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Abstract	

Human	motor	control	requires	the	coordination	of	muscle	activity	under	the	

anatomical	constraints	imposed	by	the	musculoskeletal	system.	Interactions	

within	the	central	nervous	system	are	fundamental	to	motor	coordination,	but	the	

principles	governing	functional	integration	remain	poorly	understood.	We	used	

network	analysis	to	investigate	the	relationship	between	anatomical	and	

functional	connectivity	amongst	36	muscles.	Anatomical	networks	were	defined	by	

the	physical	connections	between	muscles	and	functional	networks	were	based	on	

intermuscular	coherence	assessed	during	postural	tasks.	We	found	a	modular	

structure	of	functional	networks	that	was	strongly	shaped	by	the	anatomical	

constraints	of	the	musculoskeletal	system.	Changes	in	postural	tasks	were	

associated	with	a	frequency-dependent	reconfiguration	of	the	coupling	between	

functional	modules.	These	findings	reveal	distinct	patterns	of	functional	

interactions	between	muscles	involved	in	flexibly	organising	muscle	activity	

during	postural	control.	Our	network	approach	to	the	motor	system	offers	a	

unique	window	into	the	neural	circuitry	driving	the	musculoskeletal	system.	
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Introduction	

The	human	body	is	a	complex	system	consisting	of	many	subsystems	and	

regulatory	pathways.	The	musculoskeletal	system	gives	the	body	structure	and	

creates	the	ability	to	move.	It	is	made	up	of	more	than	200	skeletal	bones,	

connective	tissue	and	over	300	skeletal	muscles.	Muscles	are	attached	to	bones	

through	tendinous	tissue	and	can	generate	movement	around	a	joint	when	they	

contract.	The	central	nervous	system	controls	these	movements	through	the	spinal	

motor	neurons,	which	serve	as	the	final	common	pathway	to	the	muscles	(1).	

While	the	anatomical	and	physiological	components	of	the	musculoskeletal	system	

are	well	characterized	(2,	3),	the	organisational	principles	of	neural	control	remain	

poorly	understood.	Here	we	elucidate	the	interplay	between	the	anatomical	

structure	of	the	musculoskeletal	system	and	the	functional	organisation	of	

distributed	neural	circuitry	from	which	motor	behaviours	emerge.	

	

The	traditional	idea	that	the	cortex	controls	muscles	in	a	one-to-one	fashion	has	

been	challenged	by	several	lines	of	evidence	(4).	For	example,	it	is	widely	

recognized	that	the	many	degrees-of-freedom	(DOFs)	of	the	musculoskeletal	

system	prohibit	a	simple	one-to-one	correspondence	between	a	motor	task	and	a	

particular	motor	solution;	rather	muscles	are	coupled	and	controlled	in	

conjunction	(5).	A	coupling	between	muscles	–	whether	mechanical	or	neural	–	

reduces	the	number	of	effective	DOFs	and	hence	the	number	of	potential	

movement	patterns.	This	coupling	thereby	reduces	the	complexity	of	motor	

control	(6).	

	

There	is	continuing	debate	about	the	nature	of	the	coupling	between	muscles.	The	

mechanical	coupling	in	the	musculoskeletal	system	constrains	the	movement	

patterns	that	can	be	generated	(7,	8).	For	example,	the	biomechanics	of	the	limb	

constrain	relative	changes	in	musculotendon	length	to	a	low	dimensional	

subspace,	resulting	in	correlated	afferent	inputs	to	spinal	motor	neurons	(9).	The	

coupling	between	muscles	could	also	result	from	redundancies	in	the	neural	

circuitry	that	drives	spinal	motor	neurons	(10).	Electrophysiological	studies	reveal	

that	a	combination	of	only	a	few	coherent	muscle	activation	patterns	–	or	muscle	

synergies	–	can	generate	a	wide	variety	of	natural	movements	(11).	Some	of	these	
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patterns	are	already	present	from	birth	and	do	not	change	during	development,	

whereas	other	patterns	are	learned	(12).	This	supports	the	notion	that	the	

neuromuscular	system	has	a	modular	organisation	that	simplifies	the	control	

problem	(13).	Spinal	circuitry	consisting	of	a	network	of	premotor	interneurons	

and	motor	neurons	that	may	generate	basic	movement	patterns	by	mediating	the	

synergistic	drive	to	multiple	muscles	(14).	These	spinal	networks	may	encode	

coordinated	motor	output	programs	(15),	which	can	be	used	to	translate	

descending	commands	for	multi-joint	movements	into	the	appropriate	

coordinated	muscle	synergies	that	underpin	those	movements	(3).	

	

Network	theory	can	provide	an	alternative	perspective	on	the	modular	

organisation	of	the	musculoskeletal	system.	One	of	the	most	relevant	features	of	

complex	networks	are	community	or	modular	structures,	which	refer	to	densely	

connected	groups	of	nodes	with	only	sparse	connections	between	these	groups	

(16).	The	investigation	of	community	structures	has	been	widely	used	in	different	

domains	such	as	brain	networks	(17).	It	has	recently	been	applied	to	investigate	

the	structure	and	function	of	the	musculoskeletal	system:	The	anatomical	network	

can	be	constructed	by	mapping	the	origin	and	insertion	of	muscles	(18,	19).	We	

have	previously	shown	how	functional	muscle	networks	can	be	constructed	by	

assessing	intermuscular	coherence	from	surface	electromyography	(EMG)	

recorded	from	different	muscles	(20).	These	functional	networks	reveal	functional	

connectivity	between	groups	of	muscles	at	multiple	frequency	bands.	Coherence	

between	EMGs	indicates	correlated	or	common	inputs	to	spinal	motor	neurons	

that	are	generated	by	shared	structural	connections	or	synchronisation	within	the	

motor	system	(10,	21,	22).	Functional	connectivity	patterns	hence	allow	to	assess	

structural	pathways	in	the	motor	system	using	non-invasive	recordings	(23).	

	

Here	we	investigate	the	organisational	principles	governing	human	motor	control	

by	comparing	the	community	structure	of	anatomical	and	functional	networks.	We	

use	multiplex	modularity	analysis	(24)	to	assess	the	community	structure	of	

functional	muscle	networks	across	frequencies	and	postural	tasks.	As	

biomechanical	properties	of	the	musculoskeletal	system	constrain	the	movement	

patterns	that	can	be	generated,	we	expect	a	similar	community	structure	for	
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anatomical	and	functional	muscles	networks.	Deviations	in	community	structure	

indicate	additional	constraints	imposed	by	the	central	nervous	system.	We	also	

compare	functional	connectivity	between	modules	during	different	tasks	to	

investigate	changes	in	functional	organisation	during	behaviour.	While	average	

functional	connectivity	is	constrained	by	anatomical	constraints,	we	expect	that	

functional	muscle	networks	reconfigure	to	enable	task-dependent	coordination	

patterns	between	muscles.	Such	task	modulations	would	indicate	that	functional	

interactions	between	muscles	are	not	hard-wired	but	are	instead	governed	by	

dynamic	connectivity	in	the	central	nervous	system	that	is	shaped	by	the	

anatomical	topology	of	the	musculoskeletal	system.	

	

Results	

We	assessed	the	relationship	between	anatomical	and	functional	connectivity	of	

key	muscles	involved	in	postural	control	tasks	(36	muscles	distributed	throughout	

the	body).	We	investigated	a	muscle-centric	network	in	which	the	nodes	represent	

the	muscles	and	the	edges	of	the	network	are	anatomical	connections	or	functional	

relations	between	muscles.	

	

Anatomical	muscle	network	

Anatomical	muscle	networks	were	defined	by	mapping	the	physical	connections	

between	muscles	(19,	25),	based	on	gross	human	anatomy	(2).	The	anatomical	

network	constituted	a	densely	connected,	symmetrical	network	(Fig.	1;	network	

density	is	0.27).	Modularity	analysis	revealed	five	modules	that	divided	the	

anatomical	muscle	network	into	the	main	body	parts	(right	arm,	left	arm,	torso,	

right	leg	and	left	leg)	with	a	modularity	of	0.39.	
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Figure	1.	Community	structure	of	the	anatomical	muscle	network.	A)	Topological	
representation	of	the	anatomical	network.	The	nodes	of	the	network	represent	the	
muscles	and	edges	represent	anatomical	connections	between	muscles	that	are	attached	
to	the	same	bone	or	connective	tissue.	The	five	modules	are	colour-coded.	B)	Spatial	
representation	of	anatomical	muscle	network	displayed	on	the	human	body	(26).	The	size	
of	each	node	represents	the	number	of	other	nodes	it	is	connected	to.	
	

Functional	muscle	network	

Functional	muscle	networks	were	defined	by	mapping	correlated	inputs	to	

different	muscles.	To	map	functional	networks,	we	measured	surface	EMG	from	

the	same	36	muscles	while	healthy	participants	performed	different	postural	tasks.	

A	full	factorial	design	was	used	in	which	we	varied	postural	control	(normal	

standing,	instability	in	anterior-posterior	or	medial-lateral	direction)	and	pointing	

behaviour	(no	pointing,	pointing	with	the	dominant	hand	or	with	both	hands;	see	

Methods	for	details).	We	used	these	tasks	to	experimentally	manipulate	the	

required	coordination	between	muscles	and	to	induce	changes	in	the	functional	

muscle	network.	We	assessed	functional	connectivity	by	means	of	intermuscular	

coherence	between	all	muscle	combinations	and	used	non-negative	matrix	

factorisation	(NNMF)	to	decompose	these	coherence	spectra	into	frequency	

components	and	corresponding	edge	weights.	This	yielded	a	set	of	weighted	

networks	with	their	corresponding	spectral	fingerprints	(frequency	components).	
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We	observed	four	separate	frequency	components	(component	1:	0-3	Hz,	

component	2:	3-11	Hz,	component	3:	11-21	Hz,	component	4:	21-60	Hz;	Fig.	2A),	

which	serve	as	separate	layers	of	a	multiplex	network	and	explained	most	of	the	

variance	of	the	coherence	spectra	(R2	=	0.90).	Weights	were	thresholded	to	obtain	

a	minimally	connected	binary	network	across	layers	and	to	keep	the	number	of	

edges	constant	across	layers	(relative	threshold	of	0.035).	Using	multiplex	

modularity	analysis,	we	obtained	a	fixed	community	structure	across	all	four	

frequencies	and	nine	conditions,	which	revealed	six	modules:	right	upper	arm	

(rUA),	bilateral	forearms	(FA),	torso	(T),	right	upper	leg	(rUL),	left	upper	leg	(lUL)	

and	bilateral	lower	legs	(LL)	(Fig.	2B).	Figure	2C	depicts	how	these	modules	are	

distributed	across	the	body.	Distinct	network	topologies	were	observed	across	

layers	with	a	more	widely	connected	network	at	lower	frequencies	and	more	

partitioned	network	at	higher	frequencies:	network	density	was	0.10,	0.09,	0.08,	

and	0.06	and	the	modularity	was	0.46,	0.60,	0.64,	and	0.75	for	components	1	to	4,	

respectively	(Fig.	2D).	

	

	
Figure	2.	Community	structure	of	multiplex	functional	muscle	networks.	A)	The	
frequency	spectra	of	the	four	components	obtained	using	NNMF.	B)	Multiplex	community	
structure	of	functional	muscle	network	across	frequencies	and	conditions.	The	dominant	
hand	of	all	participants	is	displayed	on	the	right	side	of	the	human	body.	C)	Spatial	
representation	of	the	average	muscle	network	displayed	on	the	human	body	(26).	The	size	
of	the	nodes	represents	the	number	of	other	nodes	it	is	connected	to	and	the	width	of	the	
number	of	edges	across	layers.	D)	The	binary	muscle	networks	for	each	layer.	
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Comparison	between	anatomical	and	functional	networks	

The	community	structures	of	the	anatomical	and	functional	muscle	networks	were	

very	similar	(Rand	index	=	0.80,	adjusted	Rand	index	=	0.36,	P	<	0.001).	A	marked	

difference	between	anatomical	and	functional	networks	are	the	connections	

between	bilateral	forearm	and	bilateral	lower	leg	muscles	in	the	functional	

networks,	which	were	absent	in	the	anatomical	network.	This	is	reflected	in	the	

community	structure	of	the	functional	networks,	where	bilateral	lower	leg	muscles	

and	bilateral	forearm	muscles	were	grouped	in	separate	modules	(Fig.	2C).	

	

	
Figure	3.	Relationship	between	functional	connectivity	and	anatomical	distance.	A)	
Adjacency	and	distance	matrix	of	the	anatomical	muscle	network.	Maximum	anatomical	
distance	(path	length)	is	4.	B)	Percentage	of	functional	edges	of	thresholded	networks	
across	experimental	conditions	as	a	function	of	anatomical	distance.	C)	Distribution	of	
edge	weights	of	functional	networks	as	a	function	of	anatomical	distance	for	each	layer.	
Weights	were	averaged	across	experimental	conditions.	Edges	connecting	muscles	within	
the	same	module	are	colour-coded	(rUA:	right	upper	arm,	FA:	bilateral	forearms,	T:	torso,	
rUL:	right	upper	leg,	lUL:	left	upper	leg,	and	LL:	bilateral	lower	legs)	and	grey	dots	
represent	edges	between	modules.	
	

The	comparison	between	anatomical	distance	(path	length)	and	functional	

connectivity	revealed	that	anatomically	nearby	nodes	are	more	likely	to	receive	

common	input	(Fig.	3).	We	first	examined	the	percentage	of	all	possible	edges,	i.e.	
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the	number	of	edges	above	threshold,	which	decreased	as	a	function	of	anatomical	

distance:	11.3%,	0.9%,	0.6%	and	0.0%	for	anatomical	distance	1	to	4,	respectively.	

This	decline	with	distance	was	even	more	pronounced	for	the	higher	frequency	

components	(Fig.	3B).	Next,	we	examined	the	distribution	of	functional	weights	as	

a	function	of	anatomical	distance.	The	highest	weights	were	observed	for	edges	

connecting	muscles	within	the	same	module.	The	edges	within	most	modules	had	

an	anatomical	distance	of	1.	Only	a	few	edges	had	an	anatomical	distance	of	2	or	3	

and	all	of	these	edges	were	contained	in	the	FA	and	LL	modules.	In	particular,	

edges	connecting	bilateral	lower	leg	muscles	(LL)	showed	relative	large	weights	at	

an	anatomical	distance	of	3	(Fig.	3C).	

	

Task-dependent	modulations	

We	next	sought	to	study	the	influence	of	task	on	this	structure-function	

relationship.	This	was	achieved	by	employing	clustered	graphs	to	compare	

functional	muscle	networks	across	task	conditions.	The	functional	modules	

identified	using	the	preceding	multiplex	modularity	analysis	form	the	nodes	of	

these	clustered	graphs.	Figure	4A	shows	the	clustered	graphs	in	the	nine	

experimental	conditions	and	for	the	four	frequency	components.	The	clustered	

graphs	were	very	sparse,	as	modules	have	dense	within-module	connections	but	

sparse	connections	between	nodes	in	other	modules.	Most	edges	were	observed	

between	leg	muscles	modules	(LL,	rUL	and	lUL)	at	the	lowest	frequency	

components	(0-3	and	3-11	Hz),	consistent	with	the	lower	modularity	scores,	in	

particular	when	postural	stability	was	challenged	by	instability	in	anterior-

posterior	or	medial-lateral	direction.	Edges	between	the	arm	muscle	modules	(rUA	

and	FA)	and	the	torso	(T)	were	mainly	observed	at	the	higher	frequency	

components	(11-21	and	21-60	Hz)	during	pointing	(unimanual	and	bimanual).	
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Figure	4.	Clustered	graphs	of	functional	muscle	networks	across	conditions.	A)	The	
clustered	graphs	in	the	nine	experimental	conditions	(columns)	and	the	four	frequency	
components	(rows).	The	nodes	are	the	modules	identified	using	multiplex	modularity	
analysis.	Node	size	represents	the	network	density	within	and	the	width	of	the	edges	the	
connection	density	between	modules.	B)	Spatial	representation	of	the	functional	modules	
on	the	human	body:	right	upper	arm	(rUA),	bilateral	forearms	(FA),	torso	(T),	right	upper	
leg	(rUL),	left	upper	leg	(lUL)	and	bilateral	lower	legs	(LL).	We	used	toolboxes	for	
geometry	processing	to	generate	the	coloured	meshes	(27)	and	display	it	on	the	human	
body	(26).	C)	Significant	differences	in	the	connectivity	of	the	clustered	graphs	between	
the	stability	conditions.	Two	contrasts	were	assessed:	normal	stability	–	anterior-
posterior	instability	and	normal	stability	–	medial-lateral	instability.	A	permutation	test	
was	used	and	family-wise	error	control	was	maintained	using	Bonferroni	correction	(84	
comparisons).	Significant	differences	(Pcorrected	<	0.05)	are	colour-coded:	Red	depicts	an	
increase	and	blue	a	decrease	in	the	average	weights.	Coloured	edges	and	nodes	depict	
significant	changes	in	connectivity	between	and	within	modules,	respectively.	D)	
Significant	differences	in	the	connectivity	of	the	clustered	graphs	between	the	pointing	
conditions.	Two	contrasts	were	assessed:	no	pointing	–	unimanual	pointing	and	no	
pointing	–	bimanual	pointing.	
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The	effects	of	the	stability	tasks	were	largely	confined	to	the	leg	modules	(Fig.	4C).	

Increased	connectivity	was	observed	during	postural	instability	(anterior-

posterior	and	medial-lateral)	compared	to	normal	standing	within	most	frequency	

components.	At	the	lowest	frequency	component	(0-3	Hz),	connectivity	increased	

within	and	between	most	leg	modules	(Pcorrected	<	0.01).	Only	small	differences	

were	observed	at	3-11	Hz:	increased	connectivity	between	the	torso	(T)	and	lower	

leg	(LL)	modules	during	anterior-posterior	instability	(+25%,	range	[-9,	46%],	

Pcorrected	=	0.01)	and	decreased	connectivity	within	the	torso	module	during	

medial-lateral	instability	(-21%,	range	[-50,	0.3%],	Pcorrected	=	0.01).	Connectivity	

increased	again	at	the	highest	frequency	components	(11-21	and	21-60	Hz)	within	

and	between	the	torso	and	leg	modules	(rUL,	lUL,	and	LL,	Pcorrected	<	0.02).	

	
The	pointing	tasks	showed	a	different	pattern	compared	to	the	postural	tasks,	but	

the	effects	of	unimanual	and	bimanual	pointing	were	very	similar	(Fig.	4D).	During	

pointing,	connectivity	decreased	within	the	torso	(T)	module	at	the	lowest	

frequency	components	(0-3	Hz,	-61%,	range	[-90,	-1%],	Pcorrected	<	0.005;	3-11	Hz,	-

59%,	range	[-86,	2%],	Pcorrected	<	0.02)	and	between	the	torso	and	the	right	upper	

arm	(rUA)	module	only	at	the	lowest	frequency	component	(0-3	Hz,	-67%,	range	[-

93,	-9%],	Pcorrected	<	0.005).	In	contrast,	a	significant	increase	in	connectivity	within	

the	rUA	module	was	observed	during	unimanual	pointing	compared	to	no	pointing	

at	the	highest	frequency	components	(11-21	Hz,	+64%,	range	[-4,	95%],	Pcorrected	=	

0.005;	21-60	Hz,	+66%,	range	[-12,	93%],	Pcorrected	=	0.015).	In	addition,	there	was	

increased	connectivity	between	the	torso	and	the	forearm	(FA)	modules	(+41%,	

range	[-8,	82%],	Pcorrected	<	0.01)	and	between	rUA	and	FA	(+44%,	range	[0,	82%],	

Pcorrected	<	0.005)	during	pointing	(unimanual	and	bimanual)	compared	to	no	

pointing	at	frequency	component	3	(11-21	Hz).	

	

Discussion	

We	used	a	network	approach	to	study	the	structure-function	relationship	of	the	

human	musculoskeletal	system.	Several	principles	of	the	functional	relationship	

between	muscles	were	uncovered:	(i)	Functional	connectivity	patterns	between	

muscles	are	strongly	shaped	by	the	anatomical	constraints	of	the	musculoskeletal	
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system,	with	functional	connectivity	strongest	within	anatomical	modules	and	

decreased	as	a	function	of	anatomical	distance;	(ii)	Bilateral	connectivity	between	

the	homologous	upper	and	between	the	homologous	lower	extremities	is	a	key	

characteristic	of	the	functional	muscle	networks;	(iii)	The	functional	relationships	

are	task-dependent	with	postural	tasks	differentially	impacting	upon	functional	

connectivity	at	different	frequency	ranges.	The	use	of	a	multiplex	approach	allows	

the	integration	of	functional	muscle	networks	across	frequencies	and	provides	a	

unifying	window	into	the	distributed	circuitry	of	the	human	central	nervous	

system	that	controls	movements	by	innervating	the	spinal	motor	neurons.	

	

Identifying	relationships	between	anatomical	and	functional	muscle	networks	is	

crucial	for	understanding	how	movement	is	coordinated.	Previous	studies	either	

investigated	how	biomechanical	properties	of	the	musculoskeletal	system	

constrain	the	movement	patterns	that	can	be	generated	(8,	9),	or	how	muscle	

activation	patterns	can	be	explained	by	a	combination	of	only	a	few	coherent	

muscle	activation	patterns	(11).	Our	combined	analyses	of	anatomical	and	

functional	muscle	networks	reveal	a	strong	relationship	between	the	anatomical	

connections	in	the	musculoskeletal	systems	and	correlated	inputs	to	spinal	motor	

neurons.	This	builds	on	previous	research	showing	that	common	input	is	strongest	

to	spinal	motor	neurons	that	innervate	muscles	pairs	that	are	anatomically	and	

functionally	closely	related	(10,	21).	The	similarity	between	structural	and	

functional	networks	has	been	a	signature	of	the	study	of	brain	networks	(28)	and	

the	topology	of	brain	networks	depends	on	the	brain's	spatial	embedding	(29).	The	

present	findings	suggest	that	the	principles	governing	embodied	structural	and	

functional	networks	also	applies	to	the	neural	circuitry	that	controls	movements	

and	may	hence	reflect	a	general	principle	of	the	central	nervous	system.	

	

The	similarities	between	anatomical	and	functional	connectivity	may	indicate	that	

the	anatomical	structure	constrains	the	functional	interactions	between	muscles.	

The	anatomical	connections	between	muscles	remain	largely	unchanged	over	the	

lifespan	(30)	and	it	is	more	likely	that	the	fast-changing	functional	networks	are	

constrained	by	the	much	slower	changing	anatomical	networks	than	vice	versa.	

These	constraints	may	be	imposed	through	afferent	activity.	The	musculoskeletal	
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properties	of	the	human	body	restrict	the	postural	dynamics	(9)	and	these	

mechanical	couplings	result	in	correlated	proprioceptive	feedback	to	spinal	motor	

neurons.	The	influence	of	biomechanics	on	functional	muscle	networks	is	expected	

to	be	most	pronounced	at	the	lower	frequency	components,	as	muscles	act	as	a	low	

pass	filter	of	neuronal	inputs	and	kinematics	of	the	musculoskeletal	system	unfold	

on	a	slow	time	scale.	This	generates	correlated	activity	at	low	frequencies	that	are	

fed	back	to	spinal	motor	neurons	via	sensory	afferents.	The	spatial	distribution	of	

common	input	would	arguably	mirror	the	topology	of	the	musculoskeletal	system.	

	

Anatomical	constraints	may	also	be	imposed	during	neural	development.	During	

early	development,	changes	in	the	topographical	distribution	of	axon	terminals	of	

descending	projects	are	dependent	on	patterns	of	motor	activity	and	anatomical	

connectivity	between	muscles	(31).	Likewise,	large	changes	in	functional	coupling	

is	observed	in	infants	between	9	and	25	weeks,	which	reflects	a	sensitive	period	

where	functional	connections	between	corticospinal	tract	fibres	and	spinal	motor	

neurons	undergo	activity-dependent	reorganization	(32).	The	anatomy	of	the	

musculoskeletal	system	will	limit	the	motor	activity	patterns	that	can	be	

performed.	

	

Anatomical	and	functional	connectivity	between	muscles	may	also	both	be	

influenced	by	external	factors.	For	example,	the	connectivity	patterns	of	

descending	pathways	is	in	part	genetically	determined	(33).	A	somatotopic	

organisation	is	observed	across	the	neural	motor	system	and	the	community	

structure	of	the	anatomical	muscle	network	mirrors	the	organisation	of	primary	

motor	cortex	control	modules	(19).	Likewise,	the	spatial	organisation	of	motor	

neurons	of	the	spinal	cord	is	also	related	to	the	anatomical	organisation	of	muscles	

(34)	and	muscles	that	are	anatomically	closely	located	to	each	other	are	also	

innervated	by	the	same	spinal	nerves	(Fig.	S2)	(2). The	topographic	organisation	of	

spinal	motor	neurons	is	similar	across	species	(35)	and	may	hence	be	a	result	of	

evolutionary	conservation	(36).	Musculoskeletal	anatomy	and	neuronal	pathways	

are	hence	both	subject	to	some	sort	of	genetic	control.	
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Functional	connectivity	was	not	entirely	determined	by	anatomy	and	we	observed	

several	key	differences	between	anatomical	and	functional	muscle	networks.	

Bilateral	modules	consisting	of	muscles	in	the	upper	or	lower	extremities	were	a	

key	characteristic	of	the	functional	muscle	network	that	were	absent	in	the	

anatomical	network.	The	two	bilateral	forearm	muscles	(FDS	and	ED)	showed	

coherent	activity	at	3-11	Hz,	consistent	with	previous	studies	showing	bimanual	

coupling	at	~10	Hz	between	homologous	hand	and	forearm	muscles	(37,	38).	The	

observed	bimanual	coupling	at	3-11	Hz	may	be	generated	by	the	olivocerebellar	

system,	which	is	known	to	produce	oscillations	in	this	frequency	range	and	for	its	

involvement	in	the	formation	of	functional	muscle	collectives	(37).	The	bilateral	

forearm	muscles	were	only	weakly	coupled	to	other	muscles	(Fig.	2),	which	may	

reflect	the	relatively	high	proportion	of	direct	corticospinal	projections	–	and	thus	

a	relative	low	proportion	of	diverging	projections	–	to	motor	neurons	innervating	

hand	and	forearm	muscles	(39).	

	

In	contrast,	the	bilateral	module	of	lower	leg	muscles	revealed	strong	coupling	at	

multiple	frequency	bands,	consistent	with	previous	analyses	on	functional	muscle	

networks	(20),	and	showed	the	strongest	long-range	connections	observed	in	the	

present	study	(Fig.	3C).	Bilateral	connectivity	between	arm	and	leg	muscles	during	

balancing	could	be	generated	by	the	vestibulospinal	tract,	which	is	known	to	be	

involved	in	postural	stability	and	innervate	the	spinal	grey	matter	bilaterally	(21).	

Bilateral	connectivity	has	been	observed	at	all	levels	of	the	corticospinal	axis	(40)	

and	is	paramount	for	functional	brain	networks,	particularly	between	homologous	

left-right	cortical	regions	(41).	The	present	findings	suggest	that	bilateral	coupling	

is	also	a	defining	feature	of	functional	muscle	networks.	The	differences	in	

functional	connectivity	between	bilateral	arm	and	bilateral	leg	muscles	indicate	

that	the	functional	muscle	network	–	like	the	anatomical	muscle	network	(25)	–	

does	not	show	serial	homology.		

	

Functional	connectivity	displayed	distinct	task-dependent	modulations	that	were	

linked	to	the	task	the	subjects	performed:	functional	connectivity	was	increased	

within	and	between	the	leg	modules	during	postural	instability	and	increased	

within	and	between	arm	and	upper	body	modules	in	the	pointing	conditions.	
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Functional	connectivity	between	muscles	is	thus	task	dependent	(21,	38),	which	

may	suggest	the	presence	of	multifunctional	circuits	in	which	a	given	anatomical	

connectivity	pattern	can	generate	different	functional	activity	patterns	under	

various	conditions	(42).	Such	a	distributed	circuitry	creates	the	substrate	to	

support	many	behaviours	that	are	driven	by	the	concerted	actions	of	a	large	

distributed	network	as	opposed	to	simple,	dedicated	pathways.	The	underlying	

network	connectivity	hence	constrains	the	possible	patterns	of	population	activity	

to	a	low-dimensional	manifold	spanned	by	a	few	independent	patterns	–	neural	

modes	–	that	provide	the	basic	building	blocks	of	neural	dynamics	and	motor	

control	(43).	Again,	this	finds	similarities	with	recent	investigations	of	the	

functional	principles	of	cognitive	networks	in	the	brain	(44).	

	

Task-dependent	changes	occurred	at	different	frequencies,	which	indicate	the	

functioning	of	a	multiplex	network	organisation,	whereby	the	four	frequency	

components	reflect	different	types	of	interactions	between	muscles.	Four	distinct	

frequency	components	(0-3,	3-11,	11-21,	and	21-60	Hz)	were	extracted	using	

NNMF.	These	frequency	bands	closely	match	those	found	previously	(20),	

demonstrating	the	robustness	of	this	finding.	An	interesting	possibility	is	that	

these	frequency	components	reflect	the	spectral	fingerprints	of	different	pathways	

that	project	onto	the	spinal	motor	neurons.	It	has	been	suggested	that	these	

different	frequencies	may	have	specific	roles	in	coding	motor	signals	(45).	

Functional	connectivity	at	the	lowest	frequency	components	may	result	from	

afferent	pathways,	while	functional	connectivity	at	higher	frequencies	may	reflect	

correlated	input	from	descending	pathways.	For	example,	functional	connectivity	

in	the	beta	band	(15-30	Hz)	most	likely	reflects	corticospinal	projections	(10,	38).	

The	highest	frequency	components	observed	in	this	study	(21-60	Hz)	showed	the	

most	local	connectivity	patterns.	These	local	connectivity	patterns	may	reflect	

propriospinal	pathways	(3,	15).	These	functional	connectivity	patterns	may	be	

used	to	uncover	the	contribution	of	structural	pathways	in	the	formation	of	

coordinated	activity	patterns	in	the	motor	system	(23).	These	findings	mirror	

observations	in	cortical	networks	where	frequency-specific	networks	reveal	

different	topologies	and	are	differentially	expressed	across	brain	states	(46).	The	

differences	in	the	frequency	content	of	functional	connectivity	observed	between	
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the	upper	limb	and	lower	limb	muscles	suggests	distinct	neural	circuitry	

controlling	these	body	parts.	

	

In	summary,	our	network	analysis	revealed	widespread	functional	connectivity	

between	muscles,	indicative	of	correlated	inputs	to	spinal	motor	neurons	at	

multiple	frequencies.	Correlated	inputs	indicate	divergent	projections	or	lateral	

connections	in	the	neural	pathways	that	innervate	spinal	motor	neurons	and	can	

hence	be	used	to	assess	spinal	networks	(23).	These	findings	are	consistent	with	a	

many-to-many	rather	than	an	one-to-one	mapping	between	brain	and	muscle	(4),	

in	which	complex	movements	arise	through	relatively	subtle	changes	in	the	co-

activation	of	different	distributed	functional	modes.	We	present	a	novel	approach	

that	aligns	movement	neuroscience	with	current	research	on	brain	networks	by	

showing	how	the	central	nervous	system	interacts	with	the	musculoskeletal	

system	of	the	human	body.	This	approach	fits	within	the	broader	framework	of	

network	physiology,	investigating	brain-body	interactions	(47).	Similar	to	the	

current	results,	research	on	network	physiology	has	shown	that	dynamic	

interactions	among	organ	systems	are	mediated	through	specific	frequency	bands	

(48).	We	extended	this	approach	by	investigating	the	network	topology	of	

functional	interactions	between	muscles,	which	are	mediated	through	neural	

pathways	within	the	spinal	cord.	Future	studies	may	extend	the	number	of	muscles	

that	are	investigated,	include	electroencephalography	(EEG)	to	map	brain-body	

networks	and	investigate	the	cortical	control	of	muscle	networks,	and	consider	

individual	differences	in	anatomy.	

	

From	a	systems	biology	perspective,	the	brain	and	spinal	cord	are	interwoven	with	

the	body	–	they	are	‘embodied’	(7)	–	and	brain	network	analysis	can	thus	be	

extended	to	investigate	the	intrinsic	organisation	of	functional	networks	in	the	

human	spinal	cord	(49).	Functional	interactions	between	supra-spinal,	spinal	and	

peripheral	regions	can	be	integrated	using	network	analysis	as	a	common	

framework.	Such	an	integrated	framework	is	well-placed	to	provide	new	insights	

and	interventions	for	neurological	disorders	(50).	

	

Material	and	Methods	
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Data	acquisition	

Fourteen	healthy	participants	(seven	males	and	seven	females,	mean	age	25±8	

years,	ten	right	and	four	left	handed)	without	any	neurological,	motor	disorder	or	

diabetes	mellitus	and	with	a	BMI	below	25	were	included	in	this	study.	The	

experiments	were	approved	by	the	Ethics	Committee	Human	Movement	Sciences	

of	the	Vrije	Universiteit	Amsterdam	(reference	ECB	2014-78)	and	performed	in	full	

compliance	with	the	Declaration	of	Helsinki.	All	participants	were	written	and	

verbally	informed	about	the	procedure	and	signed	an	informed	consent	prior	to	

participation.	

	

Participants	were	instructed	to	perform	nine	different	postural	tasks.	A	full-

factorial	design	was	used	in	which	postural	stability	(normal	standing,	instability	

in	anterior-posterior	direction	and	instability	in	medial-lateral	direction)	and	

pointing	behaviour	(no	pointing,	pointing	with	dominant	hand,	pointing	with	both	

hands)	were	varied.	Postural	stability	was	manipulated	using	a	balance	board	with	

one	degree	of	freedom,	which	allowed	movement	either	in	the	anterior-posterior	

or	medial-lateral	direction.	In	the	pointing	task,	participants	held	a	laser	pointer	

with	their	dominant	hand	(unimanual)	or	with	both	hands	(bimanual)	and	pointed	

it	on	a	white	target	(25	cm2)	located	at	a	distance	of	2.25	meter,	parallel	to	the	

transversal	axis	of	the	body	at	the	height	of	the	acromion	of	the	participant.	The	

experiment	hence	consisted	of	nine	(3´3)	experimental	conditions.	The	duration	of	

a	trial	was	30	seconds	and	each	condition	was	repeated	six	times.		

	

Table	1.	List	of	muscles	

Muscle	 Abbreviation	
tibialis	anterior	 TA	
gastrocnemius	caput	mediale		 GM	
soleus	 SOL	
rectus	femoris	 RF	
biceps	femoris	 BF	
vastus	lateralis	 VL	
adductor	longus	 AL	
obliquus	externus	abdominis	 EO	
pectoralis	major	 PMA	
sternocleidomastoideus	 SMA	
longissimus	 LO	
latissimus	dorsi	 LD	
trapezius	 TZ	
deltoideus	 D	
biceps	brachii	 BB	
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triceps	brachii	 TRB	
extensor	digitorum	 ED	
flexor	digitorum	superficialis	 FDS	
	

Bipolar	surface	EMG	was	recorded	from	36	muscles	distributed	across	the	body	

(18	bilateral	muscles,	Table	1).	We	selected	a	representative	group	of	antagonistic	

muscle	pairs	involved	in	postural	control	that	can	be	properly	measured	with	

surface	EMG	due	to	their	location	and	size.	EMG	was	acquired	using	three	16-

channel	Porti	systems	(TMSi,	Enschede,	The	Netherlands),	online	high-pass	filtered	

at	5	Hz	and	sampled	at	2	kHz.		

	
Table	2.	Origin	and	insertion	of	muscles	
Muscle	 Origin	1	 Origin	2	 Origin	3	 Insertion	1	 Insertion	2	

TA	 tibia	 		 		 os	cuneiforme	mediale	 ossa	metatarsi	
GM	 femur	 		 		 calcaneus	 		
SOL	 fibula	 tibia	 		 calcaneus	 		
RF	 os	coxae1,*	 os	ilium1,*	 	 tibia	 		
BF	 femur	 os	ischii1,*	 		 fibula	 tibia	
VL	 femur	 		 		 tibia	 		
AL	 os	pubis1,*	 		 		 femur	 		
EO	 costae2,*	 		 		 linea	alba*	 os	ilium1,*	
PMA	 clavicula	 costae2,*	 sternum2,*	 humerus	 		
SMA	 clavicula	 sternum2,*	 		 os	temporale3,*	 	
LO	 ligamentum	

sacrospinale1,*	
vertebra*	 		 costae2,*	 vertebra*	

LD	 costae2,*	 fascia	thoracolumbalis*	 vertebra*	 humerus	 		
TZ	 ligamentum	nuchae*	 os	occipitale3,*	 vertebra*	 clavicula	 scapula	
D	 clavicula	 scapula	 		 humerus	 		
BB	 scapula	 		 		 radius	 		
TRB	 humerus	 scapula	 		 ulna	 		
ED	 humerus	 		 		 ossa	digitorum	 		
FDS	 humerus	 radius	 ulna	 ossa	digitorum	 		

1	Part	of	the	pelvis;	2	Part	of	the	skeleton	thoracis;	3	Part	of	the	ossa	cranii;	*	Connective	structure	on	
the	midline	of	the	body	connecting	bilateral	muscles.	Origin	and	insertion	are	based	on	gross	
human	anatomy	as	described	in	Martini,	Timmons	and	McKinley	(2),	hence	ignoring	potential	
individual	differences	between	participants.	
	

Anatomical	muscle	network	

The	anatomical	muscle	network	was	defined	by	mapping	the	physical	connections	

between	muscles.	The	nodes	represent	the	36	muscles	(18	left	and	18	right)	and	

the	edges	of	the	network	represent	the	tendinous	attachments	of	muscles	onto	

bones	and	connective	tissue.	The	structural	connections	were	defined	based	on	the	

origin	and	insertion	of	the	muscles	(2).	Bones	that	show	no	or	almost	no	motion	in	

the	joint	between	them	were	considered	as	one	rigid	bony	structure,	i.e.	the	pelvis,	

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted April 27, 2018. ; https://doi.org/10.1101/181818doi: bioRxiv preprint 

https://doi.org/10.1101/181818


	 19	

skeleton	thoracis	or	ossa	cranii	(25).	The	connections	between	muscles	and	bones	

listed	in	Table	2	denote	a	bipartite	network	𝐶	with	muscles	as	one	group	and	

bones	as	the	second	group.	We	then	created	a	muscle-centric	network	as	the	one-

mode	projections	of	𝐶:	𝐵 = 𝐶𝐶% 	(19).	This	gave	a	weighted	adjacency	matrix	

where	the	weights	reflect	the	number	of	attachments	by	which	two	muscles	are	

connected.	We	converted	this	to	a	binary	network	by	setting	all	none-zero	weights	

to	1.	

	

Functional	muscle	network	

We	mirrored	the	data	of	the	left	handers	to	create	a	dominant	and	non-dominant	

side.	EMG	data	were	pre-processed	to	remove	movement	and	electrocardiography	

(ECG)	artefacts.	EMG	was	band-pass	filtered	(1-400	Hz)	and	independent	

component	analysis	was	used	to	remove	ECG	contamination	(51).	One	or	two	

independent	components	were	removed	for	each	participant.	EMG	data	was	then	

high-pass	filtered	(20	Hz)	to	remove	low-frequency	movement	artefacts.	After	pre-

processing,	EMG	envelopes	were	extracted	by	means	of	the	Hilbert	amplitude	(22).		

	

We	followed	the	procedure	described	in	Boonstra	et	al.	(20)	to	extract	functional	

muscle	networks	from	surface	EMG.	First,	complex-valued	coherency	was	

estimated	and	averaged	over	trials	within	each	condition	for	each	participant.	The	

absolute	value	of	coherency	was	squared	to	obtain	magnitude-squared	coherence.	

Intermuscular	coherence	was	assessed	between	all	630	muscle	pairs.	Next,	non-

negative	matrix	factorisation	(NNMF)	was	used	to	decompose	these	coherence	

spectra	across	all	muscle	combinations,	conditions	and	participants	into	four	

distinct	frequency	components	and	the	corresponding	weights.	This	yielded	a	set	

of	weights	for	each	frequency	component,	which	defined	an	undirected	weighted	

network	for	each	condition	and	participant.		

	

These	functional	networks	were	converted	to	binary	networks	to	facilitate	

comparison	to	the	anatomical	network.	Weights	were	thresholded	to	obtain	a	

minimally	connected	network	across	conditions	and	frequency	components.	This	

thresholding	procedure	yields	a	single,	unique	threshold	value,	which	corresponds	

to	the	percolation	threshold	(52).	This	resulted	in	sparse	networks	in	which	each	
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node	was	connected	to	at	least	one	other	node	by	an	edge	at	one	of	the	layers	of	

the	multiplex	network.		

	

Community	structure		

The	Louvain	algorithm	was	used	to	extract	the	modules	from	the	anatomical	

networks.	As	the	Louvain	algorithm	is	stochastic,	we	used	consensus	clustering	to	

obtain	a	stable	partition	across	1000	iterations	(53).	Multiplex	modularity	analysis	

(24)	was	used	to	identify	the	modules	of	functional	muscle	network	across	the	

conditions	and	frequency	components.	We	used	MolTi,	a	standalone	graphical	

software,	to	detect	communities	from	multiplex	networks	by	optimising	the	

multiplex-modularity	with	the	adapted	Louvain	algorithm	

(https://github.com/gilles-didier/MolTi).	Modules	were	extracted	across	the	36	

(9´4)	binary	networks.	We	used	the	Rand	index	and	the	adjusted	Rand	index	to	

compare	the	modules	of	the	anatomical	and	functional	muscle	networks	(16).	

	

Comparison	of	functional	networks	across	conditions		

To	facilitate	the	comparison	of	functional	networks	across	task	conditions,	we	

coarse-grained	the	networks	(54).	We	used	the	set	of	functional	modules	estimated	

across	conditions	and	frequency	components	as	a	frame	of	reference	to	coarse-

grain	the	36	binary	networks	and	then	compared	the	strength	of	the	inter-	and	

intra-module	connections	across	networks	using	these	module	boundaries.	In	the	

clustered	networks	the	nodes	represent	the	modules	(groups	of	muscles,	identified	

above)	and	the	edges	represent	the	connections	between	modules.	The	non-

diagonal	elements	of	the	resulting	weighted	adjacency	matrix	represent	the	

average	edge	weights	between	two	modules	and	diagonal	elements	the	average	

edge	weights	within	a	module.		

	

To	compare	the	clustered	networks	across	conditions,	we	used	simple	contrasts	

between	task	conditions	and	quantified	differences	in	the	numbers	of	connections	

between	and	within	modules.	We	tested	four	contrasts:	(i)	unimanual	and	(ii)	

bimanual	pointing	compared	to	no	pointing	and	(iii)	anterior-posterior	and	(iv)	

medial-lateral	instability	compared	to	normal	standing.	To	test	the	statistical	

significance	of	these	contrasts,	we	performed	paired	permutation	tests	separately	
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on	each	of	the	matrix	elements	(54).	The	clustered	networks	had	a	much-reduced	

dimensionality	compared	to	the	original	functional	muscle	networks	(21	instead	of	

630	edges).	Family-wise	error	control	was	maintained	using	Bonferroni	correction	

to	correct	for	multiple	comparisons	(4	´	21	=	84	comparisons).		 	
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