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Abstract	

Human	motor	control	requires	the	coordination	of	muscle	activity	under	the	

anatomical	constraints	imposed	by	the	musculoskeletal	system.	Interactions	

within	the	central	nervous	system	are	fundamental	to	motor	coordination,	but	the	

principles	governing	functional	integration	remain	poorly	understood.	We	used	

network	analysis	to	investigate	the	relationship	between	anatomical	and	

functional	connectivity	amongst	36	muscles.	Anatomical	networks	were	defined	by	

the	physical	connections	between	muscles	and	functional	networks	were	based	on	

intermuscular	coherence	assessed	during	postural	tasks.	We	found	a	modular	

structure	of	functional	networks	that	was	strongly	shaped	by	the	anatomical	

constraints	of	the	musculoskeletal	system.	Muscle	networks	exhibited	a	multilayer	

architecture	with	functional	interactions	at	distinct	timescales.	Changes	in	postural	

tasks	were	associated	with	a	frequency-dependent	reconfiguration	of	the	coupling	

between	functional	modules.	Combined,	these	findings	suggest	these	spectral	

modes	may	signify	a	coordinative	structure	for	flexibly	organising	muscle	activity	

during	postural	control.	More	broadly,	our	multi-level	network	approach	to	the	

motor	system	offers	a	unique	window	into	the	coordinated	neural	circuitry	that	

generates	synergistic	input	to	muscles	in	different	behaviours.	
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Introduction	

The	human	body	is	a	complex	system	consisting	of	many	subsystems	and	

regulatory	pathways.	The	musculoskeletal	system	gives	the	body	structure	and	

creates	the	ability	to	move.	It	is	made	up	of	more	than	200	skeletal	bones,	

connective	tissue	and	over	600	skeletal	muscles	[1].	Muscles	are	attached	to	bones	

through	tendinous	tissue	and	can	generate	movement	around	a	joint	when	they	

contract.	The	central	nervous	system	controls	these	movements	through	the	spinal	

motor	neurons,	which	serve	as	the	final	common	pathway	to	the	muscles	[2].	

While	the	anatomical	and	physiological	components	of	the	musculoskeletal	system	

are	well	characterized	[3,	4],	the	organisational	principles	of	neural	control	remain	

poorly	understood.	Here	we	elucidate	the	interplay	between	the	anatomical	

structure	of	the	musculoskeletal	system	and	the	functional	organisation	of	

distributed	neural	circuitry	from	which	motor	behaviours	emerge.	

	

The	traditional	idea	that	the	cortex	controls	muscles	in	a	one-to-one	fashion	has	

been	challenged	by	several	lines	of	evidence	[5,	6].	For	example,	it	is	widely	

recognized	that	the	many	degrees-of-freedom	(DOFs)	of	the	musculoskeletal	

system	prohibit	a	simple	one-to-one	correspondence	between	a	motor	task	and	a	

particular	motor	solution;	rather	muscles	are	coupled	and	controlled	in	

conjunction	[7].	A	coupling	between	muscles	–	whether	mechanical	or	neural	–	

reduces	the	number	of	effective	DOFs	and	hence	the	number	of	potential	

movement	patterns.	This	coupling	thereby	reduces	the	complexity	of	motor	

control	[8,	9].		

	

There	is	continuing	debate	about	the	nature	of	the	coupling	between	muscles.	The	

mechanical	coupling	in	the	musculoskeletal	system	constrains	the	movement	

patterns	that	can	be	generated	[10,	11].	For	example,	the	biomechanics	of	the	limb	

constrain	relative	changes	in	musculotendon	length	to	a	low	dimensional	

subspace,	resulting	in	correlated	afferent	inputs	to	spinal	motor	neurons	[12].	The	

coupling	between	muscles	could	also	result	from	redundancies	in	the	neural	

circuitry	that	drives	spinal	motor	neurons	[13].	Electrophysiological	studies	reveal	

that	a	combination	of	only	a	few	coherent	muscle	activation	patterns	–	or	muscle	

synergies	–	can	generate	a	wide	variety	of	natural	movements	[14,	15].	Some	of	
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these	patterns	are	already	present	from	birth	and	do	not	change	during	

development,	whereas	other	patterns	are	learned	[16].	This	supports	the	notion	

that	the	neuromuscular	system	has	a	modular	organisation	that	simplifies	the	

control	problem	[17,	18].	Spinal	circuitry	consisting	of	a	network	of	premotor	

interneurons	and	motor	neurons	may	generate	basic	movement	patterns	by	

mediating	the	synergistic	drive	to	multiple	muscles	[19,	20].	Stimulation	of	

interneuronal	regions	in	the	spinal	cord	shows	that	these	microcircuits	are	

organised	into	discrete	modules,	each	generating	a	specific	pattern	of	muscular	

forces	[21,	22].	These	spinal	networks	may	encode	coordinated	motor	output	

programs	[23],	which	can	be	used	to	translate	descending	commands	for	multi-

joint	movements	into	the	appropriate	coordinated	muscle	synergies	that	underpin	

those	movements	[4].	

	

Network	theory	can	provide	an	alternative	perspective	on	the	modular	

organisation	of	the	musculoskeletal	system.	One	of	the	most	relevant	features	of	

complex	networks	are	community	or	modular	structures,	which	refer	to	densely	

connected	groups	of	nodes	with	only	sparser	connections	between	these	groups	

[24,	25].	The	investigation	of	community	structures	has	been	widely	used	in	

different	domains	such	as	metabolic	[26]	and	brain	networks	[27].	It	has	recently	

been	applied	to	investigate	the	structure	and	function	of	the	musculoskeletal	

system:	The	anatomical	network	can	be	constructed	by	mapping	the	origin	and	

insertion	of	muscles	[28,	29].	Previously,	we	have	shown	how	functional	muscle	

networks	can	be	constructed	by	assessing	intermuscular	coherence	from	surface	

electromyography	(EMG)	recorded	from	different	muscles	[30].	These	functional	

networks	reveal	functional	connectivity	between	groups	of	muscles	at	multiple	

frequency	bands.	Coherence	between	EMGs	indicates	correlated	or	common	inputs	

to	spinal	motor	neurons	that	are	generated	by	shared	structural	connections	or	

synchronisation	within	the	motor	system	[13,	31-33].	Functional	connectivity	

patterns	hence	allow	to	assess	structural	pathways	in	the	motor	system	using	non-

invasive	recordings	[34].		

	

Here	we	investigate	the	organisational	principles	governing	human	motor	control	

by	comparing	the	community	structure	of	anatomical	and	functional	networks.	We	
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use	multiplex	modularity	analysis	[35]	to	assess	the	community	structure	of	

functional	muscle	networks	across	frequencies	and	postural	tasks.	As	

biomechanical	properties	of	the	musculoskeletal	system	constrain	the	movement	

patterns	that	can	be	generated,	we	expect	a	similar	community	structure	for	

anatomical	and	functional	muscles	networks.	Deviations	in	community	structure	

indicate	additional	constraints	imposed	by	the	central	nervous	system.	We	also	

compare	functional	connectivity	between	modules	during	different	tasks	

conditions	to	investigate	changes	in	functional	organisation	during	behaviour.	

While	average	functional	connectivity	is	constrained	by	anatomical	constraints,	we	

expect	that	functional	muscle	networks	reconfigure	to	enable	task-dependent	

coordination	patterns	between	muscles.	Such	task	modulations	would	indicate	

that	functional	interactions	between	muscles	are	not	hard-wired,	but	are	instead	

governed	by	dynamic	connectivity	in	the	central	nervous	system	that	is	shaped	by	

the	anatomical	topology	of	the	musculoskeletal	system.		

	

Results	

Anatomical	muscle	network	

We	assessed	the	relationship	between	anatomical	and	functional	connectivity	of	

key	muscles	involved	in	the	postural	control	tasks	(36	muscles	distributed	

throughout	the	body).	We	investigated	a	muscle-centric	network	in	which	the	

nodes	represent	the	muscles	and	the	edges	of	the	network	are	anatomical	

connections	or	functional	relations	between	muscles.	Anatomical	muscle	networks	

were	defined	by	mapping	the	physical	connections	between	muscles	and	bones	

[28],	which	form	a	bipartite	network	[29].	The	anatomical	network	constituted	a	

densely	connected,	symmetrical	network	(Fig.	1;	network	density	is	0.27).	

Modularity	analysis	revealed	five	modules	that	divided	the	anatomical	muscle	

network	into	the	main	body	segments	(right	arm,	left	arm,	torso,	right	leg	and	left	

leg)	with	a	modularity	of	0.38.	

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted January 8, 2018. ; https://doi.org/10.1101/181818doi: bioRxiv preprint 

https://doi.org/10.1101/181818


	 6	

	
Figure	1.	Community	structure	of	the	anatomical	muscle	network.	A)	Topological	

representation	of	the	anatomical	network.	The	nodes	of	the	network	represent	the	
muscles	and	edges	represent	anatomical	connections	between	muscles	that	are	attached	
to	the	same	bones	or	cartilages.	The	five	modules	are	colour-coded.	B)	Spatial	
representation	of	anatomical	muscle	network	displayed	on	the	human	body	[36].	The	size	

of	each	node	represents	the	number	of	other	nodes	it	is	connected	to.	

	

Functional	muscle	network	

Functional	muscle	networks	were	defined	by	mapping	correlated	inputs	between	

muscles.	To	map	functional	networks,	we	measured	surface	EMG	from	the	same	36	

muscles	while	healthy	participants	performed	different	postural	tasks.	A	full	

factorial	design	was	used	in	which	we	varied	postural	control	(normal	standing,	

instability	in	anterior-posterior	or	medial-lateral	direction)	and	pointing	

behaviour	(no	pointing,	pointing	with	the	dominant	hand	or	with	both	hands;	see	

Methods	for	details).	We	assessed	functional	connectivity	by	means	of	

intermuscular	coherence	between	all	muscle	combinations	and	used	non-negative	

matrix	factorisation	(NNMF)	to	decompose	these	coherence	spectra	into	frequency	

components	and	corresponding	edge	weights.	This	yielded	a	set	of	weighted	

networks	with	their	corresponding	spectral	fingerprints	(frequency	components).		
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We	observed	four	separate	frequency	components	(component	1:	0-3	Hz,	

component	2:	3-11	Hz,	component	3:	11-21	Hz,	component	4:	21-60	Hz;	Fig.	2A),	

which	serve	as	separate	layers	of	a	multiplex	network	and	explained	most	of	the	

variance	of	the	coherence	spectra	(R2	=	0.90).	Weights	were	thresholded	to	obtain	

a	minimally	connected	binary	network	across	layers	and	to	keep	the	number	of	

edges	constant	across	layers	(relative	threshold	of	0.035).	Using	multiplex	

modularity	analysis,	we	obtained	a	fixed	community	structure	across	all	four	

frequencies	and	nine	conditions,	which	revealed	six	modules:	right	upper	arm	

(rUA),	bilateral	forearms	(FA),	torso	(T),	right	upper	leg	(rUL),	left	upper	leg	(lUL)	

and	bilateral	lower	legs	(LL)	(Fig.	2B).	Figure	2C	depicts	how	these	modules	are	

distributed	across	the	body.	Distinct	network	topologies	were	observed	across	

layers	with	a	more	widely	connected	network	at	lower	frequencies	and	more	

partitioned	network	at	higher	frequencies:	network	density	was	0.10,	0.09,	0.08,	

and	0.06	for	components	1	to	4,	respectively	(Fig.	2D).		

	

	
Figure	2.	Community	structure	of	multiplex	functional	muscle	networks.	A)	The	
frequency	spectra	of	the	four	components	obtained	using	NNMF.	B)	Multiplex	community	
structure	of	functional	muscle	network	across	layers	and	conditions.	The	dominant	hand	

of	all	participants	is	displayed	on	the	right	side	of	the	human	body.	C)	Spatial	
representation	of	the	average	muscle	network	displayed	on	the	human	body	[36].	The	size	
of	the	nodes	represents	the	number	of	other	nodes	it	is	connected	to	and	the	width	of	the	
edges	the	average	weight.	D)	The	binary	muscle	networks	for	each	layer.	
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Comparison	between	anatomical	and	functional	networks	

The	community	structures	of	the	anatomical	and	functional	muscle	networks	were	

very	similar	(Rand	index	=	0.80,	adjusted	Rand	index	=	0.36,	P	<	0.001).	A	marked	

difference	between	anatomical	and	functional	networks	is	the	bilateral	

connections	between	homologous	forearm	and	lower	leg	muscles	in	the	functional	

networks,	which	were	absent	in	the	anatomical	network.	This	is	reflected	in	the	

community	structure	of	the	functional	networks,	where	bilateral	lower	leg	muscles	

and	bilateral	forearm	muscles	were	grouped	in	modules.		

	

	
Figure	3.	Relationship	between	functional	connectivity	and	anatomical	distance.	A)	
Adjacency	and	distance	matrix	of	the	anatomical	muscle	network.	Maximum	anatomical	
distance	(path	length)	is	4.	B)	Percentage	of	functional	edges	of	thresholded	networks	
across	experimental	conditions	as	a	function	of	anatomical	distance.	C)	Distribution	of	

edge	weights	of	functional	networks	as	a	function	of	anatomical	distance	for	each	layer.	
Weights	were	averaged	across	experimental	conditions.	Edges	connecting	muscles	within	
the	same	module	are	colour-coded	(rUA:	right	upper	arm,	FA:	bilateral	forearms,	T:	torso,	
rUL:	right	upper	leg,	lUL:	left	upper	leg,	and	LL:	bilateral	lower	legs)	and	grey	dots	

represent	edges	between	modules.		
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The	comparison	between	anatomical	distance	(path	length)	and	functional	

connectivity	revealed	that	anatomically	nearby	nodes	are	more	likely	to	receive	

common	input	(Fig.	3A).	We	first	examined	the	percentage	of	all	possible	edges,	i.e.	

the	number	of	edges	above	threshold,	which	decreased	as	a	function	of	anatomical	

distance:	11.3%,	0.9%,	0.6%	and	0.0%	for	anatomical	distance	1	to	4,	respectively.	

This	decline	with	distance	was	even	more	pronounced	for	the	higher	frequency	

components	(Fig.	3B).	Next,	we	examined	the	distribution	of	functional	weights	as	

a	function	of	anatomical	distance.	The	highest	weights	were	observed	for	edges	

connecting	muscles	within	the	same	module.	The	edges	within	most	modules	had	

an	anatomical	distance	of	1.	Only	a	few	edges	had	an	anatomical	distance	of	2	or	3	

and	all	of	these	edges	were	contained	in	the	FA	and	LL	modules.	In	particular,	

edges	connecting	bilateral	lower	leg	muscles	(LL)	showed	relative	large	weights	at	

an	anatomical	distance	of	3	(Fig.	3C).	

	

Task-dependent	modulations	

We	next	sought	to	study	the	influence	of	task	on	this	structure-function	

relationship.	This	was	achieved	by	employing	clustered	graphs	to	compare	

functional	muscle	networks	across	task	conditions.	The	functional	modules	

identified	using	the	preceding	multiplex	modularity	analysis	form	the	nodes	of	

these	clustered	graphs.	Figure	4A	shows	the	clustered	graphs	in	the	nine	

experimental	conditions	and	for	the	four	layers.	The	clustered	graphs	were	very	

sparse,	as	modules	have	dense	within	module	connections	but	sparse	connections	

between	nodes	in	other	modules.	Most	edges	were	observed	between	leg	muscles	

modules	(LL,	rUL	and	lUL)	at	the	lowest	frequency	components	(0-3	and	3-11	Hz),	

in	particular	when	postural	stability	was	challenged	by	instability	in	anterior-

posterior	or	medial-lateral	direction.	Edges	between	the	arm	muscle	modules	(rUA	

and	FA)	and	the	torso	(T)	were	mainly	observed	at	the	higher	frequency	

components	(11-21	and	21-60	Hz)	during	pointing	(unimanual	and	bimanual).		
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Figure	4.	Clustered	graphs	of	functional	muscle	networks	across	conditions.	A)	The	
clustered	graphs	in	the	nine	experimental	conditions	(columns)	and	for	every	layer	

(rows).	The	nodes	are	the	modules	identified	using	multiplex	modularity	analysis.	Node	
size	represents	the	network	density	within	and	the	width	of	the	edges	the	connection	
density	between	modules.	B)	Spatial	representation	of	the	functional	modules	on	the	
human	body:	right	upper	arm	(rUA),	bilateral	forearms	(FA),	torso	(T),	right	upper	leg	
(rUL),	left	upper	leg	(lUL)	and	bilateral	lower	legs	(LL).	We	used	toolboxes	for	geometry	

processing	to	generate	the	coloured	meshes	[37]	and	display	it	on	the	human	body	[36].	C)	
Significant	differences	in	clustered	graphs	between	the	stability	conditions.	Two	contrasts	
were	assessed:	normal	stability	–	anterior-posterior	instability	and	normal	stability	–	
medial-lateral	instability.	A	permutation	test	was	used	with	a	significance	threshold	

corrected	for	multiple	comparisons	(P	<	0.0033).	Significant	differences	are	colour-coded:	
Red	depicts	an	increase	and	blue	a	decrease	in	the	average	weights.	D)	Significant	
differences	in	clustered	graphs	between	the	pointing	conditions.	Two	contrasts	were	
assessed:	no	pointing	–	unimanual	pointing	and	no	pointing	–	bimanual	pointing.		
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The	effects	of	the	stability	tasks	were	largely	confined	to	the	leg	modules	(Fig.	4C).	
Increased	connectivity	was	observed	during	postural	instability	(anterior-
posterior	and	medial-lateral)	compared	to	normal	standing	within	most	frequency	
components.	At	the	lowest	frequency	component	(0-3	Hz),	connectivity	increased	
within	and	between	most	leg	modules	(pcorrected	<	0.01).	Only	small	differences	
were	observed	at	3-11	Hz:	increased	connectivity	between	the	torso	(T)	and	lower	
leg	(LL)	modules	during	anterior-posterior	instability	(+25%,	range	[-9,	46%],	
pcorrected	=	0.01)	and	decreased	connectivity	within	the	torso	module	during	
medial-lateral	instability	(-21%,	range	[-50,	0.3%],	pcorrected	=	0.01).	Connectivity	
increased	again	at	the	highest	frequency	components	(11-21	and	21-60	Hz)	within	
and	between	the	torso	and	leg	modules	(rUL,	lUL,	and	LL,	pcorrected	<	0.02).	
	

The	pointing	tasks	showed	a	different	pattern	compared	to	the	postural	tasks,	but	

the	effects	of	unimanual	and	bimanual	pointing	were	very	similar	(Fig.	4D).	During	

pointing,	connectivity	decreased	within	the	torso	(T)	module	at	the	lowest	

frequency	components	(0-3	Hz,	-61%,	range	[-90,	-1%],	pcorrected	<	0.005;	3-11	Hz,	-

59%,	range	[-86,	2%],	pcorrected	<	0.02)	and	between	the	torso	and	the	right	upper	

arm	(rUA)	module	only	at	the	lowest	frequency	component	(0-3	Hz,	-67%,	range	[-

93,	-9%],	pcorrected	<	0.005).	In	contrast,	a	significant	increase	in	connectivity	within	

the	rUA	module	was	observed	during	unimanual	point	compared	to	no	pointing	at	

the	highest	frequency	components	(11-21	Hz,	+64%,	range	[-4,	95%],	pcorrected	=	

0.005;	21-60	Hz,	+66%,	range	[-12,	93%],	pcorrected	=	0.015).	In	addition,	there	was	

increased	connectivity	between	the	torso	and	the	forearm	(FA)	modules	(+41%,	

range	[-8,	82%],	pcorrected	<	0.01)	and	between	rUA	and	FA	(+44%,	range	[0,	82%],	

pcorrected	<	0.005)	during	pointing	(unimanual	and	bimanual)	compared	to	no	

pointing	at	frequency	component	3	(11-21	Hz).	

	

Discussion	

We	used	a	network	approach	to	study	the	structure-function	relationship	of	the	

human	musculoskeletal	system.	Several	principles	of	the	functional	relationship	

between	muscles	were	uncovered:	(i)	Functional	connectivity	patterns	between	

muscles	are	strongly	shaped	by	the	anatomical	constraints	of	the	musculoskeletal	

system,	with	functional	connectivity	strongest	within	anatomical	modules	and	

decreased	as	a	function	of	anatomical	distance;	(ii)	Bilateral	connectivity	between	
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the	homologous	upper	and	lower	extremities	is	a	key	characteristic	of	the	

functional	muscle	networks;	(iii)	The	functional	relationships	are	task-dependent	

with	postural	tasks	differentially	impacting	upon	functional	connectivity	at	

different	frequency	ranges.	The	use	of	a	multiplex	approach	allows	the	integration	

of	functional	muscle	networks	across	frequencies	and	provides	a	unifying	window	

into	the	distributed	circuitry	of	the	human	central	nervous	system	that	controls	

movements	by	innervating	the	spinal	motor	neurons.	

	

Identifying	relationships	between	anatomical	and	functional	muscle	networks	is	

crucial	for	understanding	how	movement	is	coordinated.	Previous	studies	either	

investigated	how	biomechanical	properties	of	the	musculoskeletal	system	

constrain	the	movement	patterns	that	can	be	generated	[11,	12],	or	how	muscle	

activation	patterns	can	be	explained	by	a	combination	of	only	a	few	coherent	

muscle	activation	patterns	[14,	15].	Our	combined	analyses	of	anatomical	and	

functional	muscle	networks	reveal	a	strong	relationship	between	the	anatomical	

connections	in	the	musculoskeletal	systems	and	correlated	inputs	to	spinal	motor	

neurons.	This	builds	on	previous	research	showing	that	common	input	is	strongest	

to	spinal	motor	neurons	that	innervate	muscles	pairs	that	are	anatomically	and	

functionally	closely	related	[13,	31].	The	similarity	between	structural	and	

functional	networks	has	been	a	signature	of	the	study	of	brain	networks	[38]	and	

the	topology	of	brain	networks	depends	on	the	brain's	spatial	embedding	[39,	40].	

The	present	findings	suggest	that	the	principles	governing	embodied	structural	

and	functional	networks	also	applies	to	the	neural	circuitry	that	controls	

movements	and	may	hence	reflect	a	general	principle	of	the	central	nervous	

system.		

	

The	similarities	between	anatomical	and	functional	connectivity	may	indicate	that	

the	anatomical	structure	constrains	the	functional	interactions	between	muscles.	

The	anatomical	connections	between	muscles	remain	largely	unchanged	over	the	

lifespan	[41]	and	it	is	more	likely	that	the	fast-changing	functional	networks	are	

constrained	by	the	much	slower	changing	anatomical	networks	than	vice	versa.	

These	constraints	may	be	imposed	through	afferent	activity.	The	musculoskeletal	

properties	of	the	human	body	restrict	the	postural	dynamics	[12]	and	these	
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mechanical	couplings	result	in	correlated	proprioceptive	feedback	to	spinal	motor	

neurons.	The	influence	of	biomechanics	on	functional	muscle	networks	is	expected	

to	be	most	pronounced	at	the	lower	frequency	components:	Muscles	act	as	a	low	

pass	filter	of	neuronal	inputs	[43]	and	kinematics	of	the	musculoskeletal	system	

unfold	on	a	slow	time	scale.	This	generates	correlated	activity	at	low	frequencies	

that	are	fed	back	to	spinal	motor	neurons	via	sensory	afferents.	The	spatial	

distribution	of	common	input	would	arguably		mirror	the	topology	of	the	

musculoskeletal	system.		

	

Anatomical	constraints	may	also	be	imposed	during	neural	development.	During	

early	development,	changes	in	the	topographical	distribution	of	axon	terminals	of	

descending	projects	are	dependent	on	patterns	of	motor	activity	and	anatomical	

connectivity	between	muscles	[44].	Likewise,	large	changes	in	functional	coupling	

is	observed	in	infants	between	9	and	25	weeks,	which	may	reflect	a	sensitive	

period	where	functional	connections	between	corticospinal	tract	fibres	and	spinal	

motor	neurons	undergo	activity-dependent	reorganization	[45].	The	anatomy	of	

the	musculoskeletal	system	will	limit	the	motor	activity	patterns	that	can	be	

performed.	

	

Anatomical	and	functional	connectivity	between	muscles	may	also	both	be	

influenced	by	external	factors.	For	example,	the	connectivity	patterns	of	

descending	pathways	is	in	part	genetically	determined	[46].	A	somatotopic	

organisation	is	observed	across	the	neural	motor	system	and	the	community	

structure	of	the	anatomical	muscle	network	mirrors	the	organisation	of	primary	

motor	cortex	control	modules	[29].	Likewise,	the	spatial	organisation	of	motor	

neurons	of	the	spinal	cord	is	also	related	to	the	anatomical	organisation	of	muscles	

[47].	The	topographic	organisation	of	spinal	motor	neurons	is	similar	across	

species	[48]	and	may	hence	be	a	result	of	evolutionary	conservation	[49].	

Musculoskeletal	anatomy	and	neuronal	pathways	are	hence	both	subject	to	some	

sort	of	genetic	control.	

	

Functional	connectivity	was	not	entirely	determined	by	anatomy	and	we	observed	

several	key	differences	between	anatomical	and	functional	muscle	networks.	
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Bilateral	modules	consisting	of	the	upper	and	lower	extremities	were	a	key	

characteristic	of	the	functional	muscle	network	that	was	absent	in	the	anatomical	

network.	The	two	bilateral	forearm	muscles	(FDS	and	ED)	showed	coherent	

activity	at	3-11	Hz,	consistent	with	previous	studies	showing	bimanual	coupling	at	

~10	Hz	between	homologous	hand	and	forearm	muscles	[50,	51].	The	observed	

bimanual	coupling	at	3-11	Hz	may	be	generated	by	the	olivocerebellar	system,	

which	is	known	to	produce	oscillations	in	this	frequency	range	and	for	its	

involvement	in	the	formation	of	functional	muscle	collectives	[51,	52].	The	

bilateral	forearm	muscles	were	only	weakly	coupled	to	other	muscles	(Fig.	2),	

which	may	reflect	the	relatively	high	proportion	of	direct	corticospinal	projections	

–	and	thus	a	relative	low	proportion	of	diverging	projections	–	to	motor	neurons	

innervating	hand	and	forearm	muscles	[53].		

	

In	contrast,	the	bilateral	module	of	lower	leg	muscles	revealed	strong	coupling	at	

multiple	frequency	bands,	consistent	with	previous	analyses	on	functional	muscle	

networks	[30],	and	showed	the	strongest	long-range	connections	observed	in	the	

present	study	(Fig.	3C).	Bilateral	connectivity	between	homologous	muscles	during	

balancing	could	be	generated	by	the	vestibulospinal	tract,	which	is	known	to	be	

involved	in	postural	stability	and	innervate	the	spinal	grey	matter	bilaterally	[31].	

Bilateral	connectivity	has	been	observed	at	all	levels	of	the	corticospinal	axis	[54]	

and	is	paramount	for	functional	brain	networks,	particularly	between	homologous	

left-right	cortical	regions	[55,	56].	The	present	findings	suggest	that	bilateral	

coupling	is	also	a	defining	feature	of	functional	muscle	networks.	

	

Functional	connectivity	displayed	distinct	task-dependent	modulations	that	were	

linked	to	the	task	the	subjects	performed:	functional	connectivity	was	increased	

within	and	between	the	leg	modules	during	postural	instability,	and	increased	

within	and	between	arm	and	upper	body	modules	in	the	pointing	conditions.	

Functional	connectivity	between	muscles	is	thus	task	dependent	[31,	50],	which	

may	suggest	the	presence	of	multifunctional	circuits	in	which	a	given	anatomical	

connectivity	pattern	can	generate	different	functional	activity	patterns	under	

various	conditions	[42].	Such	a	distributed	circuitry	creates	the	substrate	to	

support	many	behaviours	that	are	driven	by	the	concerted	actions	of	a	large	
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distributed	network	as	opposed	to	simple,	dedicated	pathways.	The	underlying	

network	connectivity	hence	constrains	the	possible	patterns	of	population	activity	

to	a	low-dimensional	manifold	spanned	by	a	few	independent	patterns	–	neural	

modes	–	that	provide	the	basic	building	blocks	of	neural	dynamics	and	motor	

control	[57].	Again,	this	finds	similarities	with	recent	investigations	of	the	

functional	principles	of	cognitive	networks	in	the	brain	[58,	59].	

	

Task-dependent	changes	occurred	at	different	frequencies,	which	indicate	the	

functioning	of	a	multiplex	network	organisation,	whereby	the	four	frequency	

components	reflect	different	types	of	interactions	between	muscles.	Four	distinct	

frequency	components	(0-3,	3-11,	11-21,	and	21-60	Hz)	were	extracted	using	

NNMF.	These	frequency	bands	closely	match	those	found	previously	[30],	

demonstrating	the	robustness	of	this	finding.	An	interesting	possibility	is	that	

these	frequency	components	reflect	the	spectral	fingerprints	of	different	pathways	

that	project	onto	the	spinal	motor	neurons.	It	has	been	suggested	that	these	

different	frequencies	may	have	specific	roles	in	coding	motor	signals	[60].	

Functional	connectivity	at	the	lowest	frequency	components	may	result	from	

afferent	pathways,	while	functional	connectivity	at	higher	frequencies	may	reflect	

correlated	input	from	descending	pathways.	For	example,	functional	connectivity	

in	the	beta	band	(15-30	Hz)	most	likely	reflects	corticospinal	projections	[13,	50].	

The	highest	frequency	components	observed	in	this	study	(21-60	Hz)	showed	the	

most	local	connectivity	patterns.	These	local	connectivity	patterns	may	reflect	

propriospinal	pathways	[4,	23].	These	functional	connectivity	patterns	may	be	

used	to	uncover	the	contribution	of	structural	pathways	in	the	formation	of	

coordinated	activity	patterns	in	the	motor	system	[34].	

	

In	summary,	our	network	analysis	revealed	widespread	functional	connectivity	

between	muscles,	indicative	of	correlated	inputs	to	spinal	motor	neurons	at	

multiple	frequencies.	Correlated	inputs	indicate	divergent	projections	or	lateral	

connections	in	the	neural	pathways	that	innervate	spinal	motor	neurons.	These	

findings	are	consistent	with	a	many-to-many	rather	than	an	one-to-one	mapping	

between	brain	and	muscle	[5],	in	which	complex	movements	arise	through	

relatively	subtle	changes	in	the	co-activation	of	different	distributed	functional	
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modes.	We	present	a	novel	approach	that	aligns	movement	neuroscience	with	

current	research	on	brain	and	physiological	networks	by	showing	how	the	central	

nervous	system	interacts	with	the	musculoskeletal	system	of	the	human	body.	

From	a	systems	biology	perspective,	the	brain	and	spinal	cord	are	interwoven	with	

the	body:	they	are	‘embodied’	[10].	Using	network	analysis	as	a	common	

framework,	future	work	could	integrate	functional	interactions	between	supra-

spinal,	spinal	and	peripheral	regions	simultaneously.	Such	an	integrated	

framework	aligns	with	the	broader	approach	of	network	medicine,	which	may	

provide	new	insights	and	interventions	for	neurological	disorders	[61-63].	

	

Methods	

Data	acquisition	

Fourteen	healthy	participants	(seven	males	and	seven	females,	mean	age	25±8	

years,	ten	right	and	four	left	handed)	without	any	neurological,	motor	disorder	or	

diabetes	mellitus	and	with	a	BMI	below	25	were	included	in	this	study.	The	

experiments	were	approved	by	the	Ethics	Committee	Human	Movement	Sciences	

of	the	Vrije	Universiteit	Amsterdam	(reference	ECB	2014-78)	and	performed	in	full	

compliance	with	the	Declaration	of	Helsinki.	All	participants	were	written	and	

verbally	informed	about	the	procedure	and	signed	an	informed	consent	prior	to	

participation.	

	

Participants	were	instructed	to	perform	nine	different	postural	tasks.	A	full	

factorial	design	was	used	in	which	postural	stability	(normal	standing,	instability	

in	anterior-posterior	direction	and	instability	in	medial-lateral	direction)	and	

pointing	behaviour	(no	pointing,	pointing	with	dominant	hand,	pointing	with	both	

hands)	were	varied.	Postural	stability	was	manipulated	using	a	balance	board	with	

one	degree	of	freedom,	which	allows	movement	either	in	the	anterior-posterior	or	

medial-lateral	direction.	In	the	pointing	task,	participants	held	a	laser	pointer	with	

their	dominant	hand	(unimanual)	or	with	both	hands	(bimanual)	and	pointed	it	on	

a	white	target	(25	cm2)	located	at	a	distance	of	2.25	meter,	parallel	to	the	

transversal	axis	of	the	body	at	the	height	of	the	acromion	of	the	participant.	The	

experiment	hence	consisted	of	nine	(3´3)	experimental	conditions.	The	duration	of	

a	trial	was	30	seconds	and	each	condition	was	repeated	six	times.		
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Bipolar	surface	EMG	was	recorded	from	36	muscles	distributed	across	the	body,	

i.e.	18	bilateral	muscles	(Table	1).	These	muscles	are	the	primary	muscles	involved	

in	the	stability	and	pointing	tasks	that	can	be	properly	measured	with	surface	

EMG.	EMG	was	acquired	using	three	16-channel	Porti	systems	(TMSi,	Enschede,	

The	Netherlands),	online	high-pass	filtered	at	5	Hz	and	sampled	at	2	kHz.		

	

Table	1.	List	of	muscles	

Muscle	 Abbreviation	
tibialis	anterior	 TA	
gastrocnemius	medialis		 GM	
soleus	 SOL	
rectus	femoris	 RF	
biceps	femoris	 BF	
vastus	lateralis	 VL	
adductor	longus	 AL	
external	oblique	 EO	
pectoralis	major	 PMA	
sternocleidomastoideus	 SMA	
longissimus	 LO	
latissimus	dorsi	 LD	
trapezius	 TZ	
deltoid	 D	
biceps	brachii	 BB	
triceps	brachii	 TRB	
extensor	digitorum	 ED	
flexor	digitorum	superficialis	 FDS	
	

Anatomical	muscle	network	

The	anatomical	muscle	network	was	defined	by	mapping	the	physical	connections	

between	muscles	[28].	The	nodes	represent	the	36	muscles	(18	left	and	18	right)	

and	the	edges	of	the	network	represent	the	tendinous	attachments	of	muscles	onto	

bones	and	cartilages.	The	structural	connections	were	defined	based	on	the	origin	

and	insertion	of	the	muscles	[3].	Bones	that	show	no	or	almost	no	motion	in	the	

joint	between	them	were	considered	as	one	rigid	bony	structure,	i.e.	the	pelvis,	

skeleton	thoracis	or	ossa	cranii.	The	connections	between	muscles	and	bones	

listed	in	Table	2	denote	a	bipartite	network	𝐶	with	muscles	as	one	group	and	

bones	as	the	second	group.	We	then	created	a	muscle-centric	network	as	the	one-

mode	projections	of	𝐶:	𝐵 = 𝐶𝐶% 	[29].	This	gave	a	weighted	adjacency	matrix	

where	the	weights	reflect	the	number	of	attachments	by	which	two	muscles	are	
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connected.	We	converted	this	to	a	binary	network	by	setting	all	none-zero	weights	

to	1.	

	

Table	2.	Origin	and	insertion	of	muscles	
Muscle	 Origin	1	 Origin	2	 Origin	3	 Insertion	1	 Insertion	2	
TA	 tibia	 		 		 os	cuneiforme	mediale	 ossa	

metatarsi	
GM	 femur	 		 		 calcaneus	 		
SOL	 fibula	 tibia	 		 calcaneus	 		
RF	 os	coxae1,*	 os	ilium1,*	 	 tibia	 		
BF	 femur	 os	ischii1,*	 		 fibula	 tibia	
VL	 femur	 		 		 tibia	 		
AL	 os	pubis1,*	 		 		 femur	 		
EO	 costae2,*	 		 		 linea	alba	 os	ilium1,*	
PMA	 clavicula	 costae2,*	 sternum2,*	 humerus	 		
SMA	 clavicula	 sternum2,*	 		 os	temporale3,*	 	
LO	 ligamentum	

sacrospinale1,*	
vertebra*	 		 costae2,*	 vertebra*	

LD	 costae2,*	 fascia	
thoracolumbalis*	

vertebra*	 humerus	 		

TZ	 ligamentum	nuchae*	 os	occipitale3,*	 vertebra*	 clavicula	 scapula	
D	 clavicula	 scapula	 		 humerus	 		
BB	 scapula	 		 		 radius	 		
TRB	 humerus	 scapula	 		 ulna	 		
ED	 humerus	 		 		 ossa	digitorum	 		
FDS	 humerus	 radius	 ulna	 ossa	digitorum	 		
1	Part	of	the	pelvis;	2	Part	of	the	skeleton	thoracis;	3	Part	of	the	ossa	cranii;	*	Connective	structure	on	
the	midline	of	the	body	connecting	bilateral	muscles	
	

Functional	muscle	network	

EMG	was	filtered	offline	with	a	band-pass	filter	(1-400	Hz)	before	independent	

component	analysis	was	used	for	electrocardiography	removal	[64].	For	each	

participant,	one	or	two	independent	components	were	removed.	EMG	data	was	

then	high-pass	filtered	(20	Hz)	and	EMG	envelopes	were	extracted	by	means	of	the	

Hilbert	amplitude	[33].		

	

We	followed	the	procedure	described	in	Boonstra	et	al.	[30]	to	extract	functional	

muscle	networks	from	surface	EMG.	First,	complex-valued	coherency	was	

estimated	and	averaged	over	trials	within	each	condition	for	each	participant.	The	

absolute	value	of	coherency	was	squared	to	obtain	magnitude-squared	coherence.	

Intermuscular	coherence	was	assessed	between	all	630	muscle	pairs.	Next,	non-

negative	matrix	factorisation	(NNMF)	[65]	was	used	to	decompose	these	

coherence	spectra	across	all	muscle	combinations,	conditions	and	participants	into	

four	distinct	frequency	components	and	the	corresponding	weights.	This	yielded	a	
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set	of	weights	for	each	frequency	component,	which	defined	an	undirected	

weighted	network	for	each	condition	and	participant.		

	

These	functional	networks	were	converted	to	binary	networks	to	facilitate	

comparison	to	the	anatomical	network.	Weights	were	thresholded	to	obtain	a	

minimally	connected	network	across	conditions	and	frequency	components.	This	

thresholding	procedure	yields	a	single,	unique	threshold	value,	which	corresponds	

to	the	percolation	threshold	[66].	This	resulted	in	sparse	networks	in	which	each	

node	was	connected	to	at	least	one	other	node	by	an	edge	at	one	of	the	layers	of	

the	multiplex	network.	

	

Community	structure		

The	standard	Louvain	algorithm	was	used	to	extract	the	modules	from	the	

anatomical	networks	[67].	As	the	Louvain	algorithm	is	stochastic,	we	used	

consensus	clustering	to	obtain	a	stable	partition	across	1000	iterations	[68].	

Multiplex	modularity	analysis	[35]	was	used	to	identify	the	modules	of	functional	

muscle	network	across	the	conditions	and	frequency	components.	We	used	MolTi,	

a	standalone	graphical	software,	to	detect	communities	from	multiplex	networks	

by	optimising	the	multiplex-modularity	with	the	adapted	Louvain	algorithm	

(https://github.com/gilles-didier/MolTi).	Modules	were	extracted	across	the	36	

(9´4)	binary	networks,	as	multi-graph	approaches	can	improve	clustering	

accuracy	[69].	We	used	the	Rand	index	and	the	adjusted	Rand	index	to	compare	

the	modules	of	the	anatomical	and	functional	muscle	networks	[25].	

	

Comparison	of	functional	networks	across	conditions		

To	facilitate	the	comparison	of	functional	networks	across	task	conditions,	we	

coarse-grained	the	networks	[70].	We	used	the	set	of	functional	modules	estimated	

across	conditions	and	frequency	components	as	a	frame	of	reference	to	coarse-

grain	the	36	binary	networks	and	then	compared	the	strength	of	the	inter-	and	

intra-module	connections	across	networks	using	these	module	boundaries.	In	the	

clustered	networks	the	nodes	represent	the	modules	(groups	of	muscles,	identified	

above)	and	the	edges	represent	the	connections	between	modules.	The	non-

diagonal	elements	of	the	resulting	weighted	adjacency	matrix	represent	the	
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average	edge	weights	between	two	modules	and	diagonal	elements	the	average	

edge	weights	within	a	module.		

	

To	compare	the	clustered	networks	across	conditions,	we	used	simple	contrasts	

between	task	conditions	and	quantified	differences	in	the	numbers	of	connections	

between	and	within	modules.	We	tested	four	contrasts:	(i)	unimanual	and	(ii)	

bimanual	pointing	compared	to	no	pointing	and	(iii)	anterior-posterior	and	(iv)	

medial-lateral	instability	compared	to	normal	standing.	To	test	the	statistical	

significance	of	these	contrasts,	we	performed	paired	permutation	tests	separately	

on	each	of	the	matrix	elements	[70].	The	clustered	networks	had	a	much-reduced	

dimensionality	compared	to	the	original	functional	muscle	networks	(21	instead	of	

630	edges).	Family-wise	error	control	was	maintained	using	Bonferroni	correction	

to	correct	for	multiple	comparisons	(4	´	21	=	84	comparisons).	
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