, twenty-two whole body RNAseq samples from various developmental stages
s were obtained for B. germanica. For C. secundus RNAseq libraries were obtained for three workers,
a9 four queens and four kings, based on degutted, whole body extracts. In addition, we sequenced 10
o M. natalensis RNAseq libraries from three queens, one king and six pools of workers. All libraries were
a1 constructed using the Illumina (TruSeq) RNA-Seq kit.

a2 For protein coding gene annotation, B. germanica reads were assembled with de novo Trinity (version
ws 12014-04-13)3. The C. secundus reads were assembled using i) Cufflinks on reads mapped with TopHat

ws  (version2.2.1)%5ii) de novo Trinity?; and iii) genome-guided Trinity on reads mapped with TopHat.

« Repeat annotation

ws A custom C. secundus and B. germanica repeat library was constructed using a combination of homology-
a7 based and de novo approaches, including RepeatModeler/RepeatClassifier (http://www.repeatmasker.
ws org/RepeatModeler.html), LTRharvest/LTRdigest® and TransposonPSI (http://transposonpsi.

w9 sourceforge.net/). The ab initio repeat library was complemented with the RepBase (update 29-
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w0 08-2016)7 and SINE repeat databases, filtered for redundancy with CD-hit and classified with Repeat-
s Classifier. RepeatMasker (version open-4.0.6, http://www.repeatmasker.org) was used to mask the
w2 C. secundus and B. germanica genome. Repeat content for the other studied species (Fig. 1) was

»s3  obtained from the literature® 9 10,11,12,13,14

= Protein-coding gene annotation

s The B. germanica genome was annotated with Maker (version 2.31.8)' using (i) the species-specific
w6 repeat library, (ii) B. germanica transcriptome data (22 whole body RNAseq samples), and (iii) the swis-
»s7 sprot/uniprot database (last accessed: 21-01-2016) plus the C. secundus and Zootermopsis nevadensis
ss  protein sequences for evidence-based gene model predictions. AUGUSTUS (version 3.2)'6, GeneMark-
wo  BS Suite (version 4.21)!7 and SNAP'® were used for ab initio predictions. Cryptotermes secundus
wo protein-coding genes were predicted using homology-based, ab initio and expression-based methods,
w1 and integrated into a final gene set (see supplementary information). Gene structures were predicted
w2 by GeneWise!®. The ab initio annotations were predicted with AUGUSTUS?? and SNAP'®, retained
ws if supported by both methods and integrated with the homology-based predictions using GLEAN?!.
w Transcriptome-based gene models were merged with PASA2? and tested for coding potential with CPC?3
w5 and OrfPredictor?*. PASA gene models were merged with the homology-based and ab initio gene set, re-
w6 taining the PASA models in case of overlap. Desaturases, elongases, chemosensory receptors, Cytochrome

w7 P450’s and genes involved in the juvenile hormone pathway were manually curated in Blattodea.

« Differential gene expression

wo  The C. secundus and M. natalensis RN Aseq libraries, were complemented with nine published Z. nevaden-
a0 sis libraries, yielding 2 to 6 libraries from workers, queens and kings for each termite. These were com-

th instar nymphs and

m  pared to six of the B. germanica libraries: two from 5" instar nymphs, two from 6
s two from adult females. Reads were mapped to the genome using HiSat22®. Read counts per gene where

w3 obtained using htseq-count and DESeq226 was used for differential expression analysis.

« Protein orthology

s In addition to B. germanica, C. secundus, Z. nevadensis and M. natalensis, 18 other insect proteomes
ars  were included in our analyses; L. migratoria, R. prolizus, E. danica, D. melanogaster, A. aegypti, T. cas-

a1 taneum, N. vitripennis, P. canadensis, A. mellifera, H. saltator, L. humile, C. floridanus, P. barbatus,
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ws S invicta, A. echinatior and A. cephalotes; as well as for the centipede, S. maritima, as an outgroup
a0 (for sources see Table S23). These proteomes were grouped in to orthologous clusters with OrthoMCL27,

w0 With a granularity of 1.5.

« IR and OR identification, phylogeny and structure

w2 Tonotropic receptors (IRs) were identified using two custom Hidden Markov Models (HMMs) obtained
w3 with hmmbuild and hmmpress of the HMMER suite?®. The first HMM comprises the IR’s ion channel and
@ ligand-binding domain based on a MAFFT?® protein alignment of 76 IRs from 15 species (Table S24).
w5 The second HMM was built to distinguish IRs from iGluRs, IR8a and IR25a, which have an additional
ws amino-terminal domain (ATD)3C. For this we built an HMM from 48 protein sequences (Table S24). The
w7 proteomes were scanned with pfam scan and the two custom HMMs, where proteins that matched the
s IR HMM, but not the ATD HMM were annotated as IRs. ORs were identified based on the Pfam domain
w0 PF02949 (7tm Odorant receptor).

490 Multiple sequence alignments of IRs and ORs were obtained with hmmalign?®, using the Pfam OR
w01 HMM PF02949 and custom IR HMM to guide the alignment. Gene trees were computed with FastTree3!
«> (options: -pseudo -spr 4 -mlacc 2 -slownni) and visualised with iTOL v332. Putative IR ligand-
w3 binding residues and structural regions were identified based on the alignments with D. melanogaster IRs

ws and iGluRs of known structure®3.

«» Gene family expansions and contractions

ws For the analyses of gene family expansions and contractions, the hierarchical clustering algorithm
w1 MC-UPGMA3* was used, with a ProtoLevel cutoff of 803°. Protein families were further divided into
ws  sub-families if they contained more than 100 proteins in a single species, or more than an average of 35
w0 proteins per species. Proteins were blasted against the RepeatMasker TE database (E-value < 107°) and
soo  clusters where > 50% of the proteins were identified as transposable elements were discarded. Clade- and
so0  species-specific protein family expansions and contractions, were identified with CAFE v3.0%% using the

37,38 (

s same protocol as see also Supplementary material).

« TE-facilitated expansions

sa The repeat content in the 10 kb flanking regions of B. germanica, C. secundus, Z. nevadensis and

ss M. natalensis genes was calculated using bedtools®®. CDS’ from neighbouring genes were removed and
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s6 the repeat content was analysed using Generalized Linear Mixed Models (glmmPQL implemented in the
sv  R*0 package MASS*!) with binomial error distribution. Fixed predictors included gene family expansion,
sos  species ID and their interaction. Cluster ID was fitted as random factor to avoid pseudo-replication.
s00  Significance was assessed based on the Wald-t test (R package aod*?) at a < 0.05. Main and interaction

s effects for each of the genomic regions are listed in table S8. Model parameters are listed in table S9.

. Evolutionary rates

sz The rate of protein evolution (w; ratio of non-synonymous to synonymous substitutions) was estimated
si3 for the OrthoMCL 1-to-1 orthologs in L. migratoria, B. germanica, Z. nevadensis, C. secundus and
su M. natalensis. Protein sequences were aligned with t-coffee®3. CDS alignments were obtained with
s pal2nal.pl** and trimmed with Gblocks?®. To identify genes with different rates of protein evolution
si6 within the termites compared to outgroups, a set of codeml branch models was used (model = 2; NSsites
sz = 0; PAML suiteS). Specifically, we compared the null model (Hy: one w across all branches) to i) Ha:
sis  allowing for termite-specific w ((Lmig,Bger, (Znev#1, (Csec#l, Mnat#1)#1)); and ii) Hao: allowing
si9  for different w for different levels of eusocial complexity (Lmig,Bger, (Znev#1, (Csec#1, Mnat#2)#1)).
s0 LR-tests were performed on unsaturated models (dS < 3) and p-values were Bonferroni-corrected. Gene
s ontology enrichment of genes with significantly higher rates of protein evolution in termites was performed
2 with the TopGo?” package in R.

523 To test for positive selection within gene families of interest, i) site model tests 7 and 8 were performed
s2  (model = 0; NSsites = 7 8) on species-specific CDS alignments or ii) branch-site test (model = 2; NSsites
s = 2; fix omega = 1 for null model and 0 for alternative model) on multi-species alignments. Protein
s sequences were aligned using MAFFT?? with the E-INS-i strategy, and CDS alignments were created

1

144, Phylogenetic trees were created with FastTree3!.

s7  using pal2nal.p Alignments were trimmed using
s2 Gblocks (settings: -b2 = 21; -b3 = 20; -b4 = 5; -b5 = a). Models were compared using LR test and
s0  where p < 0.05, Bayes Empirical Bayes (BEB) results were consulted for codon positions under positive

s selection.

= CpG depletion patterns and GO enrichment

sz To estimate DNA methylation we compared observed to expected CpG counts within CDS sequences*®49.

s A low CpG,/. indicates a high level of DNA methylation, as the cytosine of methylated CpGs often
s mutate to thymines. Expected CpG counts were calculated by dividing the product of cytosine and

535 guanine counts by the sequence length. The PCA in figure 3 was created using the R function prcomp
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s3 on log transformed CpG,/. values for all 1-to-1 orthologs for the seven hemimetabolous species. These
s orthologs were extracted from the OrthoMCL results. The 3D plot was created with the plot3d command
s from the R package rgl.

539 CpG depleted (first quartile) and enriched genes (fourth quartile) were tested for enrichment of Gene
s0  Ontology terms. Pfam protein domains were obtained for B. germanica, Z. nevadensis, C. secundus

50 Corresponding GO terms were obtained with

sa.and M. natalensis protein sequences using PfamScan
s2 Pfam2G0. GO-term over-representation was assessed using TopGO*” package in R. Enrichment analysis
s was performed using the weight algorithm selecting nodesize=10 to remove terms with less than 10
s« annotated GO terms. After that GO terms classified as significant (topGOFisherj0.01) were visualized

s using R package tagcloud (https://cran.r-project.org/web/packages/tagcloud/).

= Data availability

sev  The data reported in this study are archived at the following databases: NCBI (genomes sequences), SRA
s (genomic and transcriptomic reads), ibk Workspace@NAL & Dryad (annotations). Detailed accession
s information is tabulated in the Supplementary Materials (table S26).

ss0 - Scripts and output files are available on request to E.B.B.
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Figure 4: CpG,,. of seven hemimetabolous insects. a) PCA of DNA methylation patterns among
2664 1-to-1 orthologs, estimated via CpG,/.. Spheres represent positions of species within 3D PCA;
curves are distribution of CpG,,. with dotted line showing CpG,/. = 1. b) Tag clouds of enriched (p
< 0.05) GO terms (biological processes) among lower (left) and higher quartile (right) of CpG,,. within
termites (top) and B. germanica (bottom). For termites, genes were merged from all three species for
analysing GO term enrichment.

High CpG, /. indicates low level of DNA methylation and vice versa.
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