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Abstract 
Motivation: The three-dimensional organization of chromatin plays a critical role in gene regulation 
and disease. High-throughput chromosome conformation capture experiments such as Hi-C are used 
to obtain genome-wide maps of 3D chromatin contacts. However, robust estimation of data quality 
and systematic comparison of these contact maps is challenging due to the multi-scale, hierarchical 
structure of chromatin contacts and the resulting properties of experimental noise in the data. Meas-
uring concordance of contact maps is important for assessing reproducibility of replicate experiments 
and for modeling variation between different cellular contexts.  
Results: We introduce a concordance measure called GenomeDISCO (DIfferences between 
Smoothed COntact maps) for assessing the similarity of a pair of contact maps obtained from chro-
mosome conformation capture experiments. The key idea is to smooth contact maps using random 
walks on the contact map graph, before estimating concordance. We use simulated datasets to 
benchmark GenomeDISCO's sensitivity to different types of noise that affect chromatin contact maps. 
When applied to a large collection of Hi-C datasets, GenomeDISCO accurately distinguishes biologi-
cal replicates from samples obtained from different cell types. GenomeDISCO also generalizes to 
other chromosome conformation capture assays, such as HiChIP.  
Availability: Software implementing GenomeDISCO is available at 
https://github.com/kundajelab/genomedisco. 
Contact: akundaje@stanford.edu   
Supplementary information: Supplementary data are available at Bioinformatics online. 

 
 

1 Introduction  
The 3D conformation of chromatin defines a network of physical interac-
tions among genomic loci, including regulatory elements such as gene 
promoters, distal enhancers and insulators (Krijger and de Laat, 2016). 

Thus, 3D chromatin architecture plays a key role in gene regulation and 
cellular function. Changes in 3D chromatin architecture at multiple 
scales, ranging from large-scale rearrangement of compartments and 
topologically-associating domains (TADs) to rewiring of enhancer-
promoter interactions, are associated with dynamic cellular processes 
such as differentiation (Fraser et al., 2015; Dixon et al., 2015) 
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and reprogramming (Krijger and de Laat, 2016; Beagan et al., 2016), 
as well as disease (Lupiáñez et al., 2015; Gröschel et al., 2014).  
The last decade has witnessed a revolution in high-throughput sequenc-
ing-based assays and imaging techniques to map 3D chromatin architec-
ture at multiple scales and resolutions, providing new insights into spa-
tial genome organization (Schmitt et al., 2016). The sequencing-based 
methods (referred to as 3C-seq experiments) for assaying 3D chromatin 
architecture such as 3C (Dekker et al., 2002), 4C (Zhao et al., 2006; 
Simonis et al., 2006), 5C (Dostie et al., 2006), Hi-C (Lieberman-Aiden 
et al., 2009), Capture Hi-C (CHi-C) (Mifsud et al., 2015), ChIA-PET 
(Fullwood et al., 2009) and HiChIP (Mumbach et al., 2016) are all varia-
tions of the chromosome conformation capture technique. In a Hi-C 
experiment, genome-wide interactions are mapped by ligating proximal 
fragments followed by deep sequencing. The result of such an experi-
ment is a genome-wide contact map, which is a matrix with a sequencing 
readout of the contact frequency for every pair of genomic loci.  
A number of computational methods have been designed to normalize 
(Yaffe and Tanay, 2011; Hu et al., 2012; Imakaev et al., 2012; Knight 
and Ruiz, 2013; Servant et al., 2015) and extract statistically significant 
contacts from the different types of 3D chromatin conformation assays 
(Ay et al., 2014; Ron et al., 2017; Mifsud et al., 2017; Cairns et al., 
2016; Carty et al., 2017). However, principled methods for systematic 
comparisons of 3D contact maps are equally important and form a core 
component of two key analyses. First, as an essential quality control tool, 
it is useful to quantify the concordance of replicate experiments. This is 
particularly relevant because it is common practice to pool reads across 
biological replicates of a 3C-seq experiment before downstream anal-
yses. Significant differences between the pooled replicates could result in 
suboptimal or misleading downstream results. Second, understanding 
and quantifying similarity between replicates is also an essential step in 
differential analysis, where the goal is to reliably identify statistically 
significant differences between contact maps in different biological 
conditions. Differences between conditions can only be trusted if they 
exceed the differences between biological replicates. 
Experimentally derived contact maps exhibit certain properties that are 
distinct from other types of functional genomic data. First, contact maps 
explicitly encode the adjacency matrix of a multi-scale, modular network 
consisting of large-scale compartments, TADs, CTCF/cohesin mediated 
loops and potentially transient interactions between other types of ele-
ments (Schmitt et al., 2016). Second, the contact frequency between a 
pair of loci is strongly dependent on their linear genomic distance 
(Dekker et al., 2002; Ay et al., 2014; Duan et al., 2010) and affected by 
additional biases such as restriction fragment size, GC content and map-
pability (Yaffe and Tanay, 2011; Imakaev et al., 2012; Cournac et al., 
2012; Hu et al., 2012; Schmitt et al., 2016). Third, the resolution of a 
contact map defined in terms of the size (in nucleotides) of the interact-
ing loci is often a free parameter and heuristically determined based on 
the depth of sequencing (Rao et al., 2014). Finally, the noise associated 
with estimates of contact frequencies is also strongly associated with 
sequencing depth. These properties necessitate the development of new 
computational methods specifically suited for analysis of Hi-C data. 
Statistical measures that have been developed to quantify the reproduci-
bility of 1D functional genomics assays, such as ChIP-seq, DNA methyl-
ation and RNA sequencing, cannot be trivially applied to 3D contact 
maps. For instance, simple correlation measures, which are most fre-
quently used as measures of reproducibility (Rao et al., 2014), do not 
correctly capture the reproducibility of Hi-C data (Yang et al., 2017; 
Yardımcı et al., 2017). This is partly because these simple correlation 
measures consider each entry in a contact map as an independent meas-
urement, thereby ignoring the rich connectivity and dependence structure 

in 3D contact maps. More sophisticated reproducibility measures have 
recently been introduced including comparison of eigenvectors (Yan et 
al., 2017) and a stratified correlation coefficient (Yang et al., 2017) and 
these methods alleviate many of the problems with traditional correla-
tion.  
In this work, we introduce GenomeDISCO (DIfferences between 
Smoothed COntact maps), a computational framework for quantifying 
reproducibility or concordance of contact maps from 3C-seq experi-
ments. We represent a contact map as a network or graph, where nodes 
are genomic loci and edges are weighted proportional to appropriately 
normalized contact frequency between a pair of loci (nodes). We denoise 
the contact maps using random walks on the graph, followed by compar-
ison of the resulting smoothed contact maps. We use systematic simula-
tions to calibrate the method, showing its ability to detect artificially 
introduced noise, differences in distance dependence curves and differ-
ences in structural properties of contact maps. We then apply Ge-
nomeDISCO and other related approaches to the largest existing collec-
tion of Hi-C experiments (Rao et al., 2014) and benchmark their perfor-
mance on a comparison of replicate experiments and experiments from 
different cell types. We also show that GenomeDISCO easily generalizes 
to other types of 3C-seq assays, such as HiChIP. We provide an efficient 
implementation of our method as well as comprehensive analysis reports 
and visualizations in a user-friendly software package at 
https://github.com/kundajelab/genomedisco. GenomeDISCO is also 
included in the 3D genome analysis suite recommended by the Encyclo-
pedia of DNA Elements (ENCODE) Consortium at 
https://github.com/kundajelab/3DChromatin_ReplicateQC (Yardımcı et 
al., 2017). 

2 Methods 

2.1 A graph representation of chromatin contact maps  
We represent a contact map as a graph or network of interactions be-
tween genomic loci, with adjacency matrix !. Each node ! in the net-
work is a genomic locus (segment) of a specified resolution or size (in 
nucleotides). The weight of each edge !!"  is a normalized, experimental-
ly-derived contact frequency between a pair of nodes ! and !. In this 
work, we normalize the contact map using the sqrtvc normalization (for 
additional discussion of normalization methods compatible with Ge-
nomeDISCO, refer to the Supplementary Methods), and convert it to a 
transition probability matrix, such that all rows sum to 1. This transition 
matrix is the weighted adjacency matrix A used in the analyses in this 
study. We ignore inter-chromosomal interactions and hence represent all 
chromosomes as independent graphs. 

2.2 Motivation for our concordance score 
A concordance score that aims to estimate the global similarity between 
a pair of contact maps must account for the specific properties of exper-
imentally-derived contact maps. First, contact maps contain structural 
features that manifest at different scales, such as large scale compart-
ments, sub-Mb scale TADs and sub-TADs that manifest as densely con-
nected diagonal blocks and CTCF/cohesin mediated loops observed as 
focal points of enriched contacts. Thus, an ideal concordance score 
would be able to measure similarity across multiple scales. Second, 
genome-wide contact maps such as those from Hi-C experiments meas-
ure a very large space of possible contacts and hence require deep se-
quencing (> billion reads) for reliable estimates of contact frequency. 
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Due to cost and material constraints, typical Hi-C datasets are sequenced 
at significantly lower coverage (e.g. 100M reads (Lajoie et al., 2015)). 
These undersampled datasets exhibit a large proportion of contacts with 
low observed counts with high variance (Carty et al., 2017) including 
some contacts with 0 observed counts, a phenomenon known as stochas-
tic dropout. To address this issue, we propose a denoising approach to 
smooth contact maps by leveraging random walks on the contact map 
graph, before comparing these maps. 

2.3 The GenomeDISCO score for estimating the concordance 
of contact maps  

We estimate concordance between a pair of chromatin contact maps, !1 
and !2, as follows (Figure 1A). 
Equalizing sequencing depth: To avoid artificial differences due to 
sequencing depth (see Supplementary Figure 2), we first equalize the 
sequencing depth of the pair of datasets to be compared by randomly 
subsampling the count matrix to the minimum depth of the two datasets.  
Denoising contact maps using random walks: We denoise each con-
tact map independently using random walks on the contact maps. For 
every pair of nodes ! and ! in a contact map, we ask the question: if we 
start a random walk at node ! based on the observed contact map transi-
tion probability matrix, and allow the walk to take ! steps, what is the 
probability we will reach node !? If there are many high-probability 
paths in the network that connect node ! and node !, it increases our 
confidence that node ! and node ! are in contact. The probability of 
reaching node ! after a random walk of ! steps starting from node ! is the 
(!, !)th entry of the matrix obtained by multiplying the transition proba-
bility matrix with itself ! times i.e. !! !" . We define the optimal value 
for the steps parameter ! for Hi-C data, as the one that maximizes the 
ability of the concordance score to distinguish between biological repli-
cates and non-replicate reference datasets (See Section 2.4 for details). 
Computing the difference between denoised contact maps: The de-
noised versions of contact maps !1 and !2, after ! steps of random walk 
are !1!  and !2!  respectively. We compute the difference 
!!(!1,!2) between !1 and !2 as the L1 distance between the two de-
noised contact maps !1!  and !2! , divided by the average number of 
non-zero nodes in the two original contact maps !1 and !2: 
 

 !! !1,!2 = |(!!!)!"!(!!!)!"|ji
!!"!#$%"!!!(   |{!!!| !!!"!!}|  !  |{!!!| !!!"!!}|   )!!

 

Since each row of !1 and !2 sums to 1, the weighted degree (sum of 
weights of all edges to/from a node) of each node is 1. Hence, 
!!(!1,!2) scores range from 0 to 2, with small values indicating high 
similarity. 
Converting the difference to a concordance score: We define the 
concordance score as ! !1,!2, ! = 1 − !!(!1,!2). The concordance 
scores range from -1 to 1, with larger values indicating greater similarity. 
We obtain a single genome-wide score as the average of the scores 
across all chromosomes. 

2.4 Estimating the optimal number of random walk steps (!) 
The number of steps ! of the random walk on the contact map graph 
determines the amount of smoothing or denoising of a contact map. We 
define an optimal value of ! as one that would provide sufficient de-
noising so as to improve concordance between contact maps of replicate 
experiments while preserving differences between contact maps from 
distinct cellular contexts. We used a collection of high quality bench-
mark Hi-C datasets with replicate experiments from diverse human cell-
lines (Rao et al., 2014) to optimize !. Using half the experiments as a 
training set and the remaining half as a test set, we asked which value of 
! leads to the optimal separation of biological replicates from non-
replicate samples, as measured with the area under the precision-recall 
curve (auPRC). We found ! = 3 achieved the best performance on the 
training set (auPRC of 0.95, Figure 1B), associated with an auPRC of 
0.92 on the test set. The optimal value of ! = 3 identified using reference 
Hi-C datasets generalized to HiChIP data (see Figure 4) and to Hi-C 
datasets from other species such as Drosophila (see (Yardımcı et al., 
2017)). It is possible that for other applications of GenomeDISCO, other 
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Fig. 1. Overview of GenomeDISCO. A) GenomeDISCO consists of 2 steps. The first 

step in comparing 2 contact maps, !1 and !2, consists of smoothing each contact map 

using random walks. Depicted are the smoothed contact maps, at different levels of 

smoothing controlled by the parameter !, which specifies the number of steps of random 

walk used for denoising. The second step consists of computing a difference score 

between the smoothed contact maps, as a function of !. C) Procedure for identifying the 

optimal value for !. We computed concordance scores for pairs of samples that are 

either biological replicates from the same cell type, or pairs of samples from different 

cell types. We assume that the optimal value of ! will produce scores that can accurately 

classify pairs of samples into “Biological replicates” and “Different cell types”. For 

each value of !, we measure classification performance using the area under the preci-

sion-recall curve (auPRC), finding ! =3 to be optimal. 
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Fig. 2. GenomeDISCO exhibits desired features for a reproducibility score. A-D) 

Scores as a function of edge dropout (A), node dropout (B), domain boundary misalign-

ment (C) and difference in distance dependence curves (D) for GenomeDISCO, HiC-

Spector and HiCRep methods.  For A-D) error bars represent one standard deviation from 

the mean score, based on independent simulations across all cell types from (Rao et al., 

2014). For D) we split pairs of samples into “similar distance dependence” and “different 

distance dependence” using a threshold of 0.005 Jensen Shannon divergence between the 

curves of the samples compared (see Supplementary Methods). E) Results on simulations 

comparing replicates with non-replicates obtained from different cell types. For D-E), 

values above the plots are p-values of a Mann-Whitney test. 

values of ! may be optimal. In such cases, we suggest users perform a 
similar calibration experiment to identify the optimal value. 

3 Results 

3.1 Benchmarking GenomeDISCO on simulated perturba-
tions to 3C-seq datasets 
We expect an effective concordance score for 3C-seq datasets to be 
sensitive to key types of noise and artifacts that typically affect these 
data (Supplementary Figure 1). 
We benchmarked the behavior of GenomeDISCO by using it to compute 
concordance between a reference Hi-C contact map and a version of the 
map that is explicitly perturbed with different types and levels of simu-
lated noise (See Supplementary Methods). We performed our analyses at 
50kb resolution, as this is a resolution frequently used in the analysis of 
Hi-C datasets. We compared GenomeDISCO to two other recently de-
veloped methods for estimating concordance of Hi-C data: HiCRep, 
which measures correlation of contacts stratified by distance (Yang et 
al., 2017), and HiC-Spector, which computes an eigendecomposition of 

the Laplacian of the graph, and then compares the L2 distance between 
eigenvectors of the 2 contact maps (Yan et al., 2017). 
We examined the sensitivity of the concordance scores to perturbations 
that involve random dropout of edges and nodes as well as misalignment 
of domain boundaries in the perturbed contact map relative to the refer-
ence. Indeed, we found that concordance scores from all three methods 
decrease with increasing edge drop out (Figure 2A), increasing node 
drop out (Figure 2B) and increasing domain boundary misalignment 
(Figure 2C, see Supplementary Methods). 
Next, in order to understand the effect of sequencing depth of the contact 
maps, we repeated the above three perturbation analyses for reference 
and perturbed maps subsampled to four depths: 100%, 10%, 1%, 0.1% of 
10 million reads restricted to chromosome 21. As expected, we found 
that the GenomeDISCO score was the highest for the most deeply se-
quenced samples. Concordance scores dropped consistently with de-
creasing sequencing depth across all types and levels of perturbations 
(Figure 2). The scores were found to plateau as the sequencing depth 
increased from 1 million to 10 million reads, which is expected, since for 
a 50kb resolution, one would need approx. 0.8 million reads for chr21 
(see Supplementary Methods).  
Contact maps can also differ in their fundamental distance dependence 
curves that capture the probability of contact as a function of linear ge-
nomic distance. Distance dependence curves have been found to change 
due to cell cycle stage (Naumova et al., 2013; Nagano et al., 2017) or as 
a function of perturbation of proteins involved in chromatin 3D architec-
ture, such as RAD21 knockout in yeast (Mizuguchi et al., 2014) or 
WAPL and SCC4 knockouts in human HAP1 cells (Haarhuis et al., 
2017). Replicates from the same condition are often pooled, and if they 
have different distance dependence curves, the result will be an average 
that is not representative of either replicate. Hence, being sensitive to 
differences in distance dependence curves is a useful property of a con-
cordance score.  
We simulated pairs of contact maps from a common reference contact 
map by sampling reads according to two different distance dependence 
curves, obtained from Hi-C maps from pairs of different cell types (see 
Supplemental Methods). We split the pairs of contact maps into pairs 
with similar distance dependence curves and pairs with different curves 
(see Supplementary Methods), and compared the scores we obtained at 
different sequencing depths (as above) using all three methods. Ge-
nomeDISCO samples with different distance dependence curves obtain 
lower concordance scores. As in the other simulations, the margin be-
tween the two sets of pairs decreased as we decreased sequencing depth 
(Figure 2D). HiC-Spector was also sensitive to differences in distance 
dependence curves, while HiCRep was not. GenomeDISCO had the best 
margins of separation at lower sequencing depths. 
Finally, we asked whether pairs of simulated pseudo-replicates sampled 
from the same reference Hi-C map would be deemed more concordant 
than pairs of samples from different cell types. All three methods suc-
cessfully discriminated the two sets of pairs with margins decreasing 
with decreasing sequencing depth (Figure 2E).  

3.2 Benchmarking GenomeDISCO on Hi-C datasets 
We used more than 80 high quality Hi-C datasets from (Rao et al., 2014) 
spanning multiple human cell-lines (GM12878, HMEC, HUVEC, 
IMR90, K562, KBM7, NHEK) to benchmark the behavior of our con-
cordance score (Figure 3, Supplementary Table 1, 2). Due to the lack of 
explicit ground truth about the nature of noise in real datasets, we evalu-
ate the validity of the concordance score by expecting higher scores 
when comparing pairs of biological replicates of Hi-C data with similar 
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Fig. 3. GenomeDISCO distinguishes biological replicates from nonreplicates, taking 

distance dependence curves into account A) Scatterplot of scores obtained with Ge-

nomeDISCO vs those obtained with HiCRep and HiC-Spector. For each of the three 

methods, we define a threshold that separates low-concordance from high-concordance 

pairs of samples. The threshold is chosen as the highest score obtained by a comparison 

between different cell types. GenomeDISCO largely agrees with the other methods. There 

is a subset of scores that GenomeDISCO selectively ranks as low-concordance, and those 

involve pairs of contact maps with large differences between their distance dependence 

curves. B) Concordance scores as a function of difference in distance dependence func-

tions. The difference is measured as the Jensen Shannon divergence between the contact 

probability distributions (see Supplementary Methods). C) Example of different distance 

dependence functions that GenomeDISCO deems non-concordant but HiCRep defines as 

concordant. D) Row sums for each genomic bin for sample HIC014 are non-uniform, 

compared to e.g. HIC005, at a similar sequencing depth of ~300 million reads. 

distance-dependence characteristics as compared to scores obtained by 
comparing Hi-C datasets from different cell types. We focused our anal-
ysis on a subset of experiments defined as those done with in-situ Hi-C 
(see Supplementary Table 2).  
Next, we used GenomeDISCO, HiCRep and HiC-Spector to compute 
concordance scores for all the pairs of biological replicates and pairs of 
samples from different cell types. Hierarchical clustering of the samples 
based on the matrix of all pairwise concordance scores revealed that 
samples from the same cell type cluster together, for all three methods 
(see Supplementary Figure 5). For each method we defined an empirical 
threshold for classifying sample-pairs into one of two categories labeled 

high-concordance and low-concordance. The threshold was determined 
as the highest score across all pairs of samples from different cell types, 
since we expect concordant biological replicates to be at least as con-
cordant as samples from different cell types. We then analyzed the simi-
larities and differences between the three methods in terms of their clas-
sification of the pairs of biological replicates. (Figure 3A).  
Out of 149 pairs of biological replicates in the test set, we found that the 
methods agreed across most samples (94/149 biological replicate pairs 
were classified consistently between GenomeDISCO and HiCRep, and 
102/149 between GenomeDISCO and HiC-Spector). For a small subset 
of replicate-pairs, HiCRep and/or HiC-Spector classified them as high-
concordance, while GenomeDISCO classified them as low concordance: 
of these 21/34 of the comparisons deemed concordant by HiCRep and 
12/23 by HiC-Spector, the comparisons involved samples with large 
differences in distance dependence curves (difference in distance de-
pendence curve higher than 0.005, a value that was found to distinguish 
pairs of biological replicates in the high-concordance class from those in 
the low concordance class). For example, samples HIC070 and HIC072 
(biological replicates for the K562 cell line) are classified as low-
concordance by GenomeDISCO (score 0.644), but classified as high-
concordance by HiCRep (score 0.910). These samples have a marked 
difference in their distance dependence curves (ranked as the largest 
difference in distance dependence curve among all biological replicate 
pairs) (Figure 3C). In fact, GenomeDISCO scores in general drop pro-
portional to the difference in distance dependence curves between the 
pair of samples being compared (Figure 3B). Finally, we find 18 cases 
ranked as non-concordant by both HiCRep and HiC-Spector but deemed 
concordant by GenomeDISCO. For 6/18 of these, the GenomeDISCO 
score is equal to the threshold concordance of 0.8. Similarly, there are 18 
cases deemed concordant only by HiCRep and 7 deemed concordant 
only by HiC-Spector.  
We also found that 18 replicate pairs were deemed low-concordance by 
all three methods. In particular, in eight of these cases, replicate pairs 
classified as low-concordance by all three methods involved sample 
HIC014 from the GM12878 cell type (specifically HIC014 vs any of 
HIC004, HIC006, HIC010, HIC018, HIC022, HIC038, HIC042, 
HIC048). Upon closer inspection, we found that HIC014 exhibited an 
unusual pattern of uneven coverage across the genome (Figure 3D), 
likely explaining the observed results.  
Finally, we also used the Hi-C data to check whether GenomeDISCO is 
able to detect differences in protocols or restriction enzymes used for 
each experiment (see Supplementary Figure 4A). We found that Ge-
nomeDISCO scores are lower for comparisons between samples pre-
pared with dilution Hi-C versus in situ Hi-C. This observation is ex-
pected because dilution Hi-C experiments capture more random ligations 
between nuclear and mitochondrial DNA than in-situ Hi-C (see (Rao et 
al., 2014)). We also found that GenomeDISCO scores are higher for 
experiments performed with the same enzyme, compared to different 
enzymes (Supplementary Figure 4B). 

3.3 Benchmarking GenomeDISCO on HiChIP data 
We applied GenomeDISCO to a set of H3K27ac HiChIP datasets from 
(Mumbach et al., 2017), covering 2-3 replicates for 7 cell types 
(GM12878, HCASMC, K562, My-La and 3 types of T-cells: Naïve, 
Th17 and Treg, see Supplementary Table 1). As for Hi-C, we binned the 
HiChIP reads at a resolution of 50 kb and normalized the contact maps 
using sqrtvc. We then ran GenomeDISCO on all pairwise comparisons 
and checked whether biological replicates are deemed more concordant 
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Fig. 4. GenomeDISCO benchmarks on HiChIP data. A) Scores obtained on HiChIP 

data for GenomeDISCO, HiC-Spector and HiCRep. The scores are split into two catego-

ries: comparisons between T-cells and the remaining comparisons (labeled as “Non T-

cells”). Scores of replicates (in blue) are plotted offset by 5 million reads, to improve 

visibility of points that would otherwise overlap. 

than pairs of samples from different cell types. We found that Ge-
nomeDISCO scores correctly separate biological replicates from non-
replicates, for the non-T-cell comparisons, using the same parameters as 
for Hi-C and the same threshold for defining concordance (from Figure 
3), suggesting that GenomeDISCO generalizes seamlessly to HiChIP 
data (Figure 4). We obtained similar results for HiCRep and HiC-
Spector. For the comparisons between T-cells, all three methods pro-
duced similar scores for both comparisons between biological replicates 
and those between different types of T-cells, with the biological repli-
cates receiving the highest scores in almost all cases. Using the thresh-
olds of concordance derived for Hi-C, we find that for GenomeDISCO, 
T-cell related comparisons pass the threshold above a sequencing depth 
of 50 million reads, while HiCRep deems all T-cell comparisons as 
concordant and HiC-Spector deems a smaller subset as concordant. 
Overall, we find that GenomeDISCO behaves as expected for HiChIP 
data, without any modifications to the method. 

4 Discussion  
Here, we present GenomeDISCO, a new approach specifically designed 
for evaluating concordance and reproducibility of chromatin contact 
maps. Our benchmarking experiments on simulated contact maps and 
high quality real Hi-C and HiChIP datasets, which include systematic 
comparisons to two other methods HiCRep and HiC-Spector, indicate 
that GenomeDISCO displays competitive accuracy in distinguishing 
biological replicates from different cell types with the desired sensitivity 
to sequencing depth, node and edge dropout noise, changes in domain 
boundaries and subtle differences in distance dependence.  
GenomeDISCO introduces a novel approach of using random walks on 
the contact map graph for progressive smoothing and evaluation of con-
cordance at multiple scales. A weighted graph is a natural representation 
of a chromatin contact map. A random walk on a contact map graph 
progressively upweights direct edges involving node pairs that have 
many high-weight indirect paths of progressively increasing lengths that 
connect the node pairs.  
Further, GenomeDISCO is sensitive to subtle differences in distance 
dependence curves. Since it is common to pool multiple Hi-C replicates, 
it is essential to know if samples exhibit differences, so as to not elimi-

nate signal during pooling, especially since in some cases variation in 
distance dependence curves is biologically meaningful.  
On the other hand, two datasets can have different distance dependence 
curves but still be concordant in terms of enrichments of contacts when 
accounting for the different distance dependence function of each da-
taset. Thus, if one is interested in evaluating concordance of contact 
enrichment (e.g. as measured by methods that call significant contacts), 
then one can normalize the observed contact frequencies by the expected 
distance-dependent contact frequencies (which would correct for most 
differences in distance dependence) for the pair of contact maps before 
feeding them into GenomeDISCO. One can obtain these ob-
served/expected ratios or associated q-values from Fit-Hi-C (Ay et al., 
2014).  
Further, GenomeDISCO provides a variety of diagnostic analyses that 
are useful for digging deeper in the potential reasons for low concord-
ance. The diagnostic analyses include the comparison of distance de-
pendence curves, and a difference matrix between smoothed contact 
maps (Figures 1 and 3).  
Finally, what determines a good threshold for concordance of biological 
replicates? Based on our extensive analyses of simulated datasets and 
extensive collections of Hi-C data, we define an empirical GenomeDIS-
CO score threshold of 0.8 at 50kb resolution. We also provide a set of 
precomputed standards based on pseudo-replicates for frequently used 
resolutions, allowing a direct calibration of a given score to an upper 
bound.  
While GenomeDISCO summarizes concordance in a single score, a 
future direction of research consists of developing methods that specifi-
cally focus on measuring concordance of distinct features of the contact 
map, such as TADs, compartments and loops. For cases where concord-
ance is low, such methods will be instrumental to pinpoint the specific 
feature of the contact maps that accounts for the observed difference. 
Three-dimensional chromatin architecture is the next frontier in deci-
phering genome function. Ensuring high quality reproducible experi-
ments is an essential part of this revolution in understanding chromatin 
architecture. GenomeDISCO is a user-friendly, efficient and accurate 
diagnostic tool for evaluating the reproducibility of 3D chromatin con-
formation capture experiments. 
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1 Datasets, preprocessing and normalization
Hi-C Data
We used Hi-C datasets from seven cell types from (Rao et al., 2014) as summarized in Supplemen-
tary Table 1 (GEO accession numbers included in the table). For each cell type, we downloaded
reads mapped to the hg19 human genome reference and filtered them for mapping quality (MAPQ
> 30). We then computed the number of reads supporting contacts between all pairs of genomic
bins of a specified resolution to obtain a contact map. In general, GenomeDISCO expects a user-
defined resolution, which can be determined empirically, for instance using the definition provided
in (Rao et al., 2014), i.e. choosing the lowest resolution such that at least 80% of the genomic bins
have at least 1000 contacts with non-zero counts. In this work, we used a 50 kb resolution for all
analyses, as this resolution is typically used in the analysis of Hi-C datasets.

HiChIP Data
We used HiChIP datasets from seven cell types from (Mumbach et al., 2017), as summarized in
Supplementary Table 1 (which includes GEO accession numbers). We downloaded "allValidPairs"
files from GEO, and binned them at 50 kb resolution to obtain raw contact maps.

Normalization of Hi-C and HiChIP data
For both Hi-C and HiChIP data, we started from a raw contact map C and obtained its

normalized version A as follows.
First, we normalized C using the square root normalization method (sqrtvc from (Rao et al.,

2014)) that corrects for node-specific, factorizable biases:

C

normalized

= D

� 1
2
CD

� 1
2

where D is a diagonal matrix, with each entry D

ii

corresponding to the degree (row sum) of node
n

i

. Other normalization frameworks such as ICE (Imakaev et al., 2012) or KR (Knight and Ruiz,
2013) are also compatible with our framework and do not change any presented conclusions. We
prefer the sqrtvc normalization since KR and ICE occasionally do not converge for Hi-C datasets
with moderate sequencing depth processed at very high resolution, such as 5-10kb.

Second, to obtain A from C

normalized

, we rescale the values in each row of A, such that all rows
of A sum to 1 (i.e. A is a valid transition matrix).

The final transition matrix A is the input to the random walk denoising described in the main
text.
Note about additional normalization due to copy number variation

The goal of GenomeDISCO is to estimate the concordance between two samples, processed as
they will be used for downstream analysis. This is why we normalize datasets before performing the
smoothing and the subsequent comparison. If for downstream analyses, a different normalization

1

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 8, 2018. ; https://doi.org/10.1101/181842doi: bioRxiv preprint 

https://doi.org/10.1101/181842
http://creativecommons.org/licenses/by/4.0/


scheme is necessary (such as correcting for copy number variation), we suggest that users perform
their desired normalization and then run GenomeDISCO on the normalized data. In such a case,
the sqrtvc normalization that GenomeDISCO does by default should be turned off.

2 GenomeDISCO

2.1 A network representation of contact maps

We consider the contact map as a network, where nodes correspond to genomic bins, and edges
are weighted by the contact frequency in the contact map, as described in the main text section
2.1.

2.2 Desired features of a concordance score for 3C-seq data

We reasoned that an effective concordance score must account for multiple properties of 3C-seq
data, as illustrated in Figure S1.

First, the score should decrease if we randomly drop out edges of the contact map. This is
illustrated in Figure S1A, where we compare a contact map (in red) with the same contact map that
has a fraction of its edges randomly removed. Similarly, we expect that random removal of nodes
would also reduce concordance (illustrated in Figure S1B), as would differences in the positions
of the domains in the contact maps (illustrated in Figure S1C). In addition, we expect a sound
concordance score to rank replicate experiments as more concordant than pairs of experiments
performed in different cell types or different conditions (Figure S1D).The score should also measure
differences in the distance dependence of contact probability (Figure S1E). Finally, we expect better
concordance at higher sequencing depth for replicate experiments (Figure S1F), as more features
of the contact map should be recovered in each experiment.

2.3 Motivation for subsampling datasets to equal sequencing depth be-

fore computing concordance scores

The first step when computing GenomeDISCO scores consists of subsampling the pair of datasets
to the sequencing depth of the dataset with lower coverage. This is done for two reasons.

First, we bring datasets to equal sequencing depths because we want to be conservative in the
concordance scores we provide. We assume that the maximum concordance of the pair of data is
based on the lowest sequencing depth of the 2 datasets. In other words, a dataset sequenced at
low sequencing depth cannot capture the rich information of a dataset with higher coverage.

Second, we downsample datasets in order to make it possible for users to make comparisons
*between* concordance scores. Since GenomeDISCO scores generally increase with additional se-
quencing, they cannot be directly compared without accounting for sequencing depth. To illustrate
this, we have performed the following experiment: we took the existing datasets from 7 cell types
profiled in Rao et al. (2014), and performed all pairwise comparisons between these datasets, but
with each dataset subsampled to either 100000 or 10000 reads for chr21. In this way, we can
compare the scores we obtain when each dataset is considered at either a high (100000) or low
(10000) sequencing depth, and inspect what happens when we do not perform subsampling to the
same depth. The results are presented in Figure S2.

Consider for example, the pair of samples GM.10000.rep1 and GM.1000.rep2, which are simu-
lated replicates from the GM12878 cell type, both with a low sequencing depth. When they are
compared to each other, they get a score of 0.4. However, comparing either one of the GM.10000
replicates to a more deeply sequenced sample from a different cell line, e.g. K562.100000.rep2 gives
a score of 0.5. The higher score of 0.5 obtained for the cross-cell type comparison compared to the
0.4 score obtained for replicates may give the wrong impression that the samples from different
cell types are more similar than those from the same cell type. However, the comparison against
K562 at the same sequencing depth gives the score 0.35, which is as expected lower than that of
biological replicates measured at that sequencing depth.

It is important to note that, although we subsample datasets for the purposes of computing
concordance scores, we are not suggesting that datasets cannot be used for downstream analyses at
their full sequencing depths. For instance, analyses that do not involve comparing samples across
conditions (such as calling domains, compartments, loops in a single dataset) certainly benefit from
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Figure S1: Desired features of a concordance score for 3C-seq data. A good concordance
score should be sensitive to edge dropout (A), node dropout (B), misalignment of domain bound-
aries (C), differences in distance dependence curves (D) and differences in contact frequency such
as those observed between different cell types (E). It should also decrease as sequencing depth is
reduced (F). For A),B),C),D) and F), we plot pairs of contact maps, where in red we show the
original contact map, and in blue we show the contact map perturbed as described above. For E),
we plot the difference matrix obtained between datasets with either the same or different distance
dependence curves. For A-E), we include the score computed by GenomeDISCO for each pair of
contact maps in the upper right corner of the plotted matrices.
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Figure S2: Subsampling experiment
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using datasets at their highest coverage. We are only suggesting the subsampling for cross-condition
comparisons, where variation in sequencing depth may lead to detection of artificial differences due
to the dataset with lower coverage missing features present in the dataset with higher coverage.

2.4 Calibrating the concordance score

We calibrated the concordance scores using biological replicates as the gold standard for defining
similarity and datasets from different cell types as the gold standard for defining dissimilarity.
Specifically, for Hi-C data, we identified concordance score thresholds that best distinguished pairs
of simulated replicates from pairs of simulated datasets representing contact maps from different
cell types (See Section 3.1). Concordance scores also depend on the baseline resolution of the
contact maps (higher resolutions result in an overall decrease in the magnitude of concordance
scores). Hence, we provide precomputed calibrated thresholds for concordance scores for a range
of resolutions: 10 kb, 50 kb, 500 kb at https://github.com/kundajelab/genomedisco under the
directory "calibration_tables".

3 Benchmarking GenomeDISCO on simulated data

3.1 Simulating different types of noise in contact maps

We first simulated realistic contact maps based on Hi-C datasets from seven cell types from (Rao
et al., 2014) (see Supplementary Table 1 for a list of datasets used for the simulations) in order to
calibrate parameters and evaluate the performance of GenomeDISCO. We pooled reads across all
replicates for each cell type. We used a resolution of 50 kb fixed size genomic bins. For the sake of
efficiency, we then restricted the contact map to chromosome 21 for our simulations. For each cell
type, we rescaled the raw contact count matrix C into a probability matrix P , such that all entries
in the upper triangle of P sum to 1 (i.e. a valid probability distribution). Then, to distinguish
structural differences (domains, compartments) from differences in distance dependence curves, we
scaled the obtained probabilities to ensure that datasets for all cell types contain identical distance
dependence functions. We modified the distance dependence curves to follow one reference distance
dependence function. For the Hi-C datasets, we used the GM12878 dataset as the reference since
it is the most deeply sequenced cell type. For each genomic distance g (from 0 bp to the length of
the chromosome), we divided each entry at genomic distance g by the ratio of the average contact
probability at distance g in the target dataset and the average contact probability at distance g

in the reference dataset with the desired distance dependence curve. Note that the upper triangle
of the resulting scaled matrix is a valid probability distribution because the upper triangle of the
reference matrix is a probability distribution. Finally, we simulated a contact map of a desired read
depth N by sampling each entry (i, j) from a binomial distribution, with p = P

ij

. We repeated
this process twice per contact map for each simulation configuration (i.e. we sampled twice from
the same underlying probability matrix) to generate a pair of "pseudo-replicates", obtaining 14 (7
x 2) simulated contact maps.

We then simulated various types of noise in the contact maps to evaluate the behavior of the
GenomeDISCO concordance score.

• Edge dropout The edge dropout simulations measured how our concordance score changes
as a function of removing edges from contact map graphs. For this simulation, we randomly
set x% (for x between 10% and 90%) of the entries in the probability matrix to 0. We then
renormalized the upper triangle to a valid probability distribution and then sampled from
a binomial distribution as described above. For each level of noise, we computed scores by
comparing the original sample (0% dropout) against a sample with x% edge dropout. We
estimated the standard deviation of scores for x% edge dropout based on 14 comparisons.
Seven of these correspond to concordance scores obtained across the 7 cell types with Hi-C
data. Also, for each cell type, we computed 2 scores: one comparison for replicate 1 (0%
dropout) vs. replicate 2 (x% dropout), the second comparison for replicate 2 (0% dropout)
vs. replicate 1 (x% dropout).

• Node dropout The node dropout simulations involve random removal of nodes. As in the
edge dropout simulations, we perturbed P . For a given percent of dropout, x, we removed
x% of the nodes, which is equivalent to setting all probabilities involving that node to 0.
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Then we renormalized and sampled reads from the binomial distribution as described above.
The comparisons are analogous to the ones described in the edge dropout simulations: we
compared the contact maps with 0% dropout against those with x% dropout for a total of
14 comparisons per dropout level.

• Domain boundary noise The domain boundary noise simulations were designed to un-
derstand how the concordance score changes as a function of uncertainty in the location of
domain/TAD boundaries in the contact map. To simulate variation in domain location, we
used a reference contact map and shifted it by a specific number of nodes b called the domain
boundary noise. The contact frequency for a pair of nodes (i, j) in the shifted contact map
is equal to the contact frequency at nodes (i+ b, j + b) in the reference contact map. Then,
we compared the original matrix with matrices shifted by different values of b (50 kb, 100
kb, 200 kb, 400 kb, 80 kb, 1.6 Mb). We performed this shift using all nodes on chr21, but
for scoring, we only used a subset of this chromosome that is contiguous (starting at 20 Mb
and ending at 45 Mb), leaving out the rest of the chromosome that is composed of mostly
unmappable regions. For consistency with the other simulation types described above, this
subset was used in all simulations in this paper. As in the previous simulations, we obtained
14 comparisons per shift.

• Different distance dependence curves For each cell type, we rescaled contact maps to
simulate each of 7 available distance dependence curves observed in our simulated datasets
(Figure S3A), allowing us to test how concordance scores change as a function of differences
in distance dependence curves. To transform a contact map to obey a desired distance
dependence function, we used the probability matrix P representation of the contact map
(as described above) and rescaled values at each genomic distance such that the average
contact probability at that distance corresponds to the average contact frequency of the
desired dataset. Finally, given the rescaled probability matrix, we sampled from the binomial
distribution to obtain the simulated datasets. For each of the 7 simulated distance dependence
curves, we obtained 2 pseudoreplicates by sampling from the binomial distribution twice. We
restricted this experiment to comparisons between samples simulated from the same cell type,
where the only variable that changes is the difference in distance dependence curve.
To measure the separation between the two groups of comparisons (pairs of samples with
the same distance dependence curves and those with different curves), we used a Mann-
Whitney test, comparing pairs of contact maps with similar versus different distance de-
pendence curves. Specifically, we split comparisons into two groups based on a threshold
difference in distance dependence curve of 0.005 Jensen Shannon divergence (see Section 4),
which is approx. half of the largest difference in distance dependence curves we observed.
For reference, Figure S3C shows the scores we obtain as a function of difference in distance
dependence curves, while Figure 2D in the main text shows the scores grouped by whether
they fell in the "similar distance dependence curves" or in the "different distance dependence
curves" categories.

• Comparing simulated pseudoreplicates within a cell type to simulated maps be-
tween different cell types For this simulation, we use the datasets created in the "Edge
noise" simulation, with 0% noise. Since each cell type has 2 simulated pseudoreplicates, we
can evaluate concordance of pairs of pseudoreplicates from the same cell type and compare
it to concordance of pairs of simulated contact maps from different cell types. We measured
the difference in score distributions between pseudoreplicates and different cell types using
the Mann-Whitney test as described above.

The simulator code is included in the GenomeDISCO package under "simulations_from_real_data.py".
When running GenomeDISCO on the simulations, we used t = 3, as this value was deemed

optimal in our parameter optimization.

4 Analysis of distance dependence curves and the differences
between them

To obtain a quantitative measurement of whether two contact maps have different distance depen-
dence curves, we computed the Jensen Shannon divergence between the two distance dependence
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curves. Specifically, for each distance dependence curve (composed of the probability of contact as
a function of linear genomic distance), we rescale values so that they sum to 1, and then use this
probability distribution as input to the Jensen Shannon divergence. These values are computed
based on chromosome 21, both for the simulations and for the analysis of real data.

For reference, we include in Figure S3 all distance dependence curves analyzed in the simulations
(Figure S3A) and in the real Hi-C data (Figure S3B).

A B

C

Figure S3: Distance dependence curves A) All distance dependence curves analyzed in the
simulations. B) All distance dependence curves analyzed in the real Hi-C data. C) Scores obtained
on the simulations of different distance dependence curves for GenomeDISCO, HiC-Spector and
HiCRep. Error bars represent one standard deviation.

5 Comparison with other methods
We compared our method with two other recently developed concordance scoring methods for
Hi-C data; HiCRep (Yang et al., 2017) and HiC-Spector (Yan et al., 2016). For HiCRep we used
a maximum distance of contacts equal to 5 Mb and a smoothing parameter h=5, which is what
was suggested for 40kb resolution Hi-C data. For HiC-Spector we used 20 eigenvectors. Another
commonly used concordance score is correlation (Spearman or Pearson), but (Yang et al., 2017)
have already pointed out its deficiencies. Hence, we do not include comparisons to naive correlation
measures.

6 Using GenomeDISCO to analyze differences in protocols
and restriction enzymes in real Hi-C data

We reasoned that we could use the experiments from (Rao et al., 2014) to investigate how our
concordance scores behave when comparing samples prepared with different protocols or different
restriction enzymes.

For comparing different protocols (Figure S4A), we filtered out samples that were no-crosslinking
controls, or categories with fewer than 3 comparisons. We found that scores comparing in situ Hi-C
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Figure S4: Concordance scores as a function of protocol and restriction enzyme A)
GenomeDISCO, HiC-Spector and HiCRep scores as a function of pairs of protocols compared.
B) GenomeDISCO, HiC-Spector and HiCRep scores as a function of pairs of restriction enzymes
used.This analysis was restricted to the samples in our test set.

with dilution Hi-C were lower than for the other protocols, for all 3 methods. This is expected,
since (Rao et al., 2014) report that dilution Hi-C contains more contacts between nuclear DNA
and mitochondrial DNA, compared to in-situ Hi-C in which the nuclear membrane prevents such
random ligations between nuclear and mitochondrial DNA.

For the comparison of restriction enzymes (Figure S4B), we focused on samples done with
in situ Hi-C, to avoid confounding between restriction enzyme used and protocol used. And as
before, we required the categories to have a minimum of 3 scores. For the remaining comparisons,
GenomeDISCO ranks highest the samples that are prepared with the same restriction enzyme
(MboI vs MboI), and assigns lower scores to comparisons done with different restriction enzymes
(DpnII vs MboI). The difference between the 2 restriction enzyme combinations is as expected
small, since both DpnII and MboI are 4-cutters.

7 Using GenomeDISCO to cluster experiments
For the analysis of real Hi-C data from (Rao et al., 2014), we asked whether we could cluster
the samples based on the matrix of scores obtained from all pairwise comparisons between the
samples in our test set. For this, we started from a matrix of concordance scores and performed
hierarchical clustering on this matrix, with a Euclidean distance measure and complete linkage.
The resulting dendrograms are in Supplementary Figure 5A. As expected, all methods in general
produce clusters of biological replicates. To quantify this, we considered each cut in the hierar-
chical clustering (in other words, each number of clusters, from 1 to the number of samples), and
for each cut computed an adjusted Rand index to quantify whether the clustering at that stage
partitions samples from the same cell type in the same cluster (Supplementary Figure 5B). We
find that GenomeDISCO achieves the highest maximum adjusted Rand index. Interestingly, both
GenomeDISCO and HiCRep produce dendrograms in which one sample from the GM12878 cell
type (sample HIC048) does not cluster with the rest of the samples from the same cell type. This
is consistent with the observation from (Rao et al., 2014) that sample HIC048 is from a different
batch of cells than the rest of the GM12878 samples in the dendrogram. Specifically, it is from
"Batch 1, received at the Broad Institute on 3/11/2008", whereas the other samples are from
“Batch 2, received at the Broad Institute on 5/13/2008". Cells from batch 2 were found to harbor
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a translocation between chromosomes 6 and 11, which was not present in batch 1 in (Rao et al.,
2014). Thus, GenomeDISCO was able to correctly identify this batch effect related to structural
variation.
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Figure S5: Clustering samples based on their concordance score profiles A) Dendrograms
obtained from clustering samples from (Rao et al., 2014) for GenomeDISCO, HiCRep and HiC-
Spector, based on the similarity matrix obtained from all pairwise concordance scores. B) Adjusted
RAND scores for each possible number of clusters (obtained from cutting the hierarchical clustering
tree at each possible level). This analysis was restricted to the samples in our test set.

8 Running time analysis
We profiled the running time and memory requirements for GenomeDISCO and the other methods
compared here. We ran each method genomewide (i.e. sequentially across all chromosomes) on 50
different comparisons from Rao et al. (2014), so that we could estimate the variance of the running
times. All analyses were run on an Intel Xeon CPU E5-2683 v3 running at 2.00GHz, and we report
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as running times the wall clock times measured with the "time" command in Unix.
We found that HiC-Spector was the fastest (median running time 5.02 minutes), followed by

HiCRep (median running time 17.87 minutes) and GenomeDISCO (median running time 31.49
minutes), as we show in Figure S6. GenomeDISCO displayed the largest variance in running
time because the main operation involves the multiplication of contact maps during the random
walk calculation, and given that the contact maps are stored as sparse matrices, the running time
depends on the level of sparsity of the matrices. On the other hand, HiCRep and HiC-Spector
operate on fixed size inputs, with HiC-Spector focusing on the top 20 eigenvectors, and HiCRep
working with the 2D matrix which has a fixed size. Because GenomeDISCO’s running time depends
on the sparsity of the matrices, it was observed to run faster than HiCRep in Yardimci et al. (2017),
where the datasets used for benchmarking running times are sequenced at less than 50 million reads,
compared to the datasets considered in this paper that are sequenced more deeply.
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Figure S6: Running times of GenomeDISCO, HiCRep and HiC-Spector
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