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Abstract

When performing bioforensic casework, it is important to be able to reliably detect the
presence of a particular organism in a metagenomic sample, even if the organism is only
present in a trace amount. For this task, it is common to use a sequence classification
program that determines the taxonomic affiliation of individual sequence reads by com-
paring them to reference database sequences. As metagenomic data sets often consist of
millions or billions of reads that need to be compared to reference databases containing
millions of sequences, such sequence classification programs typically use search heuristics
and databases with reduced sequence diversity to speed up the analysis, which can lead
to incorrect assignments. Thus, in a bioforensic setting where correct assignments are
paramount, assignments of interest made by “first-pass” classifiers should be confirmed
using the most precise methods and comprehensive databases available. In this study
we present a blast-based method for validating the assignments made by less precise
sequence classification programs, with optimal parameters for filtering of blast results
determined via simulation of sequence reads from genomes of interest, and we apply the
method to the detection of four pathogenic organisms. The software implementing the
method is open source and freely available.

Keywords: blast; metagenomics; sequence classification; taxonomic assignment; bio-
forensics; validation

Introduction

In metagenomic analysis, comparing the genomic sequence content of a sample to a
reference database is fundamental to understanding which organisms present in the
sample were sequenced. There exist many bioinformatics software programs that perform
this classification task [7, 10, 22, 32]; some programs only estimate overall taxonomic
composition and abundance in the sample [19, 30], while other programs assign a
taxonomic label to each metagenomic sequence [4, 14,15,17,18,28,36]. In a bioforensic
setting, one is often concerned with reliably detecting the presence of a particular
organism in a metagenomic sample, which may only be present in a trace amount. For
this task, one typically uses the latter class of programs just mentioned, which determine
the taxonomic affiliation of each sequence using a reference database [8, 20, 21] and a
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taxonomy [5]. A canonical metagenomic sequence classification workflow is shown in
Figure 1.

When classifying sequences, there is a general trade-off between sensitivity (the
proportion of the total number of sequences assigned correctly) and precision (the
proportion of assigned sequences assigned correctly), as well as between classification
performance (combined sensitivity and precision) and computational resource require-
ments. Modern metagenomic sequence classification programs often use relatively fast
heuristics and databases with limited sequence diversity to increase analysis speed, as
metagenomic data sets often consist of millions or billions of sequences that need to be
compared to millions of database sequences. Thus, while they are useful in performing a
“first-pass” analysis, in a bioforensic setting it is important to validate the assignments
of interest made by such programs using the most precise methods available [13]. One
could choose to validate only the assignments made to the taxonomic clade of interest
(e.g., Bacillus anthracis), but depending on the compute capacity one has access to,
one might choose to validate all assignments subsumed by a higher ranking taxon (e.g.,
the Bacillus cereus group or the Bacillus genus), which would enable the detection of
possible false negative assignments as well as false positive assignments made by the
first-pass classifier.

In this study, we present a method that uses blast [11], the ncbi non-redundant
nucleotide database [12] (nt), and the ncbi taxonomy [12] to validate the assignments
made by less precise sequence classification programs. blast is widely considered the
“gold standard” for sequence comparison, although it is generally known to be orders
of magnitude slower than the most commonly used first-pass classifiers (see Bazinet
and Cummings, 2012 for a comparison of blast runtimes to those of other sequence
classification programs). For simplicity, we refer to the taxonomic clade of interest in our
analyses as the “target taxon”, and we assume all metagenomic sequences are paired-end
reads generated by the Illumina HiSeq 2500 sequencer (no assembled sequences). The
basic validation procedure involves comparing each read against the nt database using
blastn, and then filtering and interpreting the blast results based on data collected
from simulated read experiments aimed at optimising detection of the target taxon. The
blast-based validation workflow is shown in Figure 2.

Related work

Platypus Conquistador

An existing software tool, “Platypus Conquistador” [13], also uses blast to validate the
classification of particular sequences of interest. Platypus requires the user to split their
reference sequences into two databases: a database containing only sequences of possible
interest, and a database composed of potential “background” sequences. blast queries
are performed against both databases, and hits may be filtered by various combinations
of percent identity or alignment length values, which need to be provided by the user.
After filtering, query sequences with hits to the “interest” database are checked to see if
they also have hits to the “background” database; if so, the bit scores of the respective
best hits are compared and are roughly categorised as “equal”, “interest > background”,
etc. While this could be a helpful diagnostic tool, there is no guidance provided to the
user as to what parameter values to use or what difference in bit scores between interest
and background should be regarded as significant. Furthermore, this tool no longer
appears to be actively developed.
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Genomic purity assessment

Whereas in this study we are concerned with the precision with which individual reads are
classified so as to be confident in the detection of a target taxon in a metagenomic sample,
a recently published study [27] addresses a different, but related problem, namely detect-
ing contaminant organisms in ostensibly axenic (non-metagenomic) samples. Specifically,
Olson et al. develop methods to determine the proportion of a contaminant required to
be present in an otherwise pure material such that the contaminant can be detected with
standard metagenomic sequence classification tools. As in our study, they simulate reads
with art [16] software (in their case from both “material” and potential contaminant
genomes) to set up conditions under which sequence classification performance can be
assessed. PathoScope [15] is used instead of blast for read classification. In general,
they find that their method is able to identify contaminants present in a proportion of
at least 10−3 for most contaminant-material combinations tested.

Outlier detection in BLAST hits

Shah et al. [33] have developed a method that detects outliers among blast hits in order
to separate the hits most closely related to the query from hits that are phylogenetically
more distant using a modified form of Bayesian Integral Log Odds (bild) scores [3] and a
multiple alignment scoring function. In this way, they separate sequences with confident
taxonomic assignments from sequences that should be analyzed further. The method
was developed for and tested on 16S rrna data, and thus is currently not applicable
to whole genome sequencing (wgs) data sets. As a general-purpose filter, however, it
can be used with any organism containing 16S rrna data, whereas our methods are
optimised for detection of specific taxa. It is also interesting to note that in the Shah et al.
study, blast is used as a first-pass classifier and subsequent analysis is performed with
tipp [23], whereas in the paradigm we present here, a much faster classifier than blast
would be used for a first-pass (e.g., Kraken [36]), and then our blast-based method
would be used for validation.

Methods

Evaluation of a “first-pass” taxonomic classifier

To demonstrate typical use of a first-pass taxonomic classification program, we used
Kraken [36] (version 1.1). Kraken was run in paired-end mode with default parameters
and used standard Kraken databases for bacteria, archaea, viruses, plasmids, and human
sequences.

Read simulation

For read simulation we used art [16] (version 2016-06-05). To ensure thorough sampling,
all experiments used simulated reads equivalent in total to 10× coverage of the source
genome. For 150-bp reads, we used the built-in HS25 quality profile with an insert size of
200± 10 bp (mean ± standard deviation). For 250-bp reads, we used a custom Illumina
HiSeq quality profile that we generated from recent runs of our HiSeq 2500, with an
insert size of 868± 408 bp determined from recent library preparations. We supplied
this information so that the simulated reads would have characteristics that closely
matched what we would expect to obtain from a real HiSeq run in our laboratory, thus
ensuring that the simulation results would be maximally useful to us. We recommend
that others who emulate our procedures customise the attributes of their simulated reads
to correspond to the real data they anticipate analysing.
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Similarity searches

We used blastn from the blast+ package [11] (version 2.2.25+) together with the ncbi
non-redundant nucleotide database [12] (downloaded February 2017) for all classification
experiments. Default parameters were used, except when excluding taxa from the
reference database, in which case the -negative gilist option was added. The blast
computation was distributed over many cluster nodes to complete the analyses in a
timely manner.

BLAST result filters

The output from blast includes a number of statistics that can potentially be used to
filter the results, including alignment length, alignment percent identity, E-value (the
number of similar scoring alignments one can “expect” to see by chance in a database of
the size being searched), and bit score (a database size-independent measure of alignment
quality).

We developed two basic ways of filtering blast results. The first we term an
“absolute” filter, which simply removes blast hits that do not meet a particular criterion.
Various possible criteria include minimum alignment length, minimum alignment percent
identity, or maximum E-value. Of these three filters, this study only uses the E-value
filter (abbreviated E), as E-value is fundamentally a composite of alignment length
and alignment similarity. (Our software supports the use of all three filters, however,
either individually or in combination.) If the best blast hit matches the target taxon
after application of the absolute filters, it is then possible to apply a “relative” filter by
computing the difference in E-value or bit score between the best hit and the best hit to
a non-target taxon (should the latter exist). As very small E-values are typically rounded
to zero, our software uses relative bit scores in this context for maximum applicability;
we call this quantity the “bit score difference”, abbreviated b. If b is greater than or
equal to a threshold determined via read simulation experiments, then we have validated
the assignment of the read to the target taxon. Examples of the application of the bit
score difference filter are given in Figures 3 and 4.

Evaluation of classification performance

The two main metrics used in this study to evaluate classification performance are
sensitivity and precision.

To calculate sensitivity, one must determine the number of target taxon reads that
were correctly assigned as a fraction of all the target taxon reads that were assigned.
In this study, a true positive (TP ) is a simulated read from the target taxon assigned
correctly (either assigned directly to the target taxon or to a more specific taxon beneath
the target), and a false negative (FN) is a simulated read from the target taxon assigned
incorrectly (i.e., assigned to a taxon that is not part of the target taxon lineage). Note
that the case of a non-specific but not incorrect read assignment (e.g., a B. anthracis
read assigned to the B. cereus group) is neither considered a TP nor a FN ; we term
this an “inconclusive assignment” (IA). The count of true positives, false negatives,
and inconclusive assignments can be easily determined by parsing the blast output
associated with the target taxon. In all of our read simulation experiments, therefore,
the calculation of sensitivity uses the formula (TP/(TP + FN + IA)).

To calculate precision, one must determine the number of non-target taxon reads
incorrectly assigned to the target taxon, each of which is considered a false positive (FP ).
Naively, determining the count of false positives would require simulating reads and
evaluating blast results for every non-target taxon in the database, but we currently
regard this as computationally prohibitive. Instead, we offer two alternatives. The

4

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 17, 2018. ; https://doi.org/10.1101/181636doi: bioRxiv preprint 

https://doi.org/10.1101/181636
http://creativecommons.org/licenses/by/4.0/


first, which we call “near neighbour”, computes FP using the genome in the database
that is most globally similar to the target taxon as a proxy for all non-target database
taxa. The intuition behind this approach is that a misclassified read (presumably due
to sequencing error) is most likely to originate from a database genome that is very
similar to the target taxon. Thus, with the near neighbour approach, the calculation of
precision uses the formula (TP/(TP +FP )). The potential weakness of this approach is
that there could be a region of local similarity to the target taxon in a database genome
that is not the near neighbour. Thus, we offer a second approach that does not rely on
selecting other genomes from the database, which we call the “false negatives” approach.
This approach relies on the observation that if the sequencing error process is symmetric
— i.e., the probability of an erroneous A to C substitution is the same as that of C to A,
insertions are as probable as deletions, and so on — then the process that gives rise to
false negatives can be treated as equivalent to the process that gives rise to false positives.
While it is known that in practice this assumption of symmetry is violated [31], it may
nonetheless suffice to use FN as a proxy for FP in this context. Thus, with the false
negatives approach, it is only necessary to simulate reads from the target taxon, and
the calculation of precision uses the formula (TP/(TP + FN)). Unfortunately, deciding
which of the two heuristics is more effective would require comparison to a provably
optimal procedure; in this study, we present results from simulated read experiments
using both the near neighbour and false negatives approaches, and report the patterns
we observe.

BLAST result parsing, final taxonomic assignment, and calcula-
tion of statistics

blast result parsing and final taxonomic assignment of each read was performed with a
custom Perl script capable of querying the ncbi taxonomy database [12]. If a target taxon
is supplied as an argument to the script, assignments to the target taxon lineage that
are more specific than the target taxon are simply reassigned to the target taxon. blast
hits that do not meet the criteria specified by the absolute filters (minimum alignment
length, minimum alignment percent identity, or maximum E-value) are removed, as are
hits to the “other sequences” clade (ncbi taxon id 28384), which are presumed to be
erroneous. To make the final taxonomic assignment for each read, the lowest common
ancestor (lca) algorithm [17] is applied to the remaining hits that have a difference in
bit score from the best hit less than a specified amount. If multiple parameter values are
supplied for one or more filters, the script parses the blast results once for each possible
combination of parameter values and writes the results to separate “lca files”, thus
enabling the user to efficiently perform parameter sweeps. The ultimate output from the
script is one or more lca files, each containing the final taxonomic assignment of each
read for a particular combination of filter parameter values. Counts of true positives,
false negatives, inconclusive assignments, and false positives (from which sensitivity and
precision were calculated) were obtained using a separate Perl script that parses the lca
files produced by the blast result parser.

Determination of optimal BLAST filter parameter values

When deciding how the absolute and relative BLAST filters should be parameterised, an
optimality criterion is needed. In the execution of bioforensic casework, it is important
that any assignments made are correct. Thus, we first chose filter parameter values
that maximized precision (i.e., minimized incorrect read assignments). In the event
that multiple combinations of parameter values yielded exactly the same maximum
precision value, we chose from among these the combination that maximized sensitivity
(i.e., maximized detection of the target taxon). In the event that multiple combinations
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of parameter values yielded exactly the same maximum precision and sensitivity values,
we reported the strictest combination.

In this study, we present examples aimed at detecting a variety of pathogenic target
taxa including Bacillus anthracis, Clostridium botulinum, pathogenic Escherichia coli,
and Yersinia pestis. Due to inherent variation in the degree of interrelatedness among
genomes from different taxonomic clades, optimal filter parameter values need to be
set differently for each target taxon. To determine optimal filter settings, we must
know the true origin of our test sequences; thus, we simulate reads from each target
taxon genome, blast them against nt, and evaluate classification performance under
different combinations of filter parameter settings. In each read simulation experiment,
81 different combinations of filter parameter values were tested — i.e., all combinations
of maximum E-value (E) = {100, 10−1, 10−2, 10−4, 10−8, 10−16, 10−32, 10−64, 10−128}
and bit score difference (b) = {0, 1, 2, 4, 8, 16, 32, 64, 128}. The parameter optimisation
workflow is shown in Figure 5.

Selection of near neighbour and alternate representative genomes

For each target taxon, we used the “Genome neighbor report” feature of the ncbi
Genome database [12] to select the most closely related complete genome of a different
species or strain, as appropriate, to be used as the “near neighbour”. For species-level
target taxa, we used the Genome neighbor report to select the complete genome of
the same species that was most distantly related to the original representative genome,
which we call the “alternate representative genome” (Table 1).

Clade-level exclusion

In the final read simulation experiment, clade-level exclusion [9] was performed to assess
classification performance in the situation where the taxon for which one has sequence
data is not represented in the reference database. In these tests, we simulated 250-bp
reads from the taxon hypothetically missing from reference database, excluded this
taxon from the reference database when performing blast searches, and then obtained
optimal filter parameter values for classification of the target taxon, which in this case
was the taxon immediately above the excluded taxon in taxonomic rank.

Results and discussion

Evaluation of a “first-pass” taxonomic classifier

To demonstrate typical use of a first-pass taxonomic classification program, we analyzed
all simulated reads from the B. cereus JEM-2 genome [34, 35] with Kraken [36]. The
majority of the reads (79%) were assigned to the Bacillus cereus group; of these, only
32% of the reads were assigned more specifically to B. cereus. Worryingly, however,
a relatively small number of reads were assigned incorrectly to other Bacillus cereus
group species, including B. anthracis, B. cytotoxicus, B. mycoides, B. thuringiensis,
and B. weihenstephanensis. Had this benign strain of B. cereus (JEM-2) been the
sole representative of the Bacillus cereus group in a metagenomic sample, an analyst
using Kraken might have erroneously declared that a variety of Bacillus cereus group
species were present in the sample, including pathogenic B. anthracis. As false-positive
assignments are relatively commonplace with first-pass classification programs, we were
motivated to develop a procedure to validate the assignments of interest made by such
classifiers.
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Taxon selection

To demonstrate the blast-based validation procedure, we selected four target taxa,
all of which are biological agents that could conceivably be of interest in a bioforensic
setting. The first is Bacillus anthracis, the bacterium that causes anthrax. The second is
Clostridium botulinum, a bacterium capable of producing the lethal botulinum neurotoxin.
The third is a pathogenic strain of Escherichia coli, E. coli O157:H7 str. Sakai, a
bacterium that has been associated with major outbreaks of foodborne illness. The fourth
and final target taxon is Yersinia pestis, the bacterium that causes bubonic plague. Thus,
three out of the four target taxa represent particular species to be identified (B. anthracis,
C. botulinum, and Y. pestis), whereas one target taxon represents a particular strain
to be identified (E. coli O157:H7 str. Sakai). Species-level evaluations were performed
using the representative strains indicated in Table 1. In two of the three evaluations, the
genome chosen was a reference genome for the species (C. botulinum A str. ATCC 3502
and Y. pestis CO92). For the B. anthracis evaluation, the genome of the Ames Ancestor
strain was used to ensure that the pXO plasmids were included, as presence of the pXO
plasmids is normally required for B. anthracis to be fully virulent [24,25,29]. To evaluate
the implications of representative genome choice, an alternate representative genome
was selected for each species. Additional information about the target taxa and near
neighbours is provided in Table 1.

Simulated read experiments

A total of four simulated read experiments were performed to determine optimal blast
filter parameter values for the identification of various target taxa. A comparison of
sensitivity across experiments on a per-taxon basis is available in Supplementary Figs.
S1-S4, online.

Experiment 1: 250-bp simulated reads

The first experiment simulated 250-bp reads from the target and near neighbour genomes;
the results are shown in Table 2.

We observe that when requiring perfect precision, sensitivity was highest for identifi-
cation of C. botulinum (≈99%), followed by much lower sensitivity for B. anthracis and
Y. pestis. These results are understandable, as it is well established that the species that
comprise B. cereus sensu lato have very similar genomic content [6], and that Y. pestis
and Y. pseudotuberculosis are also very closely related [1]. Sensitivity was lowest for
identification of E. coli O157:H7 str. Sakai (≈0.4% for near neighbour and ≈0.08% for
false negatives). Again, this result is consistent with the expectation that strain-level
identification would be substantially more challenging than species-level identification,
as the two E. coli strains in this case are ≈99.97% identical. Because the reads in this
experiment were simulated from genomes that were present in the reference database,
almost all read alignments had equally good scores, so the absolute E-value filter had
little or no effect until it was set so stringently that it eliminated all TP (E = 10−128).
In the case of B. anthracis, we observe that sensitivity increased from ≈0.8% to ≈8.9%
when allowing exactly one FN assignment (precision ≈99.9995%; Table 2). This suggests
that if one is willing to relax the perfect precision requirement very slightly, it may be
possible to make significant gains in sensitivity. Finally, it is interesting to note that in
most cases, b = 8 maximized sensitivity while achieving perfect precision. This likely
represented a “sweet spot” (at least as compared to b = 4 or b = 16) for the level of
taxonomic specificity represented by the selected target taxa.
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Experiment 2: 250-bp simulated reads, alternate representative genome

Choosing a particular genome to represent a strain, species, or higher-level taxon could
in principle have implications for the filter parameter values recommended by the
optimisation procedure. While hopefully the taxonomy is structured such that members
of a particular clade are more similar to each other than to members of other clades,
taxonomies are well known to be imperfect in this regard. To test the implications of
representative genome choice, we repeated the species-level evaluations from Experiment
1, except that we used an alternate representative genome for the target taxon, the
database genome that was most distantly related to the original representative genome.
The results are shown in Table 3.

In general, the optimal parameter values recommended by this experiment and the
resulting values of sensitivity and precision were highly concordant with the results
of Experiment 1 (Tables 2 and 3). The optimal parameter values recommended for
classification of B. anthracis when using the Cvac02 strain were identical to those
recommended when using the Ames Ancestor strain (E = 10−64 and b = 8), with the
exception that it was possible to achieve perfect precision using the false negatives
approach when b = 8. Likewise, when using C. botulinum B1 str. Okra, the false
negatives approach recommended b = 4 rather than b = 8. These results suggest that
the filter parameter values recommended by the false negatives approach are potentially
more dependent on representative genome choice than those recommended by the near
neighbour approach. The calculation of FP in the false negatives approach is based solely
on the classification of reads simulated from the chosen representative genome, whereas
in the near neighbour approach, FP can result from the assignment of a near neighbour
read to any genome associated with the target taxon (any strain of B. anthracis, for
example). Thus, it might behoove a user of our method to sample the diversity in their
clade of interest by running the optimisation procedure for multiple representatives and
using the globally most conservative recommended parameter values for classification (if
maximizing precision is the goal). Alternatively, one might devise a method for more
exhaustive sampling of the diversity that might exist among target taxon genomes.

Experiment 3: 150-bp simulated reads

Experiment 3 was identical to Experiment 1, except that a simulated read length of 150
bp was used, thus making the classification task more difficult. The results are shown in
Table 4.

With optimal filter parameter values, we observe that sensitivity in detecting each
target taxon decreased relative to the 250-bp experiment — e.g., in the case of C. bo-
tulinum, sensitivity decreased from ≈99% to ≈96% (Tables 2 and 4). Also, optimal
values for the E-value and bit score difference filters varied somewhat relative to the
250-bp experiment, although it was always the case that E ≤ 10−64 and b ≤ 8.

Experiment 4: clade-level exclusion, 250-bp simulated reads

In a final simulated read experiment, clade-level exclusion of either species (B. anthracis)
or strains (C. botulinum A str. ATCC 3502 and Y. pestis CO92) was performed to
assess classification performance when the taxon for which one has sequence data is not
represented in the reference database, a situation commonly encountered in practice.
Only the false negatives method of computing FP was used; the results are shown in
Table 5.

In this experiment, we observe that it was not always possible to achieve perfect
precision — maximum precision for identification of the B. cereus group when excluding
B. anthracis was ≈93.9%, and maximum precision for identification of C. botulinum
when excluding C. botulinum A str. ATCC 3502 was ≈99.9%. We note that sensitivity
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for identification of C. botulinum decreased from ≈98.5% in Experiment 1 (Table 2) to
≈90.5% in the clade-level exclusion experiment (Table 5). By contrast, sensitivity for
identification of Y. pestis hardly decreased at all (≈10.6% vs. ≈10.5%).

Calculating precision: “near neighbour” versus “false negatives”

Our results show that it was possible to achieve perfect precision in 3/4 simulated
read experiments when using either the near neighbour or the false negatives approach
(the exception being the clade-level exclusion experiment). In 7/11 cases, the filter
parameter values recommended by the two approaches were identical; in the cases where
they differed, the false negatives approach uniformly recommended more stringent filter
parameter values than the near neighbour approach, resulting in reduced sensitivity
(Tables 2, 3, and 4). As mentioned previously, deciding which of the two approaches
to calculating precision is superior would require a comparison to a provably optimal
approach, which we currently deem computationally intractable. Each heuristic makes
assumptions that may not always hold: the near neighbour approach assumes that a
single genome that is closely related to the target taxon is sufficient to serve as a proxy
for all other non-target taxa in the database, and the false negatives approach assumes
that the sequencing error process is symmetric. When seeking to avoid an erroneous
claim that a particular biological agent is present in a sample, one may wish to use the
more conservative set of parameter values recommended by the two approaches.

Practical application of the BLAST-based validation procedure

To demonstrate the practical application of the blast-based validation procedure, we
downloaded a subset of metagenomic data collected from the New York City subway
system (ncbi sra id SRR1748708), which the original study indicated might contain some
reads from B. anthracis [2]. Indeed, analysis of this data with Kraken, our first-pass
classifier, assigned 676 reads to B. anthracis (≈0.04% of reads). However, blast-
validation of these 676 reads using the most conservative parameters recommended
by our study (E = 10−64 and b = 128; Table 2) resulted in zero reads assigned to
B. anthracis. Even after significantly relaxing the minimum required bit score difference
(setting b = 8), which was shown in Experiment 1 to significantly increase sensitivity
(Table 2), still zero reads were assigned to B. anthracis. Thus, we would conclude that
the 676 reads that Kraken assigned to B. anthracis were in fact false-positive assignments,
which agrees with other follow-up studies that have been performed on the New York
City subway data [13].

Conclusions

We have shown how blast, a very widely used tool for sequence similarity searches,
can be used to perform taxonomic assignment with maximal precision by using blast
result filters fine-tuned via read simulation experiments in conjunction with an lca
algorithm. We demonstrated the parameter optimisation process for four different
pathogenic organisms, and showed that optimal parameter values and resulting values of
sensitivity and precision varied significantly depending on the selected taxon, taxonomic
rank, read length, and representation of the sequenced taxon in the reference database.
Furthermore, the addition or removal of a single sequence from the reference database
could change the recommended optimal parameter values, so the optimisation process
should be re-run every time the database is updated.

Once optimal blast filter parameter values for a particular taxon have been deter-
mined, they can be subsequently used to perform validation of sequence assignments to
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that taxon. Given the massive size of many metagenomic data sets, however, we envision
most users employing a “two-step” approach that involves first producing candidate
target taxon sequence assignments using a relatively fast classification program — one
that is not necessarily optimised for precision — and then confirming the veracity of
those sequence assignments using the blast-based validation procedure.

One would be hard-pressed to define a “typical” metagenomic experiment, and the
probability that a particular genome that is physically present in a metagenomic sample
at some abundance is ultimately represented in the sequencing library and sequenced to
a particular degree of coverage is a function of many factors that are outside the scope
of this study. The methods we present here are concerned with read-by-read taxonomic
assignment (each read interrogated independently of all other reads), and the selection
of optimal blast result filters for this assignment process — in our case, we define
“optimal” to mean correct assignment of the greatest possible number of reads without
any incorrect assignments. In a real-world detection scenario, an additional question
will often be asked: how many reads should be assigned to a particular target taxon
before one deems it “present” in the sample? In principle, if one assumes that the reads
in question originate from a genome that is present in the reference database, and that
there was no error associated with the read simulation process or choice of optimal filter
parameter values, then the answer is simply “one read”. In practice, however, if only one
read out of millions or billions is assigned to a particular taxon, it is only natural that
one may hesitate to claim that a potential pathogen or other biological agent is present
in a sample on the basis of such scanty evidence. Unfortunately, meaningful additional
guidance on this point would require a comprehensive accounting of all possible sources
of error associated with the analysis of a metagenomic sample.

Potential users of the software will find scripts for parsing blast results, performing
parameter sweeps, and assigning final taxon labels to sequences at https://github.

com/bioforensics/blast-validate.
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Figure 1. Canonical workflow for the classification of metagenomic sequences. A
sequence classification program, which typically makes use of a reference database and a
taxonomy, is used to assign taxonomic labels to unidentified dna sequences.
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program (e.g., Kraken) 
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Figure 2. Workflow for blast-based validation of taxonomic assignments. Taxonomic
labels are first assigned to metagenomic reads using a “first-pass” classification program.
Reads assigned to a target taxon of interest are then compared against the ncbi nt
database using blast. Final taxonomic assignments are obtained by filtering the blast
results using parameter values that were previously determined to be optimal for the
target taxon.
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Figure 3. Demonstration of the “bit score difference” filter. In this first example,
application of the bit score difference filter does not result in the assignment of the read
to the target taxon.
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Figure 4. Demonstration of the “bit score difference” filter. In this second example,
application of the bit score difference filter results in the assignment of the read to the
target taxon.
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true positive (TP) = a simulated read from the target taxon assigned correctly

false negative (FN) = a simulated read from the target taxon assigned incorrectly

inconclusive assignment (IA) = a simulated read from the target taxon assigned non-specifically

sensitivity = (TP / (TP + FN + IA))

false positive (FP) = a simulated read from a non-target taxon incorrectly assigned to the target taxon

precision = (TP / (TP + FP))1 OR (TP / (TP + FN))2

1 Standard definition of precision, used with the near neighbour approach.

2 Non-standard definition of precision where FN are used as a surrogate for FP, used with the false negatives approach.

Figure 5. Workflow for determining optimal blast filter parameter values. Simulated
reads from the target taxon genome are compared against the ncbi nt database using
blast, and classification performance is evaluated under different combinations of
parameter values used to filter blast results.
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Taxon Taxonomic rank Type NCBI Taxonomy ID RefSeq assembly accession

Bacillus cereus group species group target 86661 N/A

B. anthracis species target 1392 N/A

B. cereus species near neighbour 1396 N/A

B. anthracis Ames Ancestor strain representative 261594 GCF 000008445

B. anthracis Cvac02 strain representative (alternate) N/A GCF 000747335

B. cereus JEM-2 strain representative N/A GCF 001941925

Clostridium genus 1485 N/A

C. botulinum species target 1491 N/A

C. sporogenes species near neighbour 1509 N/A

C. botulinum A str. ATCC 3502 strain representative 413999 GCF 000063585

C. botulinum B1 str. Okra strain representative (alternate) 498213 GCF 000019305

C. sporogenes NCIMB 10696 strain representative N/A GCF 000973705

Escherichia genus 561 N/A

E. coli species 562 N/A

E. coli O157:H7 str. Sakai strain target 386585 GCF 000008865

E. coli SRCC 1675 strain near neighbour N/A GCF 001612495

Yersinia pseudotuberculosis complex species group 1649845 N/A

Y. pestis species target 632 N/A

Y. pseudotuberculosis species near neighbour 633 N/A

Y. pestis CO92 strain representative 214092 GCF 000009065

Y. pestis Angola strain representative (alternate) 349746 GCF 000018805

Y. pseudotuberculosis PB1/+ strain representative 502801 GCF 000834475

Table 1. Taxonomic data and metadata for target taxa and near neighbour species or
strains.
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Target taxon
Taxonomic

rank

Number

of reads

Approach used

to compute FP

Maximum

E-value

Bit score

difference

Validated

reads
Sensitivity Precision

B. anthracis species 220,140

near neighbour 10−64 8 19,491 0.088539 1.0

false negatives 10−64 8 19,491 0.088539 0.9999951

false negatives 10−64 128 1,751 0.007954 1.0

C. botulinum species 156,120
near neighbour 10−64 8 153,786 0.985050 1.0

false negatives 10−64 8 153,786 0.985050 1.0

E. coli O157:H7

str. Sakai
strain 223,760

near neighbour 10−64 1 838 0.003745 1.0

false negatives 10−64 8 184 0.000822 1.0

Y. pestis species 193,170
near neighbour 10−64 8 20,398 0.105596 1.0

false negatives 10−64 8 20,398 0.105596 1.0

1
In the case of B. anthracis, we observe that sensitivity increased from ≈0.8% to ≈8.9% when allowing exactly one FN assignment (precision ≈99.9995%).

Table 2. Experiment 1: simulated 250-bp reads from four target taxa. Optimal
parameter values for filtering blast results were chosen to maximize precision (first)
and sensitivity (second) using two different approaches to compute false positives.

Target taxon
Taxonomic

rank

Number

of reads

Approach used

to compute FP

Maximum

E-value

Bit score

difference

Validated

reads
Sensitivity Precision

B. anthracis species 209,080
near neighbour 10−64 8 20,114 0.096202 1.0

false negatives 10−64 8 20,114 0.096202 1.0

C. botulinum species 164,270
near neighbour 10−64 8 162,069 0.986601 1.0

false negatives 10−64 4 162,594 0.989797 1.0

Y. pestis species 187,470
near neighbour 10−64 8 22,576 0.120425 1.0

false negatives 10−64 8 22,576 0.120425 1.0

Table 3. Experiment 2: simulated 250-bp reads from three target taxa using alternate
representative genomes. Optimal parameter values for filtering blast results were chosen
to maximize precision (first) and sensitivity (second) using two different approaches to
compute false positives.
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Target taxon
Taxonomic

rank

Number

of reads

Approach used

to compute FP

Maximum

E-value

Bit score

difference

Validated

reads
Sensitivity Precision

B. anthracis species 366,920
near neighbour 10−32 8 16,904 0.046070 1.0

false negatives 10−32 8 16,904 0.046070 1.0

C. botulinum species 260,200
near neighbour 10−32 8 250,915 0.964316 1.0

false negatives 10−32 8 250,915 0.964316 1.0

E. coli O157:H7

str. Sakai
strain 372,960

near neighbour 10−64 4 709 0.001901 1.0

false negatives 10−64 8 180 0.000483 1.0

Y. pestis species 321,970
near neighbour 10−32 8 19,965 0.062009 1.0

false negatives 10−32 8 19,965 0.062009 1.0

Table 4. Experiment 3: simulated 150-bp reads from four target taxa. Optimal
parameter values for filtering blast results were chosen to maximize precision (first)
and sensitivity (second) using two different approaches to compute false positives.

Target taxon
Taxonomic

rank

Excluded

taxon

Number

of reads

Maximum

E-value

Bit score

difference

Validated

reads
Sensitivity Precision

B. cereus group species group B. anthracis 220,140 10−64 64 36,003 0.163546 0.939339

C. botulinum species
C. botulinum

A str. ATCC 3502
156,120 10−64 32 141,277 0.904926 0.999385

Y. pestis species Y. pestis CO92 193,170 10−64 8 20,272 0.104944 1.0

Table 5. Experiment 4: simulated 250-bp reads from three taxa that were summarily
excluded from the reference database. Optimal parameter values for filtering blast
results were chosen to maximize precision (first) and sensitivity (second) using the “false
negatives” approach to compute false positives.
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